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Part I

Shortest Paths with Negative
Length Edges
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Single-Source Shortest Paths with Negative
Edge Lengths

Single-Source Shortest
Path Problems

Input: A directed graph
G = (V ,E ) with arbitrary
(including negative) edge
lengths. For edge e = (u, v),
`(e) = `(u, v) is its length.

1 Given nodes s, t find
shortest path from s to t.

2 Given node s find shortest
path from s to all other
nodes.
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What are the distances computed by
Dijkstra’s algorithm?
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The distance as computed
by Dijkstra algorithm start-
ing from s:
(A) s = 0, x = 5, y = 1,

z = 0.
(B) s = 0, x = 1, y = 2,

z = 5.
(C) s = 0, x = 5, y = 1,

z = 2.
(D) IDK.
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Dijkstra’s Algorithm and Negative Lengths

With negative length edges, Dijkstra’s algorithm can fail
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False assumption: Dijkstra’s algorithm is based on the assumption
that if s = v0 → v1 → v2 . . .→ vk is a shortest path from s to vk
then dist(s, vi ) ≤ dist(s, vi+1) for 0 ≤ i < k . Holds true only for
non-negative edge lengths.
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Negative Length Cycles

Definition

A cycle C is a negative length cycle if the sum of the edge lengths of
C is negative.
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Shortest Paths and Negative Cycles

Given G = (V ,E ) with edge lengths and s, t. Suppose
1 G has a negative length cycle C , and
2 s can reach C and C can reach t.

Question: What is the shortest distance from s to t?
Possible answers:

1 undefined, that is −∞, OR
2 the length of a shortest simple path from s to t.

Lemma

If there is an efficient algorithm to find a shortest simple s → t path
in a graph with negative edge lengths, then there is an efficient
algorithm to find the longest simple s → t path in a graph with
positive edge lengths.

Finding the s → t longest path is difficult. NP-Hard!
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Alterantively: Finding Shortest Walks

Given a graph G = (V ,E ):

1 A path is a sequence of distinct vertices v1, v2, . . . , vk such that
(vi , vi+1) ∈ E for 1 ≤ i ≤ k − 1.

2 A walk is a sequence of vertices v1, v2, . . . , vk such that
(vi , vi+1) ∈ E for 1 ≤ i ≤ k − 1. Vertices can repeat.

Define dist(u, v) to be the length of a shortest walk from u to v .

1 If there is a walk from u to v that contains negative length cycle
then dist(u, v) = −∞

2 Else there is a path with at most n − 1 edges whose length is
equal to the length of a shortest walk and dist(u, v) is finite

Helpful to think about walks
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Shortest Paths with Negative Edge Lengths
Problems

Algorithmic Problems

Input: A directed graph G = (V ,E ) with edge lengths (could be
negative). For edge e = (u, v), `(e) = `(u, v) is its length.

Questions:

1 Given nodes s, t, either find a negative length cycle C that s
can reach or find a shortest path from s to t.

2 Given node s, either find a negative length cycle C that s can
reach or find shortest path distances from s to all reachable
nodes.

3 Check if G has a negative length cycle or not.
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Shortest Paths with Negative Edge Lengths
In Undirected Graphs

Note: With negative lengths, shortest path problems and negative
cycle detection in undirected graphs cannot be reduced to directed
graphs by bi-directing each undirected edge. Why?

Problem can be solved efficiently in undirected graphs but algorithms
are different and more involved than those for directed graphs.
Beyond the scope of this class. If interested, ask instructor for
references.
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Why Negative Lengths?

Several Applications

1 Shortest path problems useful in modeling many situations — in
some negative lenths are natural

2 Negative length cycle can be used to find arbitrage opportunities
in currency trading

3 Important sub-routine in algorithms for more general problem:
minimum-cost flow
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Negative cycles
Application to Currency Trading

Currency Trading

Input: n currencies and for each ordered pair (a, b) the exchange
rate for converting one unit of a into one unit of b.
Questions:

1 Is there an arbitrage opportunity?

2 Given currencies s, t what is the best way to convert s to t
(perhaps via other intermediate currencies)?

Concrete example:
1 1 Chinese Yuan = 0.1116 Euro

2 1 Euro = 1.3617 US dollar

3 1 US Dollar = 7.1 Chinese Yuan.

