CS/ECE 374: Algorithms & Models of
Computation

Regular Languages and
Expressions

Lecture 2
January 19, 2023

Chandra Chekuri (UIUC) CS/ECE 374 1 Spring 2023 1/20

Background

Fix some finite alphabet .

> * is the set of all strings over ©
A language over ¥ is a subset of strings. Thatis, L C ¥*

Y * is countably infinite. Set of all languages = P(X*) is
uncountably infinite

Each machine/program can be described by a string. Hence set
of machines/programs is countably infinite

Implies many/most languages that are too “complex” for
machines/programs

Chandra Chekuri (UIUC) CS/ECE 374 2 Spring 2023 2/20

Background

Fix some finite alphabet .

> * is the set of all strings over ©
A language over ¥ is a subset of strings. Thatis, L C ¥*

Y * is countably infinite. Set of all languages = P(X*) is
uncountably infinite

Each machine/program can be described by a string. Hence set
of machines/programs is countably infinite

Implies many/most languages that are too “complex” for
machines/programs

Question: What languages are easy? What languages should we
focus on? Can we classify them via various features?

Chandra Chekuri (UIUC) CS/ECE 374 2 Spring 2023 2/20

Languages

Study of languages motivated by (among many others)
@ linguistics and natural language understanding
@ programming languages and logic
@ computation and machines

Intution: As ability of a language to express/model increases the
more complex/computationally hard it becomes.

Chandra Chekuri (UIUC) CS/ECE 374 3 Spring 2023 3/20

Chomsky Hierarchy and Machines

Grammars

All Languages

phrase structured

context sensitive

context free

regular expressions

recursively enumerable

context sensitive

context free

regular

Chandra Chekuri (UIUC)

CS/ECE 374 4

Machines

Turing machine (TMss)

linear bounded automata (LBAs)

pushdown automata (PDAs)

finite state automata (DFAs)

Spring 2023

4/20

Part |

Regular Languages

Chandra Chekuri (UIUC) CS/ECE 374 5 Spring 2023 5/20

Regular Languages

A class of simple but very useful languages.

The set of regular languages over some alphabet ¥ is defined
inductively as:

@ 0 is a regular language

Chandra Chekuri (UIUC) CS/ECE 374 6 Spring 2023

6/20

Regular Languages

A class of simple but very useful languages.

The set of regular languages over some alphabet ¥ is defined
inductively as:

@ 0 is a regular language

o {e€} is a regular language

Chandra Chekuri (UIUC) CS/ECE 374 6 Spring 2023

6/20

Regular Languages

A class of simple but very useful languages.

The set of regular languages over some alphabet ¥ is defined
inductively as:

@ 0 is a regular language
o {e€} is a regular language

e {a} is a regular language for each a € ¥; here we are
interpreting a as a string of length 1

Chandra Chekuri (UIUC) CS/ECE 374 6 Spring 2023

6/20

Regular Languages

A class of simple but very useful languages.

The set of regular languages over some alphabet ¥ is defined
inductively as:

@ 0 is a regular language
o {e€} is a regular language

e {a} is a regular language for each a € ¥; here we are
interpreting a as a string of length 1

o If Ly, L, are regular then L; U L; is regular

Chandra Chekuri (UIUC) CS/ECE 374 6 Spring 2023

6/20

Regular Languages

A class of simple but very useful languages.

The set of regular languages over some alphabet ¥ is defined
inductively as:

@ 0 is a regular language
o {e€} is a regular language

e {a} is a regular language for each a € ¥; here we are
interpreting a as a string of length 1

o If Ly, L, are regular then L; U L; is regular

o If Ly, L, are regular then L;L, is regular

Chandra Chekuri (UIUC) CS/ECE 374 6 Spring 2023

6/20

Regular Languages

A class of simple but very useful languages.

The set of regular languages over some alphabet ¥ is defined
inductively as:

@ 0 is a regular language
o {e€} is a regular language

e {a} is a regular language for each a € ¥; here we are
interpreting a as a string of length 1

o If Ly, L, are regular then L; U L; is regular
o If Ly, L, are regular then L;L, is regular
@ If Lis regular, then L* = U,>oL" is regular

Chandra Chekuri (UIUC) CS/ECE 374 6 Spring 2023

6/20

Regular Languages

A class of simple but very useful languages.

