
CS/ECE 374: Algorithms & Models of
Computation

Context Free Languages and
Grammars
Lecture 7
February 7, 2023

Chandra Chekuri (UIUC) CS/ECE 374 1 Spring 2023 1 / 38

Regular Languages

Regular expressions allow us to describe/express a class of
languages compactly and precisely.

Equivalence with DFAs show the following: given any regular
expression r there is a very efficient algorithm for solving the
language recognition problem for L(r): given w ∈ Σ∗ is
w ∈ L(r)? In fact the running time of the algorithm is linear in
|w |.

Disadvantage of regular expressions/languages: cannot express
interesting features such as balanced parenthesis that we need in
programming languages. No recursion allowed even in limited form.

Chandra Chekuri (UIUC) CS/ECE 374 2 Spring 2023 2 / 38

Regular Languages

Regular expressions allow us to describe/express a class of
languages compactly and precisely.

Equivalence with DFAs show the following: given any regular
expression r there is a very efficient algorithm for solving the
language recognition problem for L(r): given w ∈ Σ∗ is
w ∈ L(r)? In fact the running time of the algorithm is linear in
|w |.

Disadvantage of regular expressions/languages: cannot express
interesting features such as balanced parenthesis that we need in
programming languages. No recursion allowed even in limited form.

Chandra Chekuri (UIUC) CS/ECE 374 2 Spring 2023 2 / 38

Language classes: Chomsky Hierarchy

Generative models for languages based on grammars.

Regular

Context Free

Context Sensitive

Recursively Enumerable

All

Chandra Chekuri (UIUC) CS/ECE 374 3 Spring 2023 3 / 38

Chomsky Hierarchy and Machines

For each class one can define a corresponding class of machines.

Regular

Context Free

Context Sensitive

Recursively Enumerable

All

DFA

PDA

TM

LBA

Chandra Chekuri (UIUC) CS/ECE 374 4 Spring 2023 4 / 38

Programming Language Design

Question: What is a valid C program? Or a Python program?

Question: Given a string w what is an algorithm to check whether
w is a valid C program? The parsing problem.

Chandra Chekuri (UIUC) CS/ECE 374 5 Spring 2023 5 / 38

Context Free Languages and Grammars

Programming Language Specification

Parsing

Natural language understanding

Generative model giving structure

. . .

CFLs provide a good balance between expressivity and tractability.
Limited form of recursion.

Chandra Chekuri (UIUC) CS/ECE 374 6 Spring 2023 6 / 38

Programming Languages

Chandra Chekuri (UIUC) CS/ECE 374 7 Spring 2023 7 / 38

Natural Language Processing

Chandra Chekuri (UIUC) CS/ECE 374 8 Spring 2023 8 / 38

Models of Growth

L-systems

http://www.kevs3d.co.uk/dev/lsystems/

Chandra Chekuri (UIUC) CS/ECE 374 9 Spring 2023 9 / 38

http://www.kevs3d.co.uk/dev/lsystems/

Kolam drawing generated by grammar

Chandra Chekuri (UIUC) CS/ECE 374 10 Spring 2023 10 / 38

Context Free Grammar (CFG) Definition

Definition

A CFG is is a quadruple G = (V ,T ,P, S)

V is a finite set of non-terminal symbols

T is a finite set of terminal symbols (alphabet)

P is a finite set of productions, each of the form
A→ α
where A ∈ V and α is a string in (V ∪ T)∗.
Formally, P ⊂ V × (V ∪ T)∗.

S ∈ V is a start symbol

Chandra Chekuri (UIUC) CS/ECE 374 11 Spring 2023 11 / 38

Context Free Grammar (CFG) Definition

Definition

A CFG is is a quadruple G = (V ,T ,P, S)

V is a finite set of non-terminal symbols

T is a finite set of terminal symbols (alphabet)

P is a finite set of productions, each of the form
A→ α
where A ∈ V and α is a string in (V ∪ T)∗.
Formally, P ⊂ V × (V ∪ T)∗.

S ∈ V is a start symbol

Chandra Chekuri (UIUC) CS/ECE 374 11 Spring 2023 11 / 38

Context Free Grammar (CFG) Definition

Definition

A CFG is is a quadruple G = (V ,T ,P, S)

V is a finite set of non-terminal symbols

T is a finite set of terminal symbols (alphabet)

P is a finite set of productions, each of the form
A→ α
where A ∈ V and α is a string in (V ∪ T)∗.
Formally, P ⊂ V × (V ∪ T)∗.