Thus, if exchanging 1 $ →
Yuan→ Euro→ $, we get:
0.1116 ∗ 1.3617 ∗ 7.1 =
1.07896$.
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Reducing Currency Trading to Shortest
Paths

Observation: If we convert currency i to j via intermediate
currencies k1, k2, . . . , kh then one unit of i yields
exch(i , k1)× exch(k1, k2) . . .× exch(kh, j) units of j .

Create currency trading directed graph G = (V ,E ):
1 For each currency i there is a node vi ∈ V
2 E = V × V : an edge for each pair of currencies
3 edge length `(vi , vj ) = − log(exch(i , j)) can be negative

Exercise: Verify that
1 There is an arbitrage opportunity if and only if G has a negative

length cycle.
2 The best way to convert currency i to currency j is via a

shortest path in G from i to j . If d is the distance from i to j
then one unit of i can be converted into 2d units of j .
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Reducing Currency Trading to Shortest
Paths
Math recall - relevant information

1 log(α1 ∗ α2 ∗ · · · ∗ αk) = logα1 + logα2 + · · · + logαk .

2 log x > 0 if and only if x > 1 .
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Shortest Paths with Negative Lengths

Lemma

Let G be a directed graph with arbitrary edge lengths. If
s = v0 → v1 → v2 → . . .→ vk is a shortest path from s to vk
then for 1 ≤ i < k :

1 s = v0 → v1 → v2 → . . .→ vi is a shortest path from s to vi

2 False: dist(s, vi ) ≤ dist(s, vk) for 1 ≤ i < k . Holds true only
for non-negative edge lengths.

Cannot explore nodes in increasing order of distance! We need other
strategies.
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Shortest Paths and Recursion

1 Compute the shortest path distance from s to t recursively?

2 What are the smaller sub-problems?

Lemma

Let G be a directed graph with arbitrary edge lengths. If
s = v0 → v1 → v2 → . . .→ vk is a shortest path from s to vk
then for 1 ≤ i < k :

1 s = v0 → v1 → v2 → . . .→ vi is a shortest path from s to vi

Sub-problem idea: paths of fewer hops/edges
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Hop-based Recursion: Bellman-Ford
Algorithm

Single-source problem: fix source s.
Assume that all nodes can be reached by s in G

d(v , k): shortest walk length from s to v using at most k edges.

Recursion for d(v , k):

d(v , k) = min

{
minu∈V (d(u, k − 1) + `(u, v)).

d(v , k − 1)

Base case: d(s, 0) = 0 and d(v , 0) =∞ for all v 6= s.
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Algorithm for Hop-Constrained Walks

Problem: Given G = (V ,E ) with edge lengths, s and integer
bound h. For each v find shortest s-v walk length with at most h
edges. That is, d(v , h) for all v ∈ V .

for each u ∈ V do
d (u, 0)←∞

d (s, 0)← 0

for k = 1 to h do
for each v ∈ V do

d (v , k)← d (v , k − 1)
for each edge (u, v) ∈ In(v) do

d (v , k) = min{d (v , k), d (u, k − 1) + `(u, v)}

Running time: O(mh) Space: O(m + nh)
Space can be reduced to O(m + n)
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Bellman-Ford Algorithm

Based on the following three lemmas:

Lemma

There is an O(mn) time and O(m + n) space algorithm that
computes d(v , n − 1) and d(v , n) for all v ∈ V .

Lemma

Suppose there is no negative length cycle in G then for each v ∈ V ,
d(v , n − 1) is the shortest path distance from s to v .

Lemma

Suppose there is a negative length cycle C in G that is reachable
from s. Then d(v , n) < d(v , n − 1) for some v ∈ V .
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Bellman-Ford Algorithm

1 Compute d(v , n − 1) and d(v , n) for each v ∈ V
2 If there is any v such that d(v , n) < d(v , n − 1) then output

that there is a negative length cycle.

