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Exercise: how many subproblems?

Consider computing f (x, y) by recursive function + memoization.

f (x, y) =

x+y−1∑
i=1

x ∗ f (x + y − i , i − 1),

f (0, y) = y f (x, 0) = x.

How many distinct subproblems when computing f (n, n)?

O(n)

O(n log n)

O(n2)

O(n3)

The function is ill defined - it can not be computed.
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What is the running time for each
subproblem?

Consider computing f (x, y) by recursive function + memoization.

f (x, y) =

x+y−1∑
i=1

x ∗ f (x + y − i , i − 1),

f (0, y) = y f (x, 0) = x.

The worst-case time to evaluate the output of a subproblem given
values for its recursive subproblems when computing f (n, n) is:

O(n)

O(n log n)

O(n2)

O(n3)

The function is ill defined - it can not be computed.
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What is the total running time?

Consider computing f (x, y) by recursive function + memoization.

f (x, y) =

x+y−1∑
i=1

x ∗ f (x + y − i , i − 1),

f (0, y) = y f (x, 0) = x.

The resulting algorithm when computing f (n, n) would take:

O(n)

O(n log n)

O(n2)

O(n3)

The function is ill defined - it can not be computed.
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Recipe for Dynamic Programming

1 Develop a recursive backtracking style algorithm A for given
problem.

2 Identify structure of subproblems generated by A on an instance
I of size n

1 Estimate number of different subproblems generated as a
function of n. Is it polynomial or exponential in n?

2 If the number of problems is “small” (polynomial) then they
typically have some “clean” structure.

3 Rewrite subproblems in a compact fashion.

4 Rewrite recursive algorithm in terms of notation for subproblems.

5 Convert to iterative algorithm by bottom up evaluation in an
appropriate order.

6 Optimize further with data structures and/or additional ideas.
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A variation

Input A string w ∈ Σ∗ and access to a language L ⊆ Σ∗ via
function IsStringinL(string x) that decides whether x
is in L, and non-negative integer k

Goal Decide if w ∈ Lk using IsStringinL(string x) as a
black box sub-routine

Example

Suppose L is English and we have a procedure to check whether a
string/word is in the English dictionary.

Is the string “isthisanenglishsentence” in English5?

Is the string “isthisanenglishsentence” in English4?

Is “asinineat” in English2?

Is “asinineat” in English4?

Is “zibzzzad” in English1?
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Recursive Solution

When is w ∈ Lk?

k = 0: w ∈ Lk iff w = ε
k = 1: w ∈ Lk iff w ∈ L
k > 1: w ∈ Lk if w = uv with u ∈ L and v ∈ Lk−1

Assume w is stored in array A[1..n]

IsStringinLk(A[1..n], k):
If (k = 0)

If (n = 0) Output YES

Else Ouput NO

If (k = 1)
Output IsStringinL(A[1..n])

Else

For (i = 1 to n − 1) do

If (IsStringinL(A[1..i ]) and IsStringinLk(A[i + 1..n], k − 1))
Output YES

Output NO
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Analysis

IsStringinLk(A[1..n], k):
If (k = 0)

If (n = 0) Output YES

Else Ouput NO

If (k = 1)
Output IsStringinL(A[1..n])

Else

For (i = 1 to n − 1) do

If (IsStringinL(A[1..i ]) and IsStringinLk(A[i + 1..n], k − 1))
Output YES

Output NO

How many distinct sub-problems are generated by
IsStringinLk(A[1..n], k)?

O(nk)

How much space? O(nk)

Running time? O(n2k)
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Naming subproblems and recursive equation

ISLk(i , h): a boolean which is 1 if A[i ..n] is in Lh, 0 otherwise

Base case: ISLk(n + 1, 0) = 1 interpreting A[n + 1..n] as ε

Recursive relation:

ISLk(i , h) = 1 if ∃i < j ≤ n + 1 such that
(ISLk(j , h − 1) = 1 and IsStringinL(A[i ..(j − 1]) = 1)

ISLk(i , h) = 0 otherwise

Output: ISLk(1, k)
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Iterative Algorithm

IsStringinLk(A[1..n], k):
Boolean ISLk[1..(n + 1)][0..k]