The set of regular languages over some alphabet ¥ is defined
inductively as:

@ 0 is a regular language
o {e€} is a regular language

e {a} is a regular language for each a € ¥; here we are
interpreting a as a string of length 1

o If Ly, L, are regular then L; U L; is regular
o If Ly, L, are regular then L;L, is regular
@ If Lis regular, then L* = U,>oL" is regular

Chandra Chekuri (UIUC) CS/ECE 374 6 Spring 2023

6/20

Regular Languages

A class of simple but very useful languages.

The set of regular languages over some alphabet ¥ is defined
inductively as:

@ 0 is a regular language
o {e€} is a regular language

e {a} is a regular language for each a € ¥; here we are
interpreting a as a string of length 1

o If Ly, L, are regular then L; U L; is regular
o If Ly, L, are regular then L;L, is regular
@ If Lis regular, then L* = U,>oL" is regular

Regular languages are closed under the operations of union,
concatenation and Kleene star.

Chandra Chekuri (UIUC) CS/ECE 374 6 Spring 2023 6/20

Some simple regular languages

If w is a string then L = {w} is regular. \

Example: {aba} or {abbabbab}. Why?

Chandra Chekuri (UIUC) CS/ECE 374 7 Spring 2023 7/20

Some simple regular languages

If w is a string then L = {w} is regular.

Example: {aba} or {abbabbab}. Why?

Every finite language L is regular.

Examples: L = {a, abaab, aba}. L = {w | |w| < 100}. Why?

Chandra Chekuri (UIUC) CS/ECE 374 7 Spring 2023 7/20

More Examples

@ {w | wis a keyword in Python program}
o {w | wis a valid date of the form mm/dd/yy}

@ {w | w describes a valid Roman numeral}
{1, niv,v,vi,vil, vill , IX, X, X1, .. .}.
o {w | w contains "CS374" as a substring}.

Chandra Chekuri (UIUC) CS/ECE 374 8 Spring 2023 8/20

Regular Languages

@ How expressive are these languages?
@ What can we use them for?

@ What are limitations? That is, what can be not express as
regular languages?

Chandra Chekuri (UIUC) CS/ECE 374 9 Spring 2023

9/20

Part 1l

Regular Expressions

Chandra Chekuri (UIUC) CS/ECE 374 10 Spring 2023 10/20

Regular Expressions

A way to denote regular languages

@ simple patterns to describe related strings

@ useful in

text search (editors, Unix/grep, emacs)

compilers: lexical analysis

compact way to represent interesting/useful languages
dates back to 50's: Stephen Kleene

who has a star named after him.

Chandra Chekuri (UIUC) CS/ECE 374 11 Spring 2023

11/20

Inductive Definition

A regular expression r over an alphabhe ¥ is one of the following:

Base cases:
@ () denotes the language 0
@ € denotes the language {€}.
@ a denote the language {a}.

Chandra Chekuri (UIUC) CS/ECE 374 12 Spring 2023

12/20

Inductive Definition

A regular expression r over an alphabhe ¥ is one of the following:
Base cases:

@ () denotes the language 0
@ € denotes the language {€}.
@ a denote the language {a}.

Inductive cases: If r; and r, are regular expressions denoting
languages R; and R, respectively then,

@ (r; + rp) denotes the language R; U R,
@ (rir2) denotes the language R R,
@ (r1)* denotes the language Ry

Chandra Chekuri (UIUC) CS/ECE 374 12 Spring 2023 12/20

Regular Languages

0 regular

{€e} regular

{a} regular for a € ¥

R; U R, regular if both are
R; R, regular if both are
R* is regular if R is

Regular Languages vs Regular Expressions

Regular Expressions

@ denotes 0

€ denotes {€}

a denote {a}

ri -+ ro, denotes R; U Ry
riro denotes Ry Ry

r* denote R*

Regular expressions denote regular languages — they explicitly show
the operations that were used to form the language

