
CS/ECE 374: Algorithms & Models of
Computation

More DP: Edit Distance and
Independent Sets in Trees
Lecture 14
March 7, 2023

Chandra Chekuri (UIUC) CS/ECE 374 1 Spring 2023 1 / 52

Exercise: how many subproblems?

Consider computing f (x, y) by recursive function + memoization.

f (x, y) =

x+y−1∑
i=1

x ∗ f (x + y − i , i − 1),

f (0, y) = y f (x, 0) = x.

How many distinct subproblems when computing f (n, n)?

O(n)

O(n log n)

O(n2)

O(n3)

The function is ill defined - it can not be computed.

Chandra Chekuri (UIUC) CS/ECE 374 2 Spring 2023 2 / 52

What is the running time for each
subproblem?

Consider computing f (x, y) by recursive function + memoization.

f (x, y) =

x+y−1∑
i=1

x ∗ f (x + y − i , i − 1),

f (0, y) = y f (x, 0) = x.

The worst-case time to evaluate the output of a subproblem given
values for its recursive subproblems when computing f (n, n) is:

O(n)

O(n log n)

O(n2)

O(n3)

The function is ill defined - it can not be computed.
Chandra Chekuri (UIUC) CS/ECE 374 3 Spring 2023 3 / 52

What is the total running time?

Consider computing f (x, y) by recursive function + memoization.

f (x, y) =

x+y−1∑
i=1

x ∗ f (x + y − i , i − 1),

f (0, y) = y f (x, 0) = x.

The resulting algorithm when computing f (n, n) would take:

O(n)

O(n log n)

O(n2)

O(n3)

The function is ill defined - it can not be computed.

Chandra Chekuri (UIUC) CS/ECE 374 4 Spring 2023 4 / 52

Recipe for Dynamic Programming

1 Develop a recursive backtracking style algorithm A for given
problem.

2 Identify structure of subproblems generated by A on an instance
I of size n

1 Estimate number of different subproblems generated as a
function of n. Is it polynomial or exponential in n?

2 If the number of problems is “small” (polynomial) then they
typically have some “clean” structure.

3 Rewrite subproblems in a compact fashion.

4 Rewrite recursive algorithm in terms of notation for subproblems.

5 Convert to iterative algorithm by bottom up evaluation in an
appropriate order.

6 Optimize further with data structures and/or additional ideas.

Chandra Chekuri (UIUC) CS/ECE 374 5 Spring 2023 5 / 52

A variation

Input A string w ∈ Σ∗ and access to a language L ⊆ Σ∗ via
function IsStringinL(string x) that decides whether x
is in L, and non-negative integer k

Goal Decide if w ∈ Lk using IsStringinL(string x) as a
black box sub-routine

Example

Suppose L is English and we have a procedure to check whether a
string/word is in the English dictionary.

Is the string “isthisanenglishsentence” in English5?

Is the string “isthisanenglishsentence” in English4?

Is “asinineat” in English2?

Is “asinineat” in English4?

Is “zibzzzad” in English1?

Chandra Chekuri (UIUC) CS/ECE 374 6 Spring 2023 6 / 52

Recursive Solution

When is w ∈ Lk?

k = 0: w ∈ Lk iff w = ε
k = 1: w ∈ Lk iff w ∈ L
k > 1: w ∈ Lk if w = uv with u ∈ L and v ∈ Lk−1

Assume w is stored in array A[1..n]

IsStringinLk(A[1..n], k):
If (k = 0)

If (n = 0) Output YES

Else Ouput NO

If (k = 1)
Output IsStringinL(A[1..n])

Else

For (i = 1 to n − 1) do

If (IsStringinL(A[1..i]) and IsStringinLk(A[i + 1..n], k − 1))
Output YES

Output NO

Chandra Chekuri (UIUC) CS/ECE 374 7 Spring 2023 7 / 52

Recursive Solution

When is w ∈ Lk?
k = 0: w ∈ Lk iff w = ε
k = 1: w ∈ Lk iff w ∈ L
k > 1: w ∈ Lk if w = uv with u ∈ L and v ∈ Lk−1

Assume w is stored in array A[1..n]

IsStringinLk(A[1..n], k):
If (k = 0)

If (n = 0) Output YES

Else Ouput NO

If (k = 1)
Output IsStringinL(A[1..n])

Else

For (i = 1 to n − 1) do

If (IsStringinL(A[1..i]) and IsStringinLk(A[i + 1..n], k − 1))
Output YES

Output NO

Chandra Chekuri (UIUC) CS/ECE 374 7 Spring 2023 7 / 52

Recursive Solution

When is w ∈ Lk?
k = 0: w ∈ Lk iff w = ε
k = 1: w ∈ Lk iff w ∈ L
k > 1: w ∈ Lk if w = uv with u ∈ L and v ∈ Lk−1

Assume w is stored in array A[1..n]