ISLk[n + 1][0] = TRUE

For (i = 1 to n) do

ISLk[i ][0] = FALSE

For (i = 1 to n) do

For (h = 1 to k) do

ISLk[i ][h] = FALSE

For (j = i + 1 to n + 1) do

If (ISLk[j ][h − 1] and IsStringinL(A[i ..(j − 1)])) then

ISLk[i ][h] = TRUE

Output ISLk[1][k]
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Another variant

Question: What if we want to check if w ∈ Li for some
0 ≤ i ≤ k? That is, is w ∈ ∪k

i=0L
i ?
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Exercise

Definition

A string is a palindrome if w = wR .
Examples: I , RACECAR, MALAYALAM , DOOFFOOD

Problem: Given a string w find the longest subsequence of w that
is a palindrome.

Example

MAHDYNAMICPROGRAMZLETMESHOWYOUTHEM has
MHYMRORMYHM as a palindromic subsequence
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Exercise

Assume w is stored in an array A[1..n]

LPS(i , j): length of longest palindromic subsequence of A[i ..j ].

Recursive expression/code?
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Part I

Edit Distance and Sequence
Alignment
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Spell Checking Problem

Given a string “exponen” that is not in the dictionary, how should a
spell checker suggest a nearby string?

What does nearness mean?

Question: Given two strings x1x2 . . . xn and y1y2 . . . ym what is a
distance between them?

Edit Distance: minimum number of “edits” to transform x into y .
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Edit Distance

Definition

Edit distance between two words X and Y is the number of letter
insertions, letter deletions and letter substitutions required to obtain
Y from X .

Example

The edit distance between FOOD and MONEY is at most 4:

FOOD→ MOOD→ MONOD→ MONED→ MONEY
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Edit Distance: Alternate View

Alignment

Place words one on top of the other, with gaps in the first word
indicating insertions, and gaps in the second word indicating
deletions.

F O O D
M O N E Y

Formally, an alignment is a set M of pairs (i , j) such that each index
appears at most once, and there is no “crossing”: i < i ′ and i is
matched to j implies i ′ is matched to j ′ > j . In the above example,
this is M = {(1, 1), (2, 2), (3, 3), (4, 5)}. Cost of an alignment is
the number of mismatched columns plus number of unmatched
indices in both strings.
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Edit Distance Problem

Problem

Given two words, find the edit distance between them, i.e., an
alignment of smallest cost.
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Applications

1 Spell-checkers and Dictionaries

2 Unix diff

3 DNA sequence alignment . . . but, we need a new metric

Chandra Chekuri (UIUC) CS/ECE 374 19 Spring 2023 19 / 52



Similarity Metric

Definition

For two strings X and Y , the cost of alignment M is

1 [Gap penalty] For each gap in the alignment, we incur a cost δ.

2 [Mismatch cost] For each pair p and q that have been matched
in M , we incur cost αpq ; typically αpp = 0.

Edit distance is special case when δ = αpq = 1.
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An Example

Example

o c u r r a n c e
o c c u r r e n c e Cost = δ + αae

Alternative:

o c u r r a n c e
o c c u r r e n c e Cost = 3δ

Or a really stupid solution (delete string, insert other string):

o c u r r a n c e
o c c u r r e n c e

Cost = 19δ.

Chandra Chekuri (UIUC) CS/ECE 374 21 Spring 2023 21 / 52



What is the edit distance between...

What is the minimum edit distance for the following two strings, if
insertion/deletion/change of a single character cost 1 unit?

374

473

1

2

3

4

5
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1

2

3

4

5
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What is the edit distance between...

What is the minimum edit distance for the following two strings, if
insertion/deletion/change of a single character cost 1 unit?

37

473

1

2

3

4

5
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Sequence Alignment

Input Given two words X and Y , and gap penalty δ and
mismatch costs αpq

Goal Find alignment of minimum cost
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Edit distance
Basic observation

Let X = αx and Y = βy
α, β: strings.
x and y single characters.
Think about optimal edit distance between X and Y as alignment,
and consider last column of alignment of the two strings:

α x
β y or

α x
βy or

αx
β y

Observation

Prefixes must have optimal alignment!
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Problem Structure

Observation

Let X = x1x2 · · · xm and Y = y1y2 · · · yn. If (m, n) are not
matched then either the mth position of X remains unmatched or
the nth position of Y remains unmatched.