Chandra Chekuri (UIUC) CS/ECE 374 13 Spring 2023 13/20

Regular Languages

0 regular

{€e} regular

{a} regular for a € ¥

R; U R, regular if both are
R; R, regular if both are
R* is regular if R is

Regular Languages vs Regular Expressions

Regular Expressions

@ denotes 0

€ denotes {€}

a denote {a}

ri -+ ro, denotes R; U Ry
riro denotes Ry Ry

r* denote R*

Regular expressions denote regular languages — they explicitly show
the operations that were used to form the language

Examples: (0 + 1)*, 010* + (110)*, (10 + 110)*(11 + 10)

Chandra Chekuri (UIUC) CS/ECE 374 13 Spring 2023 13/20

Notation and Parenthesis

@ For a regular expression r, L(r) is the language denoted by r.
Multiple regular expressions can denote the same language!
Example: (0 + 1) and (1 + 0) denote same language {0, 1}

Chandra Chekuri (UIUC) CS/ECE 374 14 Spring 2023 14 /20

Notation and Parenthesis

@ For a regular expression r, L(r) is the language denoted by r.
Multiple regular expressions can denote the same language!
Example: (0 + 1) and (1 + 0) denote same language {0, 1}

@ Two regular expressions r; and ry are equivalent if L(r;) = L(rp).

Chandra Chekuri (UIUC) CS/ECE 374 14 Spring 2023 14 /20

Notation and Parenthesis

@ For a regular expression r, L(r) is the language denoted by r.
Multiple regular expressions can denote the same language!
Example: (0 + 1) and (1 + 0) denote same language {0, 1}

@ Two regular expressions r; and ry are equivalent if L(r;) = L(rp).

@ Omit parenthesis by adopting precedence order: *, concat, +.
Example: r*s +t = ((r*)s) + t

Chandra Chekuri (UIUC) CS/ECE 374 14 Spring 2023 14 /20

Notation and Parenthesis

@ For a regular expression r, L(r) is the language denoted by r.
Multiple regular expressions can denote the same language!
Example: (0 + 1) and (1 + 0) denote same language {0, 1}

@ Two regular expressions r; and r, are equivalent if L(ry) = L(r2).

@ Omit parenthesis by adopting precedence order: *, concat, +.
Example: r*s +t = ((r*)s) + t

@ Omit parenthesis by associativity of each of these operations.
Example: rst = (rs)t = r(st),
r+s+t=r+(s+t)=(r+s)+t.

Chandra Chekuri (UIUC) CS/ECE 374 14 Spring 2023 14 /20

Notation and Parenthesis

@ For a regular expression r, L(r) is the language denoted by r.
Multiple regular expressions can denote the same language!
Example: (0 + 1) and (1 + 0) denote same language {0, 1}

@ Two regular expressions r; and r, are equivalent if L(ry) = L(r2).

@ Omit parenthesis by adopting precedence order: *, concat, +.
Example: r*s +t = ((r*)s) + t

@ Omit parenthesis by associativity of each of these operations.
Example: rst = (rs)t = r(st),
r+s+t=r+(s+t)=(r+s)+t.

@ Superscript +. For convenience, define r™ = rr*. Hence if
L(r) = R then L(r*) = RT.

Chandra Chekuri (UIUC) CS/ECE 374 14 Spring 2023 14/20

Notation and Parenthesis

@ For a regular expression r, L(r) is the language denoted by r.
Multiple regular expressions can denote the same language!
Example: (0 + 1) and (1 + 0) denote same language {0, 1}

@ Two regular expressions r; and r, are equivalent if L(ry) = L(r2).

@ Omit parenthesis by adopting precedence order: *, concat, +.
Example: r*s +t = ((r*)s) + t

@ Omit parenthesis by associativity of each of these operations.
Example: rst = (rs)t = r(st),
r+s+t=r+(s+t)=(r+s)+t.

@ Superscript +. For convenience, define r™ = rr*. Hence if
L(r) = R then L(r*) = RT.

@ Other notation: r + s, r Uss, r|s all denote union. rs is
sometimes written as res.