S ∈ V is a start symbol

Chandra Chekuri (UIUC) CS/ECE 374 11 Spring 2023 11 / 38

Context Free Grammar (CFG) Definition

Definition

A CFG is is a quadruple G = (V ,T ,P, S)

V is a finite set of non-terminal symbols

T is a finite set of terminal symbols (alphabet)

P is a finite set of productions, each of the form
A→ α
where A ∈ V and α is a string in (V ∪ T)∗.
Formally, P ⊂ V × (V ∪ T)∗.

S ∈ V is a start symbol

Chandra Chekuri (UIUC) CS/ECE 374 11 Spring 2023 11 / 38

Example

V = {S}
T = {a, b}
P = {S → ε | a | b | aSa | bSb}
(abbrev. for S → ε, S → a, S → b, S → aSa, S → bSb)

S aSa abSba abbSBba abbba

What strings can S generate like this?

Chandra Chekuri (UIUC) CS/ECE 374 12 Spring 2023 12 / 38

Example

V = {S}
T = {a, b}
P = {S → ε | a | b | aSa | bSb}
(abbrev. for S → ε, S → a, S → b, S → aSa, S → bSb)

S aSa abSba abbSBba abbba

What strings can S generate like this?

Chandra Chekuri (UIUC) CS/ECE 374 12 Spring 2023 12 / 38

Example

V = {S}
T = {a, b}
P = {S → ε | a | b | aSa | bSb}
(abbrev. for S → ε, S → a, S → b, S → aSa, S → bSb)

S aSa abSba abbSBba abbba

What strings can S generate like this?

Chandra Chekuri (UIUC) CS/ECE 374 12 Spring 2023 12 / 38

Palindromes

Madam in Eden I’m Adam

Dog doo? Good God!

Dogma: I am God.

A man, a plan, a canal, Panama

Are we not drawn onward, we few, drawn onward to new era?

Doc, note: I dissent. A fast never prevents a fatness. I diet on
cod.

http://www.palindromelist.net

Chandra Chekuri (UIUC) CS/ECE 374 13 Spring 2023 13 / 38

http://www.palindromelist.net

Example

L = {0n1n | n ≥ 0}

S → ε | 0S1

Chandra Chekuri (UIUC) CS/ECE 374 14 Spring 2023 14 / 38

Example

L = {0n1n | n ≥ 0}

S → ε | 0S1

Chandra Chekuri (UIUC) CS/ECE 374 14 Spring 2023 14 / 38

Notation and Convention

Let G = (V ,T ,P, S) then

a, b, c, d , . . . , in T (terminals)

A,B,C ,D, . . . , in V (non-terminals)

u, v ,w , x, y , . . . in T ∗ for strings of terminals

α, β, γ, . . . in (V ∪ T)∗

X ,Y ,Z in V ∪ T

Chandra Chekuri (UIUC) CS/ECE 374 15 Spring 2023 15 / 38

“Derives” relation

Formalism for how strings are derived/generated

Definition

Let G = (V ,T ,P, S) be a CFG. For strings α1, α2 ∈ (V ∪ T)∗

we say α1 derives α2 denoted by α1 G α2 if there exist strings
β, γ, δ in (V ∪ T)∗ such that

α1 = βAδ
α2 = βγδ

A→ γ is in P.

Examples: S ε, S 0S1, 0S1 00S11, 0S1 01.

Chandra Chekuri (UIUC) CS/ECE 374 16 Spring 2023 16 / 38

“Derives” relation continued

Definition

For integer k ≥ 0, α1 k α2 inductive defined:

α1 0 α2 if α1 = α2

α1 k α2 if α1 β1 and β1 k−1 α2.

Alternative defn: α1 k α2 if α1 k−1 β1 and β1 α2

 ∗ is the reflexive and transitive closure of .

α1 ∗ α2 if α1 k α2 for some k .

Examples: S ∗ ε, 0S1 ∗ 0000011111.

Chandra Chekuri (UIUC) CS/ECE 374 17 Spring 2023 17 / 38

“Derives” relation continued

Definition

For integer k ≥ 0, α1 k α2 inductive defined:

α1 0 α2 if α1 = α2

α1 k α2 if α1 β1 and β1 k−1 α2.

Alternative defn: α1 k α2 if α1 k−1 β1 and β1 α2

 ∗ is the reflexive and transitive closure of .

α1 ∗ α2 if α1 k α2 for some k .

Examples: S ∗ ε, 0S1 ∗ 0000011111.

