CS/ECE 374: Algorithms & Models of
Computation

NFAs continued, Closure
Properties of Regular

Languages

Lecture 5
January 31, 2023

Chandra Chekuri (UIUC) CS/ECE 374 1 Spring 2023 1/34

Regular Languages, DFAs, NFAs

Languages accepted by DFAs, NFAs, and regular expressions are the
same.

Chandra Chekuri (UIUC) CS/ECE 374 2 Spring 2023 2/34

Regular Languages, DFAs, NFAs

Languages accepted by DFAs, NFAs, and regular expressions are the
same.

@ DFAs are special cases of NFAs (trivial)
@ NFAs accept regular expressions (we saw already)
@ DFAs accept languages accepted by NFAs (today)

@ Regular expressions for languages accepted by DFAs (today,
informally)

Chandra Chekuri (UIUC) CS/ECE 374 2 Spring 2023 2/34

Part |

Equivalence of NFAs and DFAs

Chandra Chekuri (UIUC) CS/ECE 374 3 Spring 2023 3/34

Equivalence of NFAs and DFAs

For every NFA N there is a DFA M such that L(M) = L(N).

Chandra Chekuri (UIUC) CS/ECE 374 4 Spring 2023 4/34

Equivalence of NFAs and DFAs

For every NFA N there is a DFA M such that L(M) = L(N).

@ The number of states in NN can be exponential in number of
states of M

@ Examples show that it is necessary in some cases. That is, there
are regular languages for which the best/smallest DFA has
exponentially more states than the best/smallest NFA.

Chandra Chekuri (UIUC) CS/ECE 374 4 Spring 2023 4/34

NFAs and acceptance
0,1 0,1
9 0 ()
O O O

A NFA N accepts a string w iff some accepting state is reached by
N from the start state on input w.

The language accepted (or recognized) by a NFA N is denote by
L(N) and defined as: L(N) = {w | N accepts w}.

Chandra Chekuri (UIUC) CS/ECE 374 5 Spring 2023 5/34

Formal Tuple Notation for NFA

A non-deterministic finite automata (NFA) N = (Q, %, d, s, A) is a

five tuple where
@ @ is a finite set whose elements are called states,
@ X is a finite set called the input alphabet,

@ d: QX XU{e} = P(Q) is the transition function (here
P(Q) is the power set of Q),

@ s € Q is the start state,
@ A C Q@ is the set of accepting/final states.

0(qg,a) for a € X U {€} is a susbet of Q — a set of states.

Chandra Chekuri (UIUC) CS/ECE 374 6 Spring 2023

6/34

Extending the transition function to strings

Definition

For NFAN = (Q, %, 4d,s,A) and g € Q the ereach(q) is the set of
all states that g can reach using only e-transitions.

Definition
Inductive definition of 0* : Q X ¥* — P(Q):
o if w =¢, 0*(q, w) = ereach(q)

@ if w=awherea e X
6*(g, @) = Upeereach(q)(Ures(p,a)€reach(r))

o if w = ax,
6*(q, w) = Upcs(q,2)0™(P5 X)

o if w = xa, alternate definition based on string suffixes
6*(q, w) = Upes+(q,n0"(P, a)

Chandra Chekuri (UIUC) CS/ECE 374 7 Spring 2023 7/34

Definition of language accepted by N

Definition
A string w is accepted by NFA N if oy (s, w) N A # 0.

Definition
The language L(N) accepted by a NFA N = (Q, %, 9, s, A) is

{weX*|d(s,w)NAF#0}.

Chandra Chekuri (UIUC) CS/ECE 374 8 Spring 2023 8/34

Simulating an NFA by a DFA

@ Think of a program with fixed memory that needs to simulate
NFA N on input w.

@ What does it need to store after seeing a prefix x of w?

o Easier question: Can we write a program that decides whether
N accepts a string?

Chandra Chekuri (UIUC) CS/ECE 374 9 Spring 2023 9/34

Simulating an NFA by a DFA

@ Think of a program with fixed memory that needs to simulate
NFA N on input w.

@ What does it need to store after seeing a prefix x of w?

o Easier question: Can we write a program that decides whether
N accepts a string?

0,1 0,1

(30— —(w)—(m)
€

Does N accept 000101010010001000010000010000001111100017

Chandra Chekuri (UIUC) CS/ECE 374 9 Spring 2023 9/34

Simulating an NFA by a DFA

@ Think of a program with fixed memory that needs to simulate
NFA N on input w.