IsStringinLk(A[1..n], k):
If (k = 0)

If (n = 0) Output YES

Else Ouput NO

If (k = 1)
Output IsStringinL(A[1..n])

Else

For (i = 1 to n − 1) do

If (IsStringinL(A[1..i]) and IsStringinLk(A[i + 1..n], k − 1))
Output YES

Output NO
Chandra Chekuri (UIUC) CS/ECE 374 7 Spring 2023 7 / 52

Analysis

IsStringinLk(A[1..n], k):
If (k = 0)

If (n = 0) Output YES

Else Ouput NO

If (k = 1)
Output IsStringinL(A[1..n])

Else

For (i = 1 to n − 1) do

If (IsStringinL(A[1..i]) and IsStringinLk(A[i + 1..n], k − 1))
Output YES

Output NO

How many distinct sub-problems are generated by
IsStringinLk(A[1..n], k)?

O(nk)

How much space? O(nk)

Running time? O(n2k)

Chandra Chekuri (UIUC) CS/ECE 374 8 Spring 2023 8 / 52

Analysis

IsStringinLk(A[1..n], k):
If (k = 0)

If (n = 0) Output YES

Else Ouput NO

If (k = 1)
Output IsStringinL(A[1..n])

Else

For (i = 1 to n − 1) do

If (IsStringinL(A[1..i]) and IsStringinLk(A[i + 1..n], k − 1))
Output YES

Output NO

How many distinct sub-problems are generated by
IsStringinLk(A[1..n], k)? O(nk)

How much space? O(nk)

Running time? O(n2k)

Chandra Chekuri (UIUC) CS/ECE 374 8 Spring 2023 8 / 52

Analysis

IsStringinLk(A[1..n], k):
If (k = 0)

If (n = 0) Output YES

Else Ouput NO

If (k = 1)
Output IsStringinL(A[1..n])

Else

For (i = 1 to n − 1) do

If (IsStringinL(A[1..i]) and IsStringinLk(A[i + 1..n], k − 1))
Output YES

Output NO

How many distinct sub-problems are generated by
IsStringinLk(A[1..n], k)? O(nk)

How much space?

O(nk)

Running time? O(n2k)

Chandra Chekuri (UIUC) CS/ECE 374 8 Spring 2023 8 / 52

Analysis

IsStringinLk(A[1..n], k):
If (k = 0)

If (n = 0) Output YES

Else Ouput NO

If (k = 1)
Output IsStringinL(A[1..n])

Else

For (i = 1 to n − 1) do

If (IsStringinL(A[1..i]) and IsStringinLk(A[i + 1..n], k − 1))
Output YES

Output NO

How many distinct sub-problems are generated by
IsStringinLk(A[1..n], k)? O(nk)

How much space? O(nk)

Running time? O(n2k)

Chandra Chekuri (UIUC) CS/ECE 374 8 Spring 2023 8 / 52

Analysis

IsStringinLk(A[1..n], k):
If (k = 0)

If (n = 0) Output YES

Else Ouput NO

If (k = 1)
Output IsStringinL(A[1..n])

Else

For (i = 1 to n − 1) do

If (IsStringinL(A[1..i]) and IsStringinLk(A[i + 1..n], k − 1))
Output YES

Output NO

How many distinct sub-problems are generated by
IsStringinLk(A[1..n], k)? O(nk)

How much space? O(nk)

Running time?

O(n2k)

Chandra Chekuri (UIUC) CS/ECE 374 8 Spring 2023 8 / 52

Analysis

IsStringinLk(A[1..n], k):
If (k = 0)

If (n = 0) Output YES

Else Ouput NO

If (k = 1)
Output IsStringinL(A[1..n])

Else

For (i = 1 to n − 1) do

If (IsStringinL(A[1..i]) and IsStringinLk(A[i + 1..n], k − 1))
Output YES

Output NO

How many distinct sub-problems are generated by
IsStringinLk(A[1..n], k)? O(nk)

How much space? O(nk)

Running time? O(n2k)

Chandra Chekuri (UIUC) CS/ECE 374 8 Spring 2023 8 / 52

Naming subproblems and recursive equation

ISLk(i , h): a boolean which is 1 if A[i ..n] is in Lh, 0 otherwise

Base case: ISLk(n + 1, 0) = 1 interpreting A[n + 1..n] as ε

Recursive relation:

ISLk(i , h) = 1 if ∃i < j ≤ n + 1 such that
(ISLk(j , h − 1) = 1 and IsStringinL(A[i ..(j − 1]) = 1)

ISLk(i , h) = 0 otherwise

Output: ISLk(1, k)

Chandra Chekuri (UIUC) CS/ECE 374 9 Spring 2023 9 / 52

Naming subproblems and recursive equation

ISLk(i , h): a boolean which is 1 if A[i ..n] is in Lh, 0 otherwise

Base case: ISLk(n + 1, 0) = 1 interpreting A[n + 1..n] as ε

Recursive relation:

ISLk(i , h) = 1 if ∃i < j ≤ n + 1 such that
(ISLk(j , h − 1) = 1 and IsStringinL(A[i ..(j − 1]) = 1)

ISLk(i , h) = 0 otherwise

Output: ISLk(1, k)

Chandra Chekuri (UIUC) CS/ECE 374 9 Spring 2023 9 / 52

Iterative Algorithm

IsStringinLk(A[1..n], k):
Boolean ISLk[1..(n + 1)][0..k]

ISLk[n + 1][0] = TRUE

For (i = 1 to n) do

ISLk[i][0] = FALSE

For (i = 1 to n) do

For (h = 1 to k) do

ISLk[i][h] = FALSE

For (j = i + 1 to n + 1) do

If (ISLk[j][h − 1] and IsStringinL(A[i ..(j − 1)])) then

ISLk[i][h] = TRUE

Output ISLk[1][k]

Chandra Chekuri (UIUC) CS/ECE 374 10 Spring 2023 10 / 52

Another variant

Question: What if we want to check if w ∈ Li for some
0 ≤ i ≤ k? That is, is w ∈ ∪k

i=0L
i ?

Chandra Chekuri (UIUC) CS/ECE 374 11 Spring 2023 11 / 52

Exercise

Definition

A string is a palindrome if w = wR .
Examples: I , RACECAR, MALAYALAM , DOOFFOOD

Problem: Given a string w find the longest subsequence of w that
is a palindrome.

Example

MAHDYNAMICPROGRAMZLETMESHOWYOUTHEM has
MHYMRORMYHM as a palindromic subsequence

Chandra Chekuri (UIUC) CS/ECE 374 12 Spring 2023 12 / 52

Exercise

Definition

A string is a palindrome if w = wR .
Examples: I , RACECAR, MALAYALAM , DOOFFOOD

Problem: Given a string w find the longest subsequence of w that
is a palindrome.

Example

MAHDYNAMICPROGRAMZLETMESHOWYOUTHEM has
MHYMRORMYHM as a palindromic subsequence

Chandra Chekuri (UIUC) CS/ECE 374 12 Spring 2023 12 / 52

Exercise

Assume w is stored in an array A[1..n]

LPS(i , j): length of longest palindromic subsequence of A[i ..j].

Recursive expression/code?

Chandra Chekuri (UIUC) CS/ECE 374 13 Spring 2023 13 / 52

Part I

Edit Distance and Sequence
Alignment

Chandra Chekuri (UIUC) CS/ECE 374 14 Spring 2023 14 / 52

Spell Checking Problem

Given a string “exponen” that is not in the dictionary, how should a
spell checker suggest a nearby string?

What does nearness mean?

Question: Given two strings x1x2 . . . xn and y1y2 . . . ym what is a
distance between them?

Edit Distance: minimum number of “edits” to transform x into y .

Chandra Chekuri (UIUC) CS/ECE 374 15 Spring 2023 15 / 52

Spell Checking Problem

Given a string “exponen” that is not in the dictionary, how should a
spell checker suggest a nearby string?

What does nearness mean?

Question: Given two strings x1x2 . . . xn and y1y2 . . . ym what is a
distance between them?

Edit Distance: minimum number of “edits” to transform x into y .

Chandra Chekuri (UIUC) CS/ECE 374 15 Spring 2023 15 / 52

Spell Checking Problem

Given a string “exponen” that is not in the dictionary, how should a
spell checker suggest a nearby string?

What does nearness mean?

Question: Given two strings x1x2 . . . xn and y1y2 . . . ym what is a
distance between them?

Edit Distance: minimum number of “edits” to transform x into y .

Chandra Chekuri (UIUC) CS/ECE 374 15 Spring 2023 15 / 52

Edit Distance

Definition

Edit distance between two words X and Y is the number of letter
insertions, letter deletions and letter substitutions required to obtain
Y from X .

Example

The edit distance between FOOD and MONEY is at most 4:

FOOD→ MOOD→ MONOD→ MONED→ MONEY

Chandra Chekuri (UIUC) CS/ECE 374 16 Spring 2023 16 / 52

Edit Distance: Alternate View

Alignment

Place words one on top of the other, with gaps in the first word
indicating insertions, and gaps in the second word indicating
deletions.

F O O D
M O N E Y

Formally, an alignment is a set M of pairs (i , j) such that each index
appears at most once, and there is no “crossing”: i < i ′ and i is
matched to j implies i ′ is matched to j ′ > j . In the above example,
this is M = {(1, 1), (2, 2), (3, 3), (4, 5)}. Cost of an alignment is
the number of mismatched columns plus number of unmatched
indices in both strings.

Chandra Chekuri (UIUC) CS/ECE 374 17 Spring 2023 17 / 52

Edit Distance: Alternate View

Alignment

Place words one on top of the other, with gaps in the first word
indicating insertions, and gaps in the second word indicating
deletions.