Chandra Chekuri (UIUC) CS/ECE 374 17 Spring 2023 17 / 38

“Derives” relation continued

Definition

For integer k ≥ 0, α1 k α2 inductive defined:

α1 0 α2 if α1 = α2

α1 k α2 if α1 β1 and β1 k−1 α2.

Alternative defn: α1 k α2 if α1 k−1 β1 and β1 α2

 ∗ is the reflexive and transitive closure of .

α1 ∗ α2 if α1 k α2 for some k .

Examples: S ∗ ε, 0S1 ∗ 0000011111.

Chandra Chekuri (UIUC) CS/ECE 374 17 Spring 2023 17 / 38

Context Free Languages

Definition

The language generated by CFG G = (V ,T ,P, S) is denoted by
L(G) where L(G) = {w ∈ T ∗ | S ∗ w}.

Definition

A language L is context free (CFL) if it is generated by a context free
grammar. That is, there is a CFG G such that L = L(G).

Chandra Chekuri (UIUC) CS/ECE 374 18 Spring 2023 18 / 38

Context Free Languages

Definition

The language generated by CFG G = (V ,T ,P, S) is denoted by
L(G) where L(G) = {w ∈ T ∗ | S ∗ w}.

Definition

A language L is context free (CFL) if it is generated by a context free
grammar. That is, there is a CFG G such that L = L(G).

Chandra Chekuri (UIUC) CS/ECE 374 18 Spring 2023 18 / 38

Examples

L = {0n1n | n ≥ 0}

L = {0n1m | m > n}

L = {0n1m | m < n}

L = {0n1m | m 6= n}

L = {w ∈ {(,)}∗ | w is properly nested string of parenthesis}

L = {w ∈ {0, 1}∗ | w has twice as many 1s as 0’s}

Chandra Chekuri (UIUC) CS/ECE 374 19 Spring 2023 19 / 38

Examples

L = {0n1n | n ≥ 0}

L = {0n1m | m > n}

L = {0n1m | m < n}

L = {0n1m | m 6= n}

L = {w ∈ {(,)}∗ | w is properly nested string of parenthesis}

L = {w ∈ {0, 1}∗ | w has twice as many 1s as 0’s}

Chandra Chekuri (UIUC) CS/ECE 374 19 Spring 2023 19 / 38

Examples

L = {0n1n | n ≥ 0}

L = {0n1m | m > n}

L = {0n1m | m < n}

L = {0n1m | m 6= n}

L = {w ∈ {(,)}∗ | w is properly nested string of parenthesis}

L = {w ∈ {0, 1}∗ | w has twice as many 1s as 0’s}

Chandra Chekuri (UIUC) CS/ECE 374 19 Spring 2023 19 / 38

Examples

L = {0n1n | n ≥ 0}

L = {0n1m | m > n}

L = {0n1m | m < n}

L = {0n1m | m 6= n}

L = {w ∈ {(,)}∗ | w is properly nested string of parenthesis}

L = {w ∈ {0, 1}∗ | w has twice as many 1s as 0’s}

Chandra Chekuri (UIUC) CS/ECE 374 19 Spring 2023 19 / 38

Examples

L = {0n1n | n ≥ 0}

L = {0n1m | m > n}

L = {0n1m | m < n}

L = {0n1m | m 6= n}

L = {w ∈ {(,)}∗ | w is properly nested string of parenthesis}

L = {w ∈ {0, 1}∗ | w has twice as many 1s as 0’s}

Chandra Chekuri (UIUC) CS/ECE 374 19 Spring 2023 19 / 38

Examples

L = {0n1n | n ≥ 0}

L = {0n1m | m > n}

L = {0n1m | m < n}

L = {0n1m | m 6= n}

L = {w ∈ {(,)}∗ | w is properly nested string of parenthesis}

L = {w ∈ {0, 1}∗ | w has twice as many 1s as 0’s}

Chandra Chekuri (UIUC) CS/ECE 374 19 Spring 2023 19 / 38

Closure Properties of CFLs

G1 = (V1,T ,P1, S1) and G2 = (V2,T ,P2, S2)
Assumption: V1 ∩ V2 = ∅, that is, non-terminals are not shared

Theorem

CFLs are closed under union. L1, L2 CFLs implies L1 ∪ L2 is a CFL.

Theorem

CFLs are closed under concatenation. L1, L2 CFLs implies L1·L2 is a
CFL.

Theorem

CFLs are closed under Kleene star. L CFL implies L∗ is a CFL.