@ What does it need to store after seeing a prefix x of w?

@ It needs to know at least §*(s, x), the set of states that N
could be in after reading x

@ Is it sufficient?

Chandra Chekuri (UIUC) CS/ECE 374 10 Spring 2023 10/34

Simulating an NFA by a DFA

@ Think of a program with fixed memory that needs to simulate
NFA N on input w.

@ What does it need to store after seeing a prefix x of w?

@ It needs to know at least §*(s, x), the set of states that N
could be in after reading x

@ Is it sufficient? Yes, if it can compute d*(s, xa) after seeing
another symbol a in the input.

@ When should the program accept a string w?

Chandra Chekuri (UIUC) CS/ECE 374 10 Spring 2023 10/34

Simulating an NFA by a DFA

@ Think of a program with fixed memory that needs to simulate
NFA N on input w.

@ What does it need to store after seeing a prefix x of w?

@ It needs to know at least §*(s, x), the set of states that N
could be in after reading x

@ Is it sufficient? Yes, if it can compute d*(s, xa) after seeing
another symbol a in the input.

@ When should the program accept a string w? If
3*(s,w)NAH£0D.
Key Observation: A DFA M that simulates N should keep in its
memory /state the set of states of N

Thus the state space of the DFA should be P(Q).

Chandra Chekuri (UIUC) CS/ECE 374 10 Spring 2023 10/34

Subset Construction
NFA N = (Q,%,s,d, A). We create a DFA
M= (Q,%,0d,s', A’ as follows:

° Q' ="P(Q)

Chandra Chekuri (UIUC) CS/ECE 374 11 Spring 2023 11/34

Subset Construction

NFA N = (Q,%,s,d, A). We create a DFA
M= (Q,%,0d,s', A’ as follows:

° Q'=7P(Q)

@ s’ = ereach(s) = 0*(s, €)

Chandra Chekuri (UIUC) CS/ECE 374 1 Spring 2023 11/34

Subset Construction

NFA N = (Q,%,s,d, A). We create a DFA
M= (Q,%,0d,s', A’ as follows:

° Q'=7P(Q)

@ s’ = ereach(s) = 0*(s, €)

A ={XCQRQ|XNA#0}

Chandra Chekuri (UIUC) CS/ECE 374 11 Spring 2023

11/34

Subset Construction

NFA N = (Q,%,s,d, A). We create a DFA
M= (Q,%,0d,s', A’ as follows:
° Q'=7P(Q)
@ s’ = ereach(s) = 0*(s, €)
A ={XCQRQ|XNA#0}
@ §'(X,a) =Ugex0*(q,a) foreach X C Q, a € X.

Chandra Chekuri (UIUC) CS/ECE 374 11 Spring 2023

11/34

Example

No e-transitions

0,1 0,1

Chandra Chekuri (UIUC) CS/ECE 374 12

Spring 2023

12/34

Example

No e-transitions

0,1 0,1

NS
(n)——)

Chandra Chekuri (UIUC) CS/ECE 374

13

Spring 2023

13/34

Incremental construction

Only build states reachable from s’ = ereach(s) the start state of M

0'(X,a) = Ugexd*(q, a)

Chandra Chekuri (UIUC) CS/ECE 374 14 Spring 2023 14/34

Incremental algorithm

@ Build M beginning with start state s’ == ereach(s)

@ For each existing state X C @ consider each a € ¥ and
calculate the state Y = §’(X, a) = Ugex0*(q, a) and add a
transition.

@ If Y is a new state add it to reachable states that need to
explored.

To compute d*(q, a) - set of all states reached from q on string a

@ Compute X = ereach(q)

e Compute Y = Upexd(p, a)

@ Compute Z = ereach(Y) = U,cyereach(r)

Chandra Chekuri (UIUC) CS/ECE 374 15 Spring 2023 15/34

Proof of Correctness

Let N = (Q,%,s,0,A) be a NFA and let M = (Q', %, d’,s’, A')
be a DFA constructed from N via the subset construction. Then
L(N) = L(M).

Chandra Chekuri (UIUC) CS/ECE 374 16 Spring 2023 16/34

Proof of Correctness

Let N = (Q,%,s,0,A) be a NFA and let M = (Q', %, d’,s’, A')
be a DFA constructed from N via the subset construction. Then
L(N) = L(M).

Stronger claim:

For every string w, 6y(s, w) = y,(s’, w).