F O O D
M O N E Y

Formally, an alignment is a set M of pairs (i , j) such that each index
appears at most once, and there is no “crossing”: i < i ′ and i is
matched to j implies i ′ is matched to j ′ > j . In the above example,
this is M = {(1, 1), (2, 2), (3, 3), (4, 5)}.

Cost of an alignment is
the number of mismatched columns plus number of unmatched
indices in both strings.

Chandra Chekuri (UIUC) CS/ECE 374 17 Spring 2023 17 / 52

Edit Distance: Alternate View

Alignment

Place words one on top of the other, with gaps in the first word
indicating insertions, and gaps in the second word indicating
deletions.

F O O D
M O N E Y

Formally, an alignment is a set M of pairs (i , j) such that each index
appears at most once, and there is no “crossing”: i < i ′ and i is
matched to j implies i ′ is matched to j ′ > j . In the above example,
this is M = {(1, 1), (2, 2), (3, 3), (4, 5)}. Cost of an alignment is
the number of mismatched columns plus number of unmatched
indices in both strings.

Chandra Chekuri (UIUC) CS/ECE 374 17 Spring 2023 17 / 52

Edit Distance Problem

Problem

Given two words, find the edit distance between them, i.e., an
alignment of smallest cost.

Chandra Chekuri (UIUC) CS/ECE 374 18 Spring 2023 18 / 52

Applications

1 Spell-checkers and Dictionaries

2 Unix diff

3 DNA sequence alignment . . . but, we need a new metric

Chandra Chekuri (UIUC) CS/ECE 374 19 Spring 2023 19 / 52

Similarity Metric

Definition

For two strings X and Y , the cost of alignment M is

1 [Gap penalty] For each gap in the alignment, we incur a cost δ.

2 [Mismatch cost] For each pair p and q that have been matched
in M , we incur cost αpq ; typically αpp = 0.

Edit distance is special case when δ = αpq = 1.

Chandra Chekuri (UIUC) CS/ECE 374 20 Spring 2023 20 / 52

Similarity Metric

Definition

For two strings X and Y , the cost of alignment M is

1 [Gap penalty] For each gap in the alignment, we incur a cost δ.

2 [Mismatch cost] For each pair p and q that have been matched
in M , we incur cost αpq ; typically αpp = 0.

Edit distance is special case when δ = αpq = 1.

Chandra Chekuri (UIUC) CS/ECE 374 20 Spring 2023 20 / 52

An Example

Example

o c u r r a n c e
o c c u r r e n c e Cost = δ + αae

Alternative:

o c u r r a n c e
o c c u r r e n c e Cost = 3δ

Or a really stupid solution (delete string, insert other string):

o c u r r a n c e
o c c u r r e n c e

Cost = 19δ.

Chandra Chekuri (UIUC) CS/ECE 374 21 Spring 2023 21 / 52

What is the edit distance between...

What is the minimum edit distance for the following two strings, if
insertion/deletion/change of a single character cost 1 unit?

374

473

1

2

3

4

5

Chandra Chekuri (UIUC) CS/ECE 374 22 Spring 2023 22 / 52

What is the edit distance between...

What is the minimum edit distance for the following two strings, if
insertion/deletion/change of a single character cost 1 unit?

373

473

1

2

3

4

5

Chandra Chekuri (UIUC) CS/ECE 374 23 Spring 2023 23 / 52

What is the edit distance between...

What is the minimum edit distance for the following two strings, if
insertion/deletion/change of a single character cost 1 unit?

37

473

1

2

3

4

5

Chandra Chekuri (UIUC) CS/ECE 374 24 Spring 2023 24 / 52

Sequence Alignment

Input Given two words X and Y , and gap penalty δ and
mismatch costs αpq

Goal Find alignment of minimum cost

Chandra Chekuri (UIUC) CS/ECE 374 25 Spring 2023 25 / 52

Edit distance
Basic observation

Let X = αx and Y = βy
α, β: strings.
x and y single characters.
Think about optimal edit distance between X and Y as alignment,
and consider last column of alignment of the two strings:

α x
β y or

α x
βy or

αx
β y

Observation

Prefixes must have optimal alignment!

Chandra Chekuri (UIUC) CS/ECE 374 26 Spring 2023 26 / 52

Problem Structure

Observation

Let X = x1x2 · · · xm and Y = y1y2 · · · yn. If (m, n) are not
matched then either the mth position of X remains unmatched or
the nth position of Y remains unmatched.

1 Case xm and yn are matched.
1 Pay mismatch cost αxmyn plus cost of aligning strings

x1 · · · xm−1 and y1 · · · yn−1

2 Case xm is unmatched.
1 Pay gap penalty plus cost of aligning x1 · · · xm−1 and y1 · · · yn

3 Case yn is unmatched.
1 Pay gap penalty plus cost of aligning x1 · · · xm and y1 · · · yn−1

Chandra Chekuri (UIUC) CS/ECE 374 27 Spring 2023 27 / 52

Recursive Algorithm

Assume X is stored in array A[1..m] and Y is stored in B[1..n]
Array COST stores cost of matching two chars. Thus COST [a, b]
give the cost of matching character a to character b.