Chandra Chekuri (UIUC) CS/ECE 374 20 Spring 2023 20 / 38

Closure Properties of CFLs

G1 = (V1,T ,P1, S1) and G2 = (V2,T ,P2, S2)
Assumption: V1 ∩ V2 = ∅, that is, non-terminals are not shared

Theorem

CFLs are closed under union. L1, L2 CFLs implies L1 ∪ L2 is a CFL.

Theorem

CFLs are closed under concatenation. L1, L2 CFLs implies L1·L2 is a
CFL.

Theorem

CFLs are closed under Kleene star. L CFL implies L∗ is a CFL.

Chandra Chekuri (UIUC) CS/ECE 374 20 Spring 2023 20 / 38

Closure Properties of CFLs

G1 = (V1,T ,P1, S1) and G2 = (V2,T ,P2, S2)
Assumption: V1 ∩ V2 = ∅, that is, non-terminals are not shared

Theorem

CFLs are closed under union. L1, L2 CFLs implies L1 ∪ L2 is a CFL.

Theorem

CFLs are closed under concatenation. L1, L2 CFLs implies L1·L2 is a
CFL.

Theorem

CFLs are closed under Kleene star. L CFL implies L∗ is a CFL.

Chandra Chekuri (UIUC) CS/ECE 374 20 Spring 2023 20 / 38

Closure Properties of CFLs

G1 = (V1,T ,P1, S1) and G2 = (V2,T ,P2, S2)
Assumption: V1 ∩ V2 = ∅, that is, non-terminals are not shared

Theorem

CFLs are closed under union. L1, L2 CFLs implies L1 ∪ L2 is a CFL.

Theorem

CFLs are closed under concatenation. L1, L2 CFLs implies L1·L2 is a
CFL.

Theorem

CFLs are closed under Kleene star. L CFL implies L∗ is a CFL.

Chandra Chekuri (UIUC) CS/ECE 374 20 Spring 2023 20 / 38

Closure Properties of CFLs

G1 = (V1,T ,P1, S1) and G2 = (V2,T ,P2, S2)
Assumption: V1 ∩ V2 = ∅, that is, non-terminals are not shared

Theorem

CFLs are closed under union. L1, L2 CFLs implies L1 ∪ L2 is a CFL.

Theorem

CFLs are closed under concatenation. L1, L2 CFLs implies L1·L2 is a
CFL.

Theorem

CFLs are closed under Kleene star. L CFL implies L∗ is a CFL.

Chandra Chekuri (UIUC) CS/ECE 374 20 Spring 2023 20 / 38

Exercise

Prove that every regular language is context-free using previous
closure properties.

Prove the set of regular expressions over an alphabet Σ forms a
non-regular language which is context-free.

Chandra Chekuri (UIUC) CS/ECE 374 21 Spring 2023 21 / 38

Closure Properties of CFLs continued

Theorem

CFLs are not closed under complement or intersection.

Theorem

If L1 is a CFL and L2 is regular then L1 ∩ L2 is a CFL.

Chandra Chekuri (UIUC) CS/ECE 374 22 Spring 2023 22 / 38

Canonical non-CFL

Theorem

L = {anbncn | n ≥ 0} is not context-free.

Proof based on pumping lemma for CFLs. Technical and outside the
scope of this class.

Chandra Chekuri (UIUC) CS/ECE 374 23 Spring 2023 23 / 38

Parse Trees or Derivation Trees

A tree to represent the derivation S ∗ w .

Rooted tree with root labeled S
Non-terminals at each internal node of tree

Terminals at leaves

Children of internal node indicate how non-terminal was
expanded using a production rule

A picture is worth a thousand words

Chandra Chekuri (UIUC) CS/ECE 374 24 Spring 2023 24 / 38

Parse Trees or Derivation Trees

A tree to represent the derivation S ∗ w .

Rooted tree with root labeled S
Non-terminals at each internal node of tree

Terminals at leaves

Children of internal node indicate how non-terminal was
expanded using a production rule

A picture is worth a thousand words

Chandra Chekuri (UIUC) CS/ECE 374 24 Spring 2023 24 / 38

Example

S	à aSb | bSa | SS	| ab| ba |	ε

S è aSb è abSab è abSSab è abbaSab è abbaab

A corresponding derivation of abbaab

S

S ba

S ab

S S

b a ε

A derivation tree for abbaab
(also called “parse tree”)

Chandra Chekuri (UIUC) CS/ECE 374 25 Spring 2023 25 / 38

Ambiguity in CFLs

Definition

A CFG G is ambiguous if there is a string w ∈ L(G) with two
different parse trees. If there is no such string then G is
unambiguous.