Proof by induction on |w/|.

Base case: w = €.
0y (s, €) = ereach(s).
0r,(s’, €) = s’ = ereach(s) by definition of s’.

Chandra Chekuri (UIUC) CS/ECE 374 16 Spring 2023 16/34

Proof continued

For every string w, 6y(s, w) = d;,(s’, w).

Inductive step: w = xa (Note: suffix definition of strings)
On (s, xa) = Upesr(s,x)0n (P, @) by inductive defn of dy,

Chandra Chekuri (UIUC) CS/ECE 374 17 Spring 2023 17/34

Proof continued

For every string w, 6y(s, w) = d;,(s’, w).

Inductive step: w = xa (Note: suffix definition of strings)
On (s, xa) = Upesr(s,x)0n (P, @) by inductive defn of dy,
Or,(s’y xa) = dm(dy,(s, x), @) by inductive defn of &y,

Chandra Chekuri (UIUC) CS/ECE 374 17 Spring 2023 17/34

Proof continued

For every string w, 6y(s, w) = d;,(s’, w).

Inductive step: w = xa (Note: suffix definition of strings)
On (s, xa) = Upesr(s,x)0n (P, @) by inductive defn of dy,
Or,(s’y xa) = dm(dy,(s, x), @) by inductive defn of &y,

By inductive hypothesis: Y = &y (s, x) = d3,(s, x) since |x| < |w]|

Chandra Chekuri (UIUC) CS/ECE 374 17 Spring 2023 17/34

Proof continued

For every string w, 6y(s, w) = d;,(s’, w).

Inductive step: w = xa (Note: suffix definition of strings)
On (s, xa) = Upesr(s,x)0n (P, @) by inductive defn of dy,
Or,(s’y xa) = dm(dy,(s, x), @) by inductive defn of &y,

By inductive hypothesis: Y = &y (s, x) = d3,(s, x) since |x| < |w]|

Thus 6y(s, xa) = Upeydp(p, a) = dm(Y, a) by definition of dp.

Chandra Chekuri (UIUC) CS/ECE 374 17 Spring 2023 17/34

Proof continued

For every string w, 6y(s, w) = d;,(s’, w).

Inductive step: w = xa (Note: suffix definition of strings)
On (s, xa) = Upesr(s,x)0n (P, @) by inductive defn of dy,
Or,(s’y xa) = dm(dy,(s, x), @) by inductive defn of &y,

By inductive hypothesis: Y = &y (s, x) = d3,(s, x) since |x| < |w]|
Thus 6y(s, xa) = Upeydp(p, a) = dm(Y, a) by definition of dp.
Therefore,

on(s,xa) = om(Y,a) = om(03,(s, x),a) = op,(s’, xa)
which is what we need.

Chandra Chekuri (UIUC) CS/ECE 374 17 Spring 2023 17/34

Part I

DFA/NFA to Regular
Expressions

Chandra Chekuri (UIUC) CS/ECE 374 18 Spring 2023 18/34

DFA to Regular Expressions

Given a DFA M = (Q, ¥, d, s, A) there is a regular expression r
such that L(r) = L(M). That is, regular expressions are as powerful
as DFAs (and hence also NFAs).

@ Simple algorithm but formal proof is involved. See notes.

@ An easier proof via a more involved algorithm (maybe later in
the course)

Chandra Chekuri (UIUC) CS/ECE 374 19 Spring 2023 19/34

NFA to Regular Expressions

In fact the algorithm transforms an NFA N = (Q, %, d,s, A) to a
regular expression via GNFAs which are generalized NFAs.

Informal Definition: A generalized NFA or a GNFA is specified like
an NFA but each arc is labeled with a regular expression. One can
transition an arc (p, q) from state p to state g labeled with a regular
expression r by reading any string w € L(r).

One can show that GNFAs are equivalent to NFAs by simply

replacing each arc with reg exp r via a NFA for r via algorithm from
last semester.