EditDist(A[1..m],B[1..n])
If (m = 0) return nδ
If (n = 0) return mδ
m1 = δ + EditDist(A[1..(m − 1)],B[1..n])
m2 = δ + EditDist(A[1..m],B[1..(n − 1)]))
m3 = COST [A[m],B[n]] + EditDist(A[1..(m − 1)],B[1..(n − 1)])
return min(m1,m2,m3)

Chandra Chekuri (UIUC) CS/ECE 374 28 Spring 2023 28 / 52

Subproblems and Recurrence

Optimal Costs

Let OptDist(i , j) be optimal cost of aligning x1 · · · xi and y1 · · · yj .
Then

OptDist(i , j) = min


αxi yj + OptDist(i − 1, j − 1),

δ + OptDist(i − 1, j),

δ + OptDist(i , j − 1)

Base Cases: OptDist(i , 0) = δ · i and OptDist(0, j) = δ · j

Chandra Chekuri (UIUC) CS/ECE 374 29 Spring 2023 29 / 52

Subproblems and Recurrence

Optimal Costs

Let OptDist(i , j) be optimal cost of aligning x1 · · · xi and y1 · · · yj .
Then

OptDist(i , j) = min


αxi yj + OptDist(i − 1, j − 1),

δ + OptDist(i − 1, j),

δ + OptDist(i , j − 1)

Base Cases: OptDist(i , 0) = δ · i and OptDist(0, j) = δ · j

Chandra Chekuri (UIUC) CS/ECE 374 29 Spring 2023 29 / 52

Example

DEED and DREAD

Chandra Chekuri (UIUC) CS/ECE 374 30 Spring 2023 30 / 52

Memoizing the Recursive Algorithm

int M [0..m][0..n]
Initialize all entries of M[i][j] to ∞
return EditDist(A[1..m],B[1..n])

EditDist(A[1..m],B[1..n])
If (M[i][j] <∞) return M[i][j] (* return stored value *)

If (m = 0)
M[i][j] = nδ

ElseIf (n = 0)
M[i][j] = mδ

Else

m1 = δ + EditDist(A[1..(m − 1)],B[1..n])
m2 = δ + EditDist(A[1..m],B[1..(n − 1)]))
m3 = COST [A[m],B[n]] + EditDist(A[1..(m − 1)],B[1..(n − 1)])
M[i][j] = min(m1,m2,m3)

return M[i][j]

Chandra Chekuri (UIUC) CS/ECE 374 31 Spring 2023 31 / 52

Iterative Algorithm

EditDist(A[1..m],B[1..n])
int M [0..m][0..n]
for i = 1 to m do M[i , 0] = iδ
for j = 1 to n do M[0, j] = jδ

for i = 1 to m do
for j = 1 to n do

M[i][j] = min


αxi yj + M[i − 1][j − 1],

δ + M[i − 1][j],

δ + M[i][j − 1]

Analysis

1 Running time is O(mn).

Chandra Chekuri (UIUC) CS/ECE 374 32 Spring 2023 32 / 52

Iterative Algorithm

EditDist(A[1..m],B[1..n])
int M [0..m][0..n]
for i = 1 to m do M[i , 0] = iδ
for j = 1 to n do M[0, j] = jδ

for i = 1 to m do
for j = 1 to n do

M[i][j] = min


αxi yj + M[i − 1][j − 1],

δ + M[i − 1][j],

δ + M[i][j − 1]

Analysis

1 Running time is O(mn).

Chandra Chekuri (UIUC) CS/ECE 374 32 Spring 2023 32 / 52

Iterative Algorithm

EditDist(A[1..m],B[1..n])
int M [0..m][0..n]
for i = 1 to m do M[i , 0] = iδ
for j = 1 to n do M[0, j] = jδ

for i = 1 to m do
for j = 1 to n do

M[i][j] = min


αxi yj + M[i − 1][j − 1],

δ + M[i − 1][j],

δ + M[i][j − 1]

Analysis

1 Running time is O(mn).

2 Space used is O(mn).

Chandra Chekuri (UIUC) CS/ECE 374 32 Spring 2023 32 / 52

Matrix and DAG of Computation

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
..
.

..
.

i, j

m, n

α
x
i x

j
δ

δ

0, 0

Figure: Iterative algorithm in previous slide computes values in row order.

Chandra Chekuri (UIUC) CS/ECE 374 33 Spring 2023 33 / 52

Example

DEED and DREAD

Chandra Chekuri (UIUC) CS/ECE 374 34 Spring 2023 34 / 52

Sequence Alignment in Practice

1 Typically the DNA sequences that are aligned are about 105

letters long!