1 Case xm and yn are matched.
1 Pay mismatch cost αxmyn plus cost of aligning strings

x1 · · · xm−1 and y1 · · · yn−1

2 Case xm is unmatched.
1 Pay gap penalty plus cost of aligning x1 · · · xm−1 and y1 · · · yn

3 Case yn is unmatched.
1 Pay gap penalty plus cost of aligning x1 · · · xm and y1 · · · yn−1

Chandra Chekuri (UIUC) CS/ECE 374 27 Spring 2023 27 / 52



Recursive Algorithm

Assume X is stored in array A[1..m] and Y is stored in B[1..n]
Array COST stores cost of matching two chars. Thus COST [a, b]
give the cost of matching character a to character b.

EditDist(A[1..m],B[1..n])
If (m = 0) return nδ
If (n = 0) return mδ
m1 = δ + EditDist(A[1..(m − 1)],B[1..n])
m2 = δ + EditDist(A[1..m],B[1..(n − 1)]))
m3 = COST [A[m],B[n]] + EditDist(A[1..(m − 1)],B[1..(n − 1)])
return min(m1,m2,m3)
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Subproblems and Recurrence

Optimal Costs

Let OptDist(i , j) be optimal cost of aligning x1 · · · xi and y1 · · · yj .
Then

OptDist(i , j) = min


αxi yj + OptDist(i − 1, j − 1),

δ + OptDist(i − 1, j),

δ + OptDist(i , j − 1)

Base Cases: OptDist(i , 0) = δ · i and OptDist(0, j) = δ · j
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Example

DEED and DREAD
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Memoizing the Recursive Algorithm

int M [0..m][0..n]
Initialize all entries of M[i ][j ] to ∞
return EditDist(A[1..m],B[1..n])

EditDist(A[1..m],B[1..n])
If (M[i ][j ] <∞) return M[i ][j ] (* return stored value *)

If (m = 0)
M[i ][j ] = nδ

ElseIf (n = 0)
M[i ][j ] = mδ

Else

m1 = δ + EditDist(A[1..(m − 1)],B[1..n])
m2 = δ + EditDist(A[1..m],B[1..(n − 1)]))
m3 = COST [A[m],B[n]] + EditDist(A[1..(m − 1)],B[1..(n − 1)])
M[i ][j ] = min(m1,m2,m3)

return M[i ][j ]
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Iterative Algorithm

EditDist(A[1..m],B[1..n])
int M [0..m][0..n]
for i = 1 to m do M[i , 0] = iδ
for j = 1 to n do M[0, j ] = jδ

for i = 1 to m do
for j = 1 to n do

M[i ][j ] = min


αxi yj + M[i − 1][j − 1],

δ + M[i − 1][j ],

δ + M[i ][j − 1]

Analysis

1 Running time is O(mn).
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Matrix and DAG of Computation
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j
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δ

0, 0

Figure: Iterative algorithm in previous slide computes values in row order.
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Example

DEED and DREAD
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Sequence Alignment in Practice

1 Typically the DNA sequences that are aligned are about 105

letters long!

2 So about 1010 operations and 1010 bytes needed

3 The killer is the 10GB storage

4 Can we reduce space requirements?
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Optimizing Space

1 Recall

M(i , j) = min


αxi yj + M(i − 1, j − 1),

δ + M(i − 1, j),

δ + M(i , j − 1)

2 Entries in j th column only depend on (j − 1)st column and
earlier entries in j th column

3 Only store the current column and the previous column reusing
space; N(i , 0) stores M(i , j − 1) and N(i , 1) stores M(i , j)
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Computing in column order to save space

.
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0, 0

Figure: M(i , j ) only depends on previous column values. Keep only two
columns and compute in column order.
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Space Efficient Algorithm

for all i do N[i , 0] = iδ
for j = 1 to n do

N[0, 1] = jδ (* corresponds to M(0, j ) *)

for i = 1 to m do

N[i , 1] = min


αxi yj + N[i − 1, 0]

δ + N[i − 1, 1]

δ + N[i , 0]

for i = 1 to m do
Copy N[i , 0] = N[i , 1]

Analysis

Running time is O(mn) and space used is O(2m) = O(m)
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Analyzing Space Efficiency

1 From the m × n matrix M we can construct the actual
alignment (exercise)

2 Matrix N computes cost of optimal alignment but no way to
construct the actual alignment

3 Space efficient computation of alignment? More complicated
algorithm — see notes and Kleinberg-Tardos book.

Chandra Chekuri (UIUC) CS/ECE 374 39 Spring 2023 39 / 52



Part II

Longest Common Subsequence
Problem
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LCS Problem

Definition

LCS between two strings X and Y is the length of longest common
subsequence between X and Y .