Chandra Chekuri (UIUC) CS/ECE 374 20 Spring 2023 20/34

Stage 0: Input

Chandra Chekuri (UIUC) CS/ECE 374 21 Spring 2023 21/34

Stage 1: Normalizing

Chandra Chekuri (UIUC) CS/ECE 374 22 Spring 2023 22/34

Stage 2: Remove state A

D (a)

in

Chandra Chekuri (UIUC) CS/ECE 374 23 Spring 2023 23/34

Stage 4: Redrawn without old edges

Chandra Chekuri (UIUC) CS/ECE 374 24 Spring 2023 24 /34

Stage 4: Removing B

Chandra Chekuri (UIUC) CS/ECE 374 25 Spring 2023 25/34

Stage 5: Redraw

Chandra Chekuri (UIUC) CS/ECE 374 26 Spring 2023 26 /34

Stage 6: Removing C

(ab*a+Db)(a+b) e

Chandra Chekuri (UIUC) CS/ECE 374 27 Spring 2023 27/34

Stage 7: Redraw

@ (ab*a +b)(a+b)" ,

Chandra Chekuri (UIUC) CS/ECE 374 28 Spring 2023 28 /34

Stage 8: Extract regular expression

@ (ab*a +b)(a+b)" ,

Thus, this automata is equivalent to the regular expression

(ab*a + b)(a + b)*.

Chandra Chekuri (UIUC) CS/ECE 374 29 Spring 2023 29/34

Part |lI

Closure Properties of Regular
Languages

Chandra Chekuri (UIUC) CS/ECE 374 30 Spring 2023 30/34

Regular Languages

Regular languages have three different characterizations

@ Inductive definition via base cases and closure under union,
concatenation and Kleene star

@ Languages accepted by DFAs
@ Languages accepted by NFAs

Chandra Chekuri (UIUC) CS/ECE 374 31 Spring 2023

31/34

Regular Languages

Regular languages have three different characterizations

@ Inductive definition via base cases and closure under union,
concatenation and Kleene star

@ Languages accepted by DFAs
@ Languages accepted by NFAs

Regular language closed under many operations:

@ union, concatenation, Kleene star via inductive definition or
NFAs

@ complement, union, intersection via DFAs
@ homomorphism, inverse homomorphism, reverse, ...

Different representations allow for flexibility in proofs

Chandra Chekuri (UIUC) CS/ECE 374 31 Spring 2023

31/34

Examples: PREFIX and SUFFIX

Let L be a language over .

Definition
PREFIX(L) = {w | wx € L,x € ¥*}

Definition
SUFFIX(L) = {w | xw € L,x € ¥*}

Chandra Chekuri (UIUC) CS/ECE 374 32 Spring 2023 32/34

Examples: PREFIX and SUFFIX

Let L be a language over .

Definition
PREFIX(L) = {w | wx € L,x € ¥*}

Definition
SUFFIX(L) = {w | xw € L,x € ¥*}

If L is regular then PREFIX(L) is regular.

If L is regular then SUFFIX(L) is regular.

Chandra Chekuri (UIUC) CS/ECE 374 32 Spring 2023 32/34

PREFIX

Let M = (Q, %, d,s,A) be a DFA that recognizes L

Create new DFA/NFA to accept PREFIX(L) (or SUFFIX(L)).

Chandra Chekuri (UIUC) CS/ECE 374 33 Spring 2023 33/34

PREFIX

Let M = (Q, %, d,s,A) be a DFA that recognizes L

Create new DFA/NFA to accept PREFIX(L) (or SUFFIX(L)).
X ={q € Q| s can reach g in M}

Y = {q € Q | g can reach some state in A}
Z=XNY

Consider DFA M’ = (Q, ¥, 8, s, Z). L(M’) = PREFIX(L).

Chandra Chekuri (UIUC) CS/ECE 374 33 Spring 2023 33/34

SUFFIX

Let M = (Q, %, d,s,A) be a DFA that recognizes L

X ={q € Q| s canreach g in M}

Chandra Chekuri (UIUC) CS/ECE 374 34 Spring 2023 34/34

SUFFIX
Let M = (Q, %, d,s,A) be a DFA that recognizes L
X ={q € Q| s canreach g in M}

Consider NFA N = (Q U {s’'}, %, d’,s’, A). Add new start state s’
and e-transition from s’ to each state in X.

Chandra Chekuri (UIUC) CS/ECE 374 34 Spring 2023 34/34

SUFFIX
Let M = (Q, %, d,s,A) be a DFA that recognizes L
X ={q € Q| s canreach g in M}

Consider NFA N = (Q U {s’'}, %, d’,s’, A). Add new start state s’
and e-transition from s’ to each state in X.

Claim: L(N) = SUFFIX(L).

Chandra Chekuri (UIUC) CS/ECE 374 34 Spring 2023 34/34

	Equivalence of NFAs and DFAs
	DFA/NFA to Regular Expressions
	Closure Properties of Regular Languages