3 Else, for each v ∈ V , dist(s, v) = d(v , n − 1).

O(mn) time and O(m + n) space
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Bellman-Ford Algorithm

Keep track of only one value d(v) for each v which stands for
d(v , k) as k changes from 0 to n

for each u ∈ V do
d (u)←∞

d (s)← 0

for k = 1 to n − 1 do
for each v ∈ V do

for each edge (u, v) ∈ In(v) do
d (v) = min{d (v), d (u) + `(u, v)}

(* One more iteration to check if distances change *)

for each v ∈ V do
for each edge (u, v) ∈ In(v) do

if (d (v) > d (u) + `(u, v)) Output ‘‘Negative Cycle’’

for each v ∈ V do
dist(s, v)← d (v)
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Correctness of the Bellman-Ford Algorithm

Lemma

There is an O(mn) time and O(m + n) space algorithm that
computes d(v , n − 1) and d(v , n) for all v ∈ V .

Proof via induction on k that d(v , k) is the length of a shortest walk
from s to v with at most k hops. We saw that the algorithm runs in
O(mn) time and O(m + n) space.

Observation

If all vertices are reachable from s then d(v , n − 1) <∞ (finite).
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Correctness of the Bellman-Ford Algorithm

Lemma

Suppose G does not have a negative length cycle and all nodes are
reachable from s. Then for all v , d(v , n − 1) = d(v , n) and
dist(s, v) = d(v , n − 1).

Proof.

No negative length cycle means shortest walk length is same as
shortest path length. A path can have at most n − 1 edges and
hence dist(s, v) = d(v , n − 1) and d(v , n − 1) = d(v , n).

Alternatively: suppose d (v , n) < d (v , n− 1). Consider s-v walk W that

achieves d (v , n). No negative length cycles⇒ can remove cycles from

W to get s-v path P such that `(W ) = `(P). Then d (v , h) = d (v , n)

for some h < n, and d (v , n − 1) ≤ d (v , h) which implies that

d (v , n − 1) = d (v , n), a contradiction.
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Detecting negative length cycle

Lemma

Suppose G has a negative cycle C reachable from s. Then there is
some node v ∈ C such that d(v , n) < d(v , n − 1).

Proof by contradiction. Let C = v1 → v2 → . . .→ vh → v1 be a
negative length cycle in G .

d(vi , n − 1) is finite for 1 ≤ i ≤ h by observation.

Suppose d(v , n) ≥ d(v , n − 1) for all v ∈ C
This means d(vi , n − 1) ≤ d(vi−1, n − 1) + `(vi−1, vi ) for
2 ≤ i ≤ h and d(v1, n − 1) ≤ d(vn, n − 1) + `(vn, v1). Because

if d (vi , n − 1) > d (vi−1, n − 1) + `(vi−1, vi ) we would have d (vi , n) ≤ d (vi−1, n − 1) + `(vi−1, vi ) and

d (vi , n) < d (vi , n − 1).

Adding up all these inequalities results in the inequality
0 ≤ `(C ) which contradicts the assumption that `(C ) < 0.
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Detecting negative length cycle

A concrete setting. Assume cycle is v1 → v2 → v3 → v4 → v1

Via the recursion and using the edges in the cycle we have

d(v2, n − 1) ≤ d(v1, n − 1) + `(v1, v2) since d (v2, n) ≥ d (v2, n − 1)

d(v3, n − 1) ≤ d(v2, n − 1) + `(v2, v3) since d (v3, n) ≥ d (v3, n − 1)

d(v4, n − 1) ≤ d(v3, n − 1) + `(v3, v4) since d (v4, n) ≥ d (v4, n − 1)

d(v1, n − 1) ≤ d(v4, n − 1) + `(v4, v1) since d (v1, n) ≥ d (v1, n − 1)

Adding up both sides:
d (v1, n−1)+d (v2, n−1)+d (v3, n−1)+d (v4, n−1) ≤ d (v1, n−1)+d (v2, n−1)+d (v3, n−1)+d (v4, n−1)+`(C)

⇒ `(C ) ≥ 0 a contradiction
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An easier lemma about negative cycle
detection

Lemma

Suppose G has a negative length cycle C reachable from s. Let v be
any node on C . Then d(v , n − 1 + p) < d(v , n − 1) where p is
the number of edges in C .