Example

LCS between ABAZDC and BACBAD is

4 via ABAD

Derive a dynamic programming algorithm for the problem.
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Part III

Maximum Weighted
Independent Set in Trees

Chandra Chekuri (UIUC) CS/ECE 374 42 Spring 2023 42 / 52



Maximum Weight Independent Set
Problem

Input Graph G = (V ,E ) and weights w(v) ≥ 0 for each
v ∈ V

Goal Find maximum weight independent set in G

A

B

C

DE

F

20

5

2

2

10

15

Maximum weight independent set in above graph: {B,D}
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Maximum Weight Independent Set in a
Tree

Input Tree T = (V ,E ) and weights w(v) ≥ 0 for each
v ∈ V

Goal Find maximum weight independent set in T

r

a b

c d e f g

h i j

10

5 8

4 4
9

2 7 8

11

3

Maximum weight independent set in above tree: ??
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Towards a Recursive Solution

For an arbitrary graph G :

1 Number vertices as v1, v2, . . . , vn

2 Find recursively optimum solutions without vn (recurse on
G − vn) and with vn (recurse on G − vn − N(vn) & include
vn).

3 Saw that if graph G is arbitrary there was no good ordering that
resulted in a small number of subproblems.

What about a tree? Natural candidate for vn is root r of T?
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Towards a Recursive Solution

Natural candidate for vn is root r of T? Let O be an optimum
solution to the whole problem.

Case r 6∈ O : Then O contains an optimum solution for each
subtree of T hanging at a child of r .

Case r ∈ O : None of the children of r can be in O. O − {r}
contains an optimum solution for each subtree of T
hanging at a grandchild of r .

Subproblems? Subtrees of T rooted at nodes in T .

How many of them? O(n)
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Example

r

a b

c d e f g

h i j

10

5 8

4 4
9

2 7 8

11

3
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A Recursive Solution

T (u): subtree of T hanging at node u

MaxIndSet(u): max weighted independent set value in T (u)

MaxIndSet(u) =

max

{∑
v child of u MaxIndSet(v),

w(u) +
∑

v grandchild of u MaxIndSet(v)
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Iterative Algorithm

1 Compute MaxIndSet(u) bottom up. To evaluate
MaxIndSet(u) need to have computed values of all children
and grandchildren of u

2 What is an ordering of nodes of a tree T to achieve above?

Post-order traversal of a tree.
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Iterative Algorithm

MIS-Tree(T):

Let v1, v2, . . . , vn be a post-order traversal of nodes of T

for i = 1 to n do

M[vi ] = max

( ∑
vj child of vi

M[vj ],

w(vi ) +
∑

vj grandchild of vi
M[vj ]

)
return M[vn] (* Note: vn is the root of T *)

Space: O(n) to store the value at each node of T
Running time:

1 Naive bound: O(n2) since each M [vi ] evaluation may take
O(n) time and there are n evaluations.

2 Better bound: O(n). A value M [vj ] is accessed only by its
parent and grand parent.
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Example

r

a b

c d e f g

h i j

10

5 8

4 4
9

2 7 8

11

3
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Takeaway Points

1 Dynamic programming is based on finding a recursive way to
solve the problem. Need a recursion that generates a small
number of subproblems.

2 Given a recursive algorithm there is a natural DAG associated
with the subproblems that are generated for given instance; this
is the dependency graph. An iterative algorithm simply evaluates
the subproblems in some topological sort of this DAG.

3 The space required to evaluate the answer can be reduced in
some cases by a careful examination of that dependency DAG
of the subproblems and keeping only a subset of the DAG at
any time.
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