2 So about 1010 operations and 1010 bytes needed

3 The killer is the 10GB storage

4 Can we reduce space requirements?

Chandra Chekuri (UIUC) CS/ECE 374 35 Spring 2023 35 / 52

Optimizing Space

1 Recall

M(i , j) = min


αxi yj + M(i − 1, j − 1),

δ + M(i − 1, j),

δ + M(i , j − 1)

2 Entries in j th column only depend on (j − 1)st column and
earlier entries in j th column

3 Only store the current column and the previous column reusing
space; N(i , 0) stores M(i , j − 1) and N(i , 1) stores M(i , j)

Chandra Chekuri (UIUC) CS/ECE 374 36 Spring 2023 36 / 52

Computing in column order to save space

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
..
.

..
.

i, j

m, n

α
x
i x

j
δ

δ

0, 0

Figure: M(i , j) only depends on previous column values. Keep only two
columns and compute in column order.

Chandra Chekuri (UIUC) CS/ECE 374 37 Spring 2023 37 / 52

Space Efficient Algorithm

for all i do N[i , 0] = iδ
for j = 1 to n do

N[0, 1] = jδ (* corresponds to M(0, j) *)

for i = 1 to m do

N[i , 1] = min


αxi yj + N[i − 1, 0]

δ + N[i − 1, 1]

δ + N[i , 0]

for i = 1 to m do
Copy N[i , 0] = N[i , 1]

Analysis

Running time is O(mn) and space used is O(2m) = O(m)

Chandra Chekuri (UIUC) CS/ECE 374 38 Spring 2023 38 / 52

Analyzing Space Efficiency

1 From the m × n matrix M we can construct the actual
alignment (exercise)

2 Matrix N computes cost of optimal alignment but no way to
construct the actual alignment

3 Space efficient computation of alignment? More complicated
algorithm — see notes and Kleinberg-Tardos book.

Chandra Chekuri (UIUC) CS/ECE 374 39 Spring 2023 39 / 52

Part II

Longest Common Subsequence
Problem

Chandra Chekuri (UIUC) CS/ECE 374 40 Spring 2023 40 / 52

LCS Problem

Definition

LCS between two strings X and Y is the length of longest common
subsequence between X and Y .

Example

LCS between ABAZDC and BACBAD is

4 via ABAD

Derive a dynamic programming algorithm for the problem.

Chandra Chekuri (UIUC) CS/ECE 374 41 Spring 2023 41 / 52

LCS Problem

Definition

LCS between two strings X and Y is the length of longest common
subsequence between X and Y .

Example

LCS between ABAZDC and BACBAD is 4 via ABAD

Derive a dynamic programming algorithm for the problem.

Chandra Chekuri (UIUC) CS/ECE 374 41 Spring 2023 41 / 52

LCS Problem

Definition

LCS between two strings X and Y is the length of longest common
subsequence between X and Y .

Example

LCS between ABAZDC and BACBAD is 4 via ABAD

Derive a dynamic programming algorithm for the problem.

Chandra Chekuri (UIUC) CS/ECE 374 41 Spring 2023 41 / 52

Part III

Maximum Weighted
Independent Set in Trees

Chandra Chekuri (UIUC) CS/ECE 374 42 Spring 2023 42 / 52

Maximum Weight Independent Set
Problem

Input Graph G = (V ,E) and weights w(v) ≥ 0 for each
v ∈ V

Goal Find maximum weight independent set in G

A

B

C

DE

F

20

5

2

2

10

15

Maximum weight independent set in above graph: {B,D}

Chandra Chekuri (UIUC) CS/ECE 374 43 Spring 2023 43 / 52

Maximum Weight Independent Set
Problem

Input Graph G = (V ,E) and weights w(v) ≥ 0 for each
v ∈ V

Goal Find maximum weight independent set in G

A

B

C

DE

F

20

5

2

2

10

15

Maximum weight independent set in above graph: {B,D}

Chandra Chekuri (UIUC) CS/ECE 374 43 Spring 2023 43 / 52

Maximum Weight Independent Set in a
Tree

Input Tree T = (V ,E) and weights w(v) ≥ 0 for each
v ∈ V

Goal Find maximum weight independent set in T

r

a b

c d e f g

h i j

10

5 8

4 4
9

2 7 8

11

3

Maximum weight independent set in above tree: ??

Chandra Chekuri (UIUC) CS/ECE 374 44 Spring 2023 44 / 52

Towards a Recursive Solution

For an arbitrary graph G :

1 Number vertices as v1, v2, . . . , vn

2 Find recursively optimum solutions without vn (recurse on
G − vn) and with vn (recurse on G − vn − N(vn) & include
vn).

3 Saw that if graph G is arbitrary there was no good ordering that
resulted in a small number of subproblems.

What about a tree? Natural candidate for vn is root r of T?