Proof.

Consider s-v walk W that achieves d(v , n − 1). If we concatenate
W and C we get another walk W ′ such that
`(W ′) = `(W ) + `(C ) < `(W ) since `(C ) < 0. W ′ has |W |+ p
edges, hence d(v , n − 1 + p) < d(v , n − 1).

The lemma shows that running Bellman-Ford for 2n − 1 iterations
suffices to detect negative cycle. The stronger lemma says that n
iterations suffice.
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Finding the Paths and a Shortest Path Tree

How do we find a shortest path tree in addition to distances?

For each v the d(v) can only get smaller as algorithm proceeds.

If d(v) becomes smaller it is because we found a vertex u such
that d(v) > d(u) + `(u, v) and we update
d(v) = d(u) + `(u, v). That is, we found a shorter path to v
through u.

For each v have a prev(v) pointer and update it to point to u
if v finds a shorter path via u.

At end of algorithm prev(v) pointers give a shortest path tree
oriented towards the source s.
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Negative Cycle Detection

Negative Cycle Detection

Given directed graph G with arbitrary edge lengths, does it have a
negative length cycle?

1 Bellman-Ford checks whether there is a negative cycle C that is
reachable from a specific vertex s. There may negative cycles
not reachable from s.

2 Run Bellman-Ford |V | times, once from each node u?
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Negative Cycle Detection

1 Add a new node s ′ and connect it to all nodes of G with zero
length edges. Bellman-Ford from s ′ will fill find a negative
length cycle if there is one. Exercise: why does this work?

2 Negative cycle detection can be done with one Bellman-Ford
invocation on a graph with one extra node.
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Finding a negative length cycle

Question: How can we find a negative length cycle if it has one?

Algorithm is simple

In iteration n algorithm finds first v such that
d(v , n) < d(v , n − 1) via u. Update prev(v) pointer to u
(interesting case is when v = s)

There must be a cycle in the graph induced by prev() pointers
and it must be of negative length

Proof is not straight forward to see. See next two slides

Note: Negative cycles can get created and removed along the way
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Finding a negative length cycle

Properties of the algorithm:

For each v 6= s, prev(v) is a single back pointer and hence the
graph induced by prev() pointers consists of a forest rooted at
s, collection of cycles, and isolated vertices (all disjoint)

By induction one can show that if prev(v) = u implies that
there is an s-v walk whose last edge is (u, v) that achieves the
current distance label d(v) for v . In particular if there is a path
from v to s using prev pointers from v then that walk is a
current shortest walk to v .

By induction one can show that if there is a cycle in the graph
induced by prev() pointers at any stage of the algorithm then it
must have negative length. This is the key property and the
proof can be shown using the last edge that created the cycle
and using a proof similar to the one for detecting negative cycle.
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Finding a negative length cycle

Consider the prev() pointer graph after n − 1 iterations. If
there is a cycle then it must be negative
Suppose there is no cycle. Then since all d(v , n − 1) values are
finite, the prev() pointers induce a tree rooted at s. Thus each
node v has a path from s whose length is equal to d(v , n − 1).
Algorithm found some v s.t d(v , n) < d(v , n − 1). There is
u 6= v such that d(u, n − 1) + `(u, v) < d(v , n − 1).

Case 1: v = s. Implies that d (s, n) < 0, and the edge (u, s)
together with the path from s to u in the current tree is a s-s
cycle of length < 0
Case 2: v 6= s and u is a decendent of v in the current tree of
prev() pointers — then updating prev(v) = u will create a
negative length cycle containing v
Case 3: v 6= s and u is not a descent of v in current tree.
Updating prev(v) = u creates new tree and path to v with
length d (v , n), a contradition. Cannot happen.
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Faster Algorithms?

Bellman-Ford algorithm is from 50’s. Are there faster algorithms?
Yes!

Bernstein-Nanongkai-WulffNilsen, 2022: randomized
O(m log8 n log L) time algorithm where edge weights are integral
and L = maxe |`(e)|.
https://arxiv.org/pdf/2203.03456.pdf
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Part II

Shortest Paths in DAGs
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Shortest Paths in a DAG

Single-Source Shortest Path Problems

Input A directed acyclic graph G = (V ,E ) with arbitrary
(including negative) edge lengths. For edge e = (u, v),
`(e) = `(u, v) is its length.