Example: S → S − S | 1 | 2 | 3

S

S

S

S– – SS

–S S–S S3

2 1 3 2

1

3–(2–1) (3–2)–1
Chandra Chekuri (UIUC) CS/ECE 374 26 Spring 2023 26 / 38

Ambiguity in CFLs

Original grammar: S → S − S | 1 | 2 | 3

Unambiguous grammar:
S → S − C | 1 | 2 | 3
C → 1 | 2 | 3

S

S – C

–S C

3 2

1

(3–2)–1

The grammar forces a parse
corresponding to left-to-right
evaluation.

Chandra Chekuri (UIUC) CS/ECE 374 27 Spring 2023 27 / 38

Inherently ambiguous languages

Definition

A CFL L is inherently ambiguous if there is no unambiguous CFG G
such that L = L(G).

There exist inherently ambiguous CFLs.
Example: L = {anbmck | n = m or m = k}
Given a grammar G it is undecidable to check whether L(G) is
inherently ambiguous. No algorithm!

Chandra Chekuri (UIUC) CS/ECE 374 28 Spring 2023 28 / 38

Inherently ambiguous languages

Definition

A CFL L is inherently ambiguous if there is no unambiguous CFG G
such that L = L(G).

There exist inherently ambiguous CFLs.
Example: L = {anbmck | n = m or m = k}

Given a grammar G it is undecidable to check whether L(G) is
inherently ambiguous. No algorithm!

Chandra Chekuri (UIUC) CS/ECE 374 28 Spring 2023 28 / 38

Inherently ambiguous languages

Definition

A CFL L is inherently ambiguous if there is no unambiguous CFG G
such that L = L(G).

There exist inherently ambiguous CFLs.
Example: L = {anbmck | n = m or m = k}
Given a grammar G it is undecidable to check whether L(G) is
inherently ambiguous. No algorithm!

Chandra Chekuri (UIUC) CS/ECE 374 28 Spring 2023 28 / 38

Inductive proofs for CFGs

Question: How do we formally prove that a CFG L(G) = L?

Example: S → ε | a | b | aSa | bSb

Theorem

L(G) = {palindromes} = {w | w = wR}

Two directions:

L(G) ⊆ L, that is, S ∗ w then w = wR

L ⊆ L(G), that is, w = wR then S ∗ w

Chandra Chekuri (UIUC) CS/ECE 374 29 Spring 2023 29 / 38

Inductive proofs for CFGs

Question: How do we formally prove that a CFG L(G) = L?

Example: S → ε | a | b | aSa | bSb

Theorem

L(G) = {palindromes} = {w | w = wR}

Two directions:

L(G) ⊆ L, that is, S ∗ w then w = wR

L ⊆ L(G), that is, w = wR then S ∗ w

Chandra Chekuri (UIUC) CS/ECE 374 29 Spring 2023 29 / 38

L(G) ⊆ L

Show that if S ∗ w then w = wR

By induction on length of derivation, meaning
For all k ≥ 1, S ∗k w implies w = wR .

If S 1 w then w = ε or w = a or w = b. Each case
w = wR .

Assume that for all k < n, that if S →k w then w = wR

Let S n w (with n > 1). Wlog w begin with a.

Then S → aSa k−1 aua where w = aua.
And S n−1 u and hence IH, u = uR .
Therefore w r = (aua)R = (ua)Ra = auRa = aua = w .

Chandra Chekuri (UIUC) CS/ECE 374 30 Spring 2023 30 / 38

L(G) ⊆ L

Show that if S ∗ w then w = wR

By induction on length of derivation, meaning
For all k ≥ 1, S ∗k w implies w = wR .

If S 1 w then w = ε or w = a or w = b. Each case
w = wR .

Assume that for all k < n, that if S →k w then w = wR

Let S n w (with n > 1). Wlog w begin with a.

Then S → aSa k−1 aua where w = aua.
And S n−1 u and hence IH, u = uR .
Therefore w r = (aua)R = (ua)Ra = auRa = aua = w .

Chandra Chekuri (UIUC) CS/ECE 374 30 Spring 2023 30 / 38

L ⊆ L(G)

Show that if w = wR then S ∗ w .

By induction on |w |
That is, for all k ≥ 0, |w | = k and w = wR implies S ∗ w .

Exercise: Fill in proof.