Chandra Chekuri (UIUC) CS/ECE 374 45 Spring 2023 45 / 52

Towards a Recursive Solution

For an arbitrary graph G :

1 Number vertices as v1, v2, . . . , vn

2 Find recursively optimum solutions without vn (recurse on
G − vn) and with vn (recurse on G − vn − N(vn) & include
vn).

3 Saw that if graph G is arbitrary there was no good ordering that
resulted in a small number of subproblems.

What about a tree?

Natural candidate for vn is root r of T?

Chandra Chekuri (UIUC) CS/ECE 374 45 Spring 2023 45 / 52

Towards a Recursive Solution

For an arbitrary graph G :

1 Number vertices as v1, v2, . . . , vn

2 Find recursively optimum solutions without vn (recurse on
G − vn) and with vn (recurse on G − vn − N(vn) & include
vn).

3 Saw that if graph G is arbitrary there was no good ordering that
resulted in a small number of subproblems.

What about a tree? Natural candidate for vn is root r of T?

Chandra Chekuri (UIUC) CS/ECE 374 45 Spring 2023 45 / 52

Towards a Recursive Solution

Natural candidate for vn is root r of T? Let O be an optimum
solution to the whole problem.

Case r 6∈ O : Then O contains an optimum solution for each
subtree of T hanging at a child of r .

Case r ∈ O : None of the children of r can be in O. O − {r}
contains an optimum solution for each subtree of T
hanging at a grandchild of r .

Subproblems? Subtrees of T rooted at nodes in T .

How many of them? O(n)

Chandra Chekuri (UIUC) CS/ECE 374 46 Spring 2023 46 / 52

Towards a Recursive Solution

Natural candidate for vn is root r of T? Let O be an optimum
solution to the whole problem.

Case r 6∈ O : Then O contains an optimum solution for each
subtree of T hanging at a child of r .

Case r ∈ O : None of the children of r can be in O. O − {r}
contains an optimum solution for each subtree of T
hanging at a grandchild of r .

Subproblems? Subtrees of T rooted at nodes in T .

How many of them? O(n)

Chandra Chekuri (UIUC) CS/ECE 374 46 Spring 2023 46 / 52

Towards a Recursive Solution

Natural candidate for vn is root r of T? Let O be an optimum
solution to the whole problem.

Case r 6∈ O : Then O contains an optimum solution for each
subtree of T hanging at a child of r .

Case r ∈ O : None of the children of r can be in O. O − {r}
contains an optimum solution for each subtree of T
hanging at a grandchild of r .

Subproblems? Subtrees of T rooted at nodes in T .

How many of them? O(n)

Chandra Chekuri (UIUC) CS/ECE 374 46 Spring 2023 46 / 52

Towards a Recursive Solution

Natural candidate for vn is root r of T? Let O be an optimum
solution to the whole problem.

Case r 6∈ O : Then O contains an optimum solution for each
subtree of T hanging at a child of r .

Case r ∈ O : None of the children of r can be in O. O − {r}
contains an optimum solution for each subtree of T
hanging at a grandchild of r .

Subproblems? Subtrees of T rooted at nodes in T .

How many of them?

O(n)

Chandra Chekuri (UIUC) CS/ECE 374 46 Spring 2023 46 / 52

Towards a Recursive Solution

Natural candidate for vn is root r of T? Let O be an optimum
solution to the whole problem.

Case r 6∈ O : Then O contains an optimum solution for each
subtree of T hanging at a child of r .

Case r ∈ O : None of the children of r can be in O. O − {r}
contains an optimum solution for each subtree of T
hanging at a grandchild of r .

Subproblems? Subtrees of T rooted at nodes in T .

How many of them? O(n)

Chandra Chekuri (UIUC) CS/ECE 374 46 Spring 2023 46 / 52

Example

r

a b

c d e f g

h i j

10

5 8

4 4
9

2 7 8

11

3

Chandra Chekuri (UIUC) CS/ECE 374 47 Spring 2023 47 / 52

A Recursive Solution

T (u): subtree of T hanging at node u

MaxIndSet(u): max weighted independent set value in T (u)

MaxIndSet(u) =

max

{∑
v child of u MaxIndSet(v),

w(u) +
∑

v grandchild of u MaxIndSet(v)

Chandra Chekuri (UIUC) CS/ECE 374 48 Spring 2023 48 / 52

A Recursive Solution

T (u): subtree of T hanging at node u

MaxIndSet(u): max weighted independent set value in T (u)

MaxIndSet(u) = max

{∑
v child of u MaxIndSet(v),

w(u) +
∑

v grandchild of u MaxIndSet(v)

Chandra Chekuri (UIUC) CS/ECE 374 48 Spring 2023 48 / 52

Iterative Algorithm

1 Compute MaxIndSet(u) bottom up. To evaluate
MaxIndSet(u) need to have computed values of all children
and grandchildren of u

2 What is an ordering of nodes of a tree T to achieve above?

Post-order traversal of a tree.