1 Given nodes s, t find shortest path from s to t.

2 Given node s find shortest path from s to all other nodes.

Simplification of algorithms for DAGs

1 No cycles and hence no negative length cycles! Hence can find
shortest paths even for negative length edges

2 Can order nodes using topological sort
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Algorithm for DAGs

1 Want to find shortest paths from s. Ignore nodes not reachable
from s.

2 Let s = v1, v2, vi+1, . . . , vn be a topological sort of G

Observation:

1 shortest path from s to vi cannot use any node from
vi+1, . . . , vn

2 can find shortest paths in topological sort order.
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Algorithm for DAGs

Assumption: s is first in the topological sort

for i = 1 to n do
d (s, vi ) =∞

d (s, s) = 0

for i = 1 to n − 1 do
for each edge (vi , vj ) in Adj(vi ) do

d (s, vj ) = min{d (s, vj ), d (s, vi ) + `(vi , vj )}

return d (s, ·) values computed

Correctness: induction on i and observation in previous slide.

Running time: O(m + n) time algorithm! Works for negative edge
lengths and hence can find longest paths in a DAG.
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Algorithm for DAGs, a variant

Assumption: s is first in the topological sort

for i = 1 to n do
d (s, vi ) =∞

d (s, s) = 0

for i = 2 to n − 1 do
for each edge (vj , vi ) in In(vi ) do

d (s, vi ) = min{d (s, vi ), d (s, vj ) + `(vj , vi )}

return d (s, ·) values computed

When visiting vi scan incoming edges to find shortest path to i .
Previous algorithm scanned all edges in Adj(vi ) after processing vi .
Can see algorithms are same.
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Algorithm for DAGs: Example

a b c

d e

f g

h

10

-5

-3

2
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-6
3

Want distances from a say. Consider topological sort:
a, b, c, d , f , e, h, g
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Bellman-Ford and DAGs

Bellman-Ford relies on hop-constrained walks

We can find hop-constrained shortest walks via graph reduction.

Given G = (V ,E ) with edge lengths `(e) and integer k
construction new layered graph G ′ = (V ′,E ′) as follows.

V ′ = V × {0, 1, 2, . . . , k}.
E ′ = {((u, i), (v , i + 1) | (u, v) ∈ E , 0 ≤ i < k},
`((u, i), (v , i + 1)) = `(u, v)

Lemma

Shortest path distance from (u, 0) to (v , k) in G ′ is equal to the
shortest walk from u to v in G with exactly k edges.
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Layered DAG: Figure
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Edge lengths in DAG are same as in original graph
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Layered DAG: Figure

Suppose we want (u, 0) to (v , k) in G ′ to give us the shortest walk
from u to v in G with at most k edges. We add 0 length edges
between (u, i) and (u, i + 1) for each u, i as shown in the figure.
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Edge lengths in DAG are same as in original graph except dashed edges which have 0 length
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Part III

All Pairs Shortest Paths
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Shortest Path Problems

Shortest Path Problems

Input A (undirected or directed) graph G = (V ,E ) with edge
lengths (or costs). For edge e = (u, v), `(e) = `(u, v)
is its length.

1 Given nodes s, t find shortest path from s to t.

2 Given node s find shortest path from s to all other nodes.

3 Find shortest paths for all pairs of nodes.
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Single-Source Shortest Paths

Single-Source Shortest Path Problems

Input A (undirected or directed) graph G = (V ,E ) with edge
lengths. For edge e = (u, v), `(e) = `(u, v) is its
length.

1 Given nodes s, t find shortest path from s to t.

2 Given node s find shortest path from s to all other nodes.

Dijkstra’s algorithm for non-negative edge lengths. Running time:
O((m + n) log n) with heaps and O(m + n log n) with
advanced priority queues.

Bellman-Ford algorithm for arbitrary edge lengths. Running time:
O(nm).
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All-Pairs Shortest Paths

All-Pairs Shortest Path Problem

Input A (undirected or directed) graph G = (V ,E ) with edge
lengths. For edge e = (u, v), `(e) = `(u, v) is its
length.