Chandra Chekuri (UIUC) CS/ECE 374 31 Spring 2023 31 / 38

Mutual Induction

Situation is more complicated with grammars that have multiple
non-terminals.

See Section 5.3.2 of the notes for an example proof.

Chandra Chekuri (UIUC) CS/ECE 374 32 Spring 2023 32 / 38

Normal Forms

Normal forms are a way to restrict form of production rules

Advantage: Simpler/more convenient algorithms and proofs

Two standard normal forms for CFGs

Chomsky normal form

Greibach normal form

Chandra Chekuri (UIUC) CS/ECE 374 33 Spring 2023 33 / 38

Normal Forms

Normal forms are a way to restrict form of production rules

Advantage: Simpler/more convenient algorithms and proofs

Two standard normal forms for CFGs

Chomsky normal form

Greibach normal form

Chandra Chekuri (UIUC) CS/ECE 374 33 Spring 2023 33 / 38

Normal Forms

Chomsky Normal Form:

Productions are all of the form A→ BC or A→ a.
If ε ∈ L then S → ε is also allowed.

Every CFG G can be converted into CNF form via an efficient
algorithm

Advantage: parse tree of constant degree.

Greiback Normal Form:

Only productions of the form A→ aβ are allowed.

All CFLs without ε have a grammar in GNF. Efficient algorithm.

Advantage: Every derivation adds exactly one terminal.

Chandra Chekuri (UIUC) CS/ECE 374 34 Spring 2023 34 / 38

Normal Forms

Chomsky Normal Form:

Productions are all of the form A→ BC or A→ a.
If ε ∈ L then S → ε is also allowed.

Every CFG G can be converted into CNF form via an efficient
algorithm

Advantage: parse tree of constant degree.

Greiback Normal Form:

Only productions of the form A→ aβ are allowed.

All CFLs without ε have a grammar in GNF. Efficient algorithm.

Advantage: Every derivation adds exactly one terminal.

Chandra Chekuri (UIUC) CS/ECE 374 34 Spring 2023 34 / 38

Language recognition for CFLs

Algorithmic question: Given CFG G and string w ∈ Σ∗ is
w ∈ L(G)?

Later in course: algorithm for above problem that runs in O(|w |3)
time for any fixed grammar G . Via dynamic programming.

Hence parsing problem for programming languages is solvable.
However cubic time algorithm is too slow! For this reason grammars
for PLs are restricted even further to make parsing algorithm faster
(essentially linear time) — see CS 421 and compiler courses.

In programming languages some amount of “context” may be
necessary. But CSL recognition is undecidable (no algorithm)! Hence
people use ad hoc methods for the limited needs in PLs.

Chandra Chekuri (UIUC) CS/ECE 374 35 Spring 2023 35 / 38

Language recognition for CFLs

Algorithmic question: Given CFG G and string w ∈ Σ∗ is
w ∈ L(G)?

Later in course: algorithm for above problem that runs in O(|w |3)
time for any fixed grammar G . Via dynamic programming.

Hence parsing problem for programming languages is solvable.
However cubic time algorithm is too slow! For this reason grammars
for PLs are restricted even further to make parsing algorithm faster
(essentially linear time) — see CS 421 and compiler courses.

In programming languages some amount of “context” may be
necessary. But CSL recognition is undecidable (no algorithm)! Hence
people use ad hoc methods for the limited needs in PLs.

Chandra Chekuri (UIUC) CS/ECE 374 35 Spring 2023 35 / 38

Things to know: Pushdown Automata

PDA: a NFA coupled with a stack

PDAs and CFGs are equivalent: both generate exactly CFLs.
PDA is a machine-centric view of CFLs. Helps prove that the
intersection of a CFL and a regular language is a CFL.

Chandra Chekuri (UIUC) CS/ECE 374 36 Spring 2023 36 / 38

Chomsky Hierarchy

See Wikipedia article for more on Chomsky Hierarchy including the
grammar rules for Context Sensitive Languages etc.
https://en.wikipedia.org/wiki/Chomsky_hierarchy

Chandra Chekuri (UIUC) CS/ECE 374 37 Spring 2023 37 / 38

https://en.wikipedia.org/wiki/Chomsky_hierarchy

Summary and Skills

Formal definition of context-free grammars and languages

Ability to design grammars for simple context free languages

Basic closure properties of CFLs (union, concatenation, Kleene
star) and ability to argue why these hold

Knowledge that CFLs are not closed under complementation and
intersection (closed under intersection with regular languages)

Chandra Chekuri (UIUC) CS/ECE 374 38 Spring 2023 38 / 38