Chandra Chekuri (UIUC) CS/ECE 374 49 Spring 2023 49 / 52

Iterative Algorithm

1 Compute MaxIndSet(u) bottom up. To evaluate
MaxIndSet(u) need to have computed values of all children
and grandchildren of u

2 What is an ordering of nodes of a tree T to achieve above?
Post-order traversal of a tree.

Chandra Chekuri (UIUC) CS/ECE 374 49 Spring 2023 49 / 52

Iterative Algorithm

MIS-Tree(T):

Let v1, v2, . . . , vn be a post-order traversal of nodes of T

for i = 1 to n do

M[vi] = max

(∑
vj child of vi

M[vj],

w(vi) +
∑

vj grandchild of vi
M[vj]

)
return M[vn] (* Note: vn is the root of T *)

Space: O(n) to store the value at each node of T
Running time:

1 Naive bound: O(n2) since each M [vi] evaluation may take
O(n) time and there are n evaluations.

2 Better bound: O(n). A value M [vj] is accessed only by its
parent and grand parent.

Chandra Chekuri (UIUC) CS/ECE 374 50 Spring 2023 50 / 52

Iterative Algorithm

MIS-Tree(T):

Let v1, v2, . . . , vn be a post-order traversal of nodes of T

for i = 1 to n do

M[vi] = max

(∑
vj child of vi

M[vj],

w(vi) +
∑

vj grandchild of vi
M[vj]

)
return M[vn] (* Note: vn is the root of T *)

Space:

O(n) to store the value at each node of T
Running time:

1 Naive bound: O(n2) since each M [vi] evaluation may take
O(n) time and there are n evaluations.

2 Better bound: O(n). A value M [vj] is accessed only by its
parent and grand parent.

Chandra Chekuri (UIUC) CS/ECE 374 50 Spring 2023 50 / 52

Iterative Algorithm

MIS-Tree(T):

Let v1, v2, . . . , vn be a post-order traversal of nodes of T

for i = 1 to n do

M[vi] = max

(∑
vj child of vi

M[vj],

w(vi) +
∑

vj grandchild of vi
M[vj]

)
return M[vn] (* Note: vn is the root of T *)

Space: O(n) to store the value at each node of T
Running time:

1 Naive bound: O(n2) since each M [vi] evaluation may take
O(n) time and there are n evaluations.

2 Better bound: O(n). A value M [vj] is accessed only by its
parent and grand parent.

Chandra Chekuri (UIUC) CS/ECE 374 50 Spring 2023 50 / 52

Iterative Algorithm

MIS-Tree(T):

Let v1, v2, . . . , vn be a post-order traversal of nodes of T

for i = 1 to n do

M[vi] = max

(∑
vj child of vi

M[vj],

w(vi) +
∑

vj grandchild of vi
M[vj]

)
return M[vn] (* Note: vn is the root of T *)

Space: O(n) to store the value at each node of T
Running time:

1 Naive bound: O(n2) since each M [vi] evaluation may take
O(n) time and there are n evaluations.

2 Better bound: O(n). A value M [vj] is accessed only by its
parent and grand parent.

Chandra Chekuri (UIUC) CS/ECE 374 50 Spring 2023 50 / 52

Iterative Algorithm

MIS-Tree(T):

Let v1, v2, . . . , vn be a post-order traversal of nodes of T

for i = 1 to n do

M[vi] = max

(∑
vj child of vi

M[vj],

w(vi) +
∑

vj grandchild of vi
M[vj]

)
return M[vn] (* Note: vn is the root of T *)

Space: O(n) to store the value at each node of T
Running time:

1 Naive bound: O(n2) since each M [vi] evaluation may take
O(n) time and there are n evaluations.

2 Better bound: O(n). A value M [vj] is accessed only by its
parent and grand parent.

Chandra Chekuri (UIUC) CS/ECE 374 50 Spring 2023 50 / 52

Example

r

a b

c d e f g

h i j

10

5 8

4 4
9

2 7 8

11

3

Chandra Chekuri (UIUC) CS/ECE 374 51 Spring 2023 51 / 52

Takeaway Points

1 Dynamic programming is based on finding a recursive way to
solve the problem. Need a recursion that generates a small
number of subproblems.

2 Given a recursive algorithm there is a natural DAG associated
with the subproblems that are generated for given instance; this
is the dependency graph. An iterative algorithm simply evaluates
the subproblems in some topological sort of this DAG.

3 The space required to evaluate the answer can be reduced in
some cases by a careful examination of that dependency DAG
of the subproblems and keeping only a subset of the DAG at
any time.

Chandra Chekuri (UIUC) CS/ECE 374 52 Spring 2023 52 / 52

	Edit Distance and Sequence Alignment
	Longest Common Subsequence Problem
	Maximum Weighted Independent Set in Trees