1 Find shortest paths for all pairs of nodes.

Apply single-source algorithms n times, once for each vertex.

1 Non-negative lengths. O(nm log n) with heaps and
O(nm + n2 log n) using advanced priority queues.

2 Arbitrary edge lengths: O(n2m).
Θ(n4) if m = Ω(n2).

Can we do better?
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All-Pairs: Recursion on index of
intermediate nodes

1 Number vertices arbitrarily as v1, v2, . . . , vn

2 dist(i , j , k): length of shortest walk from vi to vj among all
walks in which the largest index of an intermediate node is at
most k (could be −∞ if there is a negative length cycle).
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dist(i , j , 0) =
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dist(i , j , 1) =

9

dist(i , j , 2) =

8

dist(i , j , 3) =

5
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For the following graph, dist(i , j , 2) is

i
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(A) 9
(B) 10
(C) 11
(D) 12
(E) 15
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All-Pairs: Recursion on index of
intermediate nodes

i j

kdist(i, k, k − 1) dist(k, j, k − 1)

dist(i, j, k − 1)

dist(i , j , k) = min

{
dist(i , j , k − 1)

dist(i , k, k − 1) + dist(k, j , k − 1)

Base case: dist(i , j , 0) = `(i , j) if (i , j) ∈ E , otherwise∞
Correctness: If i → j shortest walk goes through k then k occurs
only once on the path — otherwise there is a negative length cycle.
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All-Pairs: Recursion on index of
intermediate nodes

If i can reach k and k can reach j and dist(k, k, k − 1) < 0 then
G has a negative length cycle containing k and dist(i , j , k) = −∞.

Recursion below is valid only if dist(k, k, k − 1) = 0. We can
detect this during the algorithm or wait till the end.

dist(i , j , k) = min

{
dist(i , j , k − 1)

dist(i , k, k − 1) + dist(k, j , k − 1)

Alternatively:

dist(i , j , k) = min

{
dist(i , j , k − 1)

dist(i , k, k − 1) + dist(k, k, k − 1) + dist(k, j , k − 1)
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Floyd-Warshall Algorithm
for All-Pairs Shortest Paths

for i = 1 to n do
for j = 1 to n do

dist(i , j , 0) = `(i , j ) (* `(i , j ) =∞ if (i , j ) /∈ E, 0 if i = j *)

for k = 1 to n do
for i = 1 to n do

for j = 1 to n do

dist(i , j , k) = min

{
dist(i , j , k − 1),

dist(i , k, k − 1) + dist(k, j , k − 1)

for i = 1 to n do
if (dist(i , i , n) < 0) then

Output that there is a negative length cycle in G

Running Time: Θ(n3), Space: Θ(n3).
Correctness: via induction and recursive definition
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Floyd-Warshall Algorithm
for All-Pairs Shortest Paths
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Floyd-Warshall Algorithm: Finding the
Paths

Question: Can we find the paths in addition to the distances?

1 Create a n × n array Next that stores the next vertex on
shortest path for each pair of vertices

2 With array Next, for any pair of given vertices i , j can compute
a shortest path in O(n) time.
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Floyd-Warshall Algorithm
Finding the Paths

for i = 1 to n do
for j = 1 to n do

dist(i , j , 0) = `(i , j )
(* `(i , j ) =∞ if (i , j ) not edge, 0 if i = j *)

Next(i , j ) = −1
for k = 1 to n do

for i = 1 to n do
for j = 1 to n do

if (dist(i , j , k − 1) > dist(i , k, k − 1) + dist(k, j , k − 1)) then
dist(i , j , k) = dist(i , k, k − 1) + dist(k, j , k − 1)
Next(i , j ) = k

for i = 1 to n do
if (dist(i , i , n) < 0) then

Output that there is a negative length cycle in G

Exercise: Given Next array and any two vertices i , j describe an
O(n) algorithm to find a i -j shortest path.
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Summary of results on shortest paths

Single source
No negative edges Dijkstra O(n log n + m)

Edge lengths can be negative Bellman Ford O(nm)

All Pairs Shortest Paths

No negative edges n * Dijkstra O(n2 log n + nm)

No negative cycles n * Bellman Ford O(n2m) = O(n4)

No negative cycles BF + n * Dijkstra O(nm + n2 log n)

No negative cycles Floyd-Warshall O(n3)

Unweighted Matrix multiplication O(n2.38), O(n2.58)
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Part IV

Dynamic Programming, DAGs,
and Shortest Paths
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Recursion and DAGs

Suppose we have a recursive program foo(x) that takes an input x
foo(x) generates a recursion tree where a subproblem z is a
child of subproblem y if foo(y) calls foo(z) during its
execution. Note that the same subproblem/instance can occur
many times in the tree.

In DP we are interested in the distinct subproblems generated by
foo(x). We can create a natural DAG with the recursion

Each distinct subproblem corresponds to a node
If foo(y) calls foo(z) we add arc from y to z .

The dependency graph for recursion is naturally acyclic
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DP and DAGs: Examples

Computing Fib(n) via recursion Fib(n) = Fib(n− 1) + Fib(n− 2)
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DP and DAGs: Examples

Edit Distance between strings X [1..m] and Y [1..n]
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DP and DAGs: Evaluation Order

Converting recursive algorithm to iterative algorithm in DP:
Identify the structure of subproblems to estimate number
Allocate appropriate data structure to store the subproblems
Evaluate the subproblems in the right order

Question: what is the right order? Can we automate it?

Yes. Compute the DAG. Evaluation order is the reverse of a
topological sort of the DAG

Question: Why not automate evaluation order?
Creating the DAG explicitly is cumbersome, and wasteful in
space/time.
For many DP problems the subproblem and DAG structure is
simple and can be exploited for efficiency
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DP and DAGs: the other way

We saw that dependency graph of a recursion is a DAG and we can
use graph/DAG properties to help us with DP.

Sometimes it is feasible to reduce a problem to a DAG computation
directly without realizing that it came from a DP.

Examples:

Longest Increasing Subsequence

Bellman-Ford and Hop-Constrained Walks (we saw already)
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Reducing Longest Increasing Subsequence
to longest path in a DAG

LIS: given a sequence, find the longest increasing subsequence

Example

1 Sequence: 6, 3, 5, 2, 7, 8, 1

2 Increasing subsequences: 6, 7, 8 and 3, 5, 7, 8 and 2, 7 etc

3 Longest increasing subsequence: 3, 5, 7, 8

6 3 5 2 7 8 1s t
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Dynamic Programming: Postscript

Dynamic Programming = Smart Recursion + Memoization

1 How to come up with the recursion?

2 How to recognize that dynamic programming may apply?
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Some Tips

1 Problems where there is a natural linear ordering: sequences,
paths, intervals, DAGs etc. Recursion based on ordering (left to
right or right to left or topological sort) usually works.

2 Problems involving trees: recursion based on subtrees.
3 More generally:

1 Problem admits a natural recursive divide and conquer
2 If optimal solution for whole problem can be simply composed

from optimal solution for each separate pieces then plain divide
and conquer works directly

3 If optimal solution depends on all pieces then can apply
dynamic programming if interface/interaction between pieces is
limited. Augment recursion to not simply find an optimum
solution but also an optimum solution for each possible way to
interact with the other pieces.
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Examples

1 Longest Increasing Subsequence: break sequence in the middle
say. What is the interaction between the two pieces in a
solution?

2 Sequence Alignment: break both sequences in two pieces each.
What is the interaction between the two sets of pieces?

3 Independent Set in a Tree: break tree at root into subtrees.
What is the interaction between the subtrees?

4 Independent Set in an graph: break graph into two graphs.
What is the interaction? Very high!

5 Knapsack: Split items into two sets of half each. What is the
interaction?

Chandra Chekuri (UIUC) CS/ECE 374 65 Spring 2023 65 / 65


	Shortest Paths with Negative Length Edges
	Bellman Ford Algorithm

	Shortest Paths in DAGs
	All Pairs Shortest Paths
	Dynamic Programming, DAGs, and Shortest Paths