Chandra Chekuri (UIUC) CS/ECE 374 14 Spring 2023 14/20

Skills

@ Given a language L “in mind” (say an English description) we
would like to write a regular expression for L (if possible)

Chandra Chekuri (UIUC) CS/ECE 374 15 Spring 2023 15/20

Skills

@ Given a language L “in mind” (say an English description) we
would like to write a regular expression for L (if possible)

@ Given a regular expression r we would like to “understand” L(r)
(say by giving an English description)

Chandra Chekuri (UIUC) CS/ECE 374 15 Spring 2023 15/20

Understanding regular expressions

@ (0 + 1)*: set of all strings over {0, 1}

Chandra Chekuri (UIUC) CS/ECE 374 16 Spring 2023 16 /20

Understanding regular expressions

@ (0 + 1)*: set of all strings over {0, 1}
e (04 1)*001(0 + 1)*:

Chandra Chekuri (UIUC) CS/ECE 374 16 Spring 2023 16 /20

Understanding regular expressions

@ (0 + 1)*: set of all strings over {0, 1}
@ (0+1)*001(0 + 1)*: strings with 001 as substring

Chandra Chekuri (UIUC) CS/ECE 374 16 Spring 2023 16 /20

Understanding regular expressions
(0 + 1)*: set of all strings over {0,1}

°
@ (0+1)*001(0 + 1)*: strings with 001 as substring
e 0* + (0*10*10*10*)*:

Chandra Chekuri (UIUC) CS/ECE 374 16 Spring 2023 16 /20

Understanding regular expressions
(0 + 1)*: set of all strings over {0,1}

°
@ (04 1)*001(0 + 1)*: strings with 001 as substring
@ 0* + (0*10*10*10*)*: strings with number of 1's divisible by 3

Chandra Chekuri (UIUC) CS/ECE 374 16 Spring 2023 16 /20

Understanding regular expressions

@ (0 + 1)*: set of all strings over {0, 1}

@ (0+1)*001(0 + 1)*: strings with 001 as substring

@ 0* + (0*10*10*10*)*: strings with number of 1's divisible by 3
e (0:

Chandra Chekuri (UIUC) CS/ECE 374 16 Spring 2023 16 /20

Understanding regular expressions

@ (0 + 1)*: set of all strings over {0, 1}

@ (04 1)*001(0 + 1)*: strings with 001 as substring

@ 0* + (0*10*10*10*)*: strings with number of 1's divisible by 3
e 00: {}

Chandra Chekuri (UIUC) CS/ECE 374 16 Spring 2023 16 /20

Understanding regular expressions

(0 + 1)*: set of all strings over {0, 1}

(0 +1)*001(0 + 1)*: strings with 001 as substring

0* + (0*10*10*10*)*: strings with number of 1's divisible by 3

(e 1)(01)*(e + 0):

Chandra Chekuri (UIUC) CS/ECE 374 16 Spring 2023 16/20

Understanding regular expressions

@ (0 + 1)*: set of all strings over {0, 1}

@ (04 1)*001(0 + 1)*: strings with 001 as substring

@ 0* + (0*10*10*10*)*: strings with number of 1's divisible by 3
e 00: {}

@ (e + 1)(01)*(e + 0): alteranting Os and 1s. Alternatively, strings
with no two consecutive Os and no two conescutive 1s

Chandra Chekuri (UIUC) CS/ECE 374 16 Spring 2023 16 /20

Understanding regular expressions

@ (0 + 1)*: set of all strings over {0, 1}

@ (0+1)*001(0 + 1)*: strings with 001 as substring

@ 0* + (0*10*10*10*)*: strings with number of 1's divisible by 3
e 00: {}

@ (e + 1)(01)*(e + 0): alteranting Os and 1s. Alternatively, strings
with no two consecutive Os and no two conescutive 1s

o (e + 0)(1+ 10)*:

Chandra Chekuri (UIUC) CS/ECE 374 16 Spring 2023 16/20

Understanding regular expressions

@ (0 + 1)*: set of all strings over {0, 1}

@ (0+1)*001(0 + 1)*: strings with 001 as substring

@ 0* + (0*10*10*10*)*: strings with number of 1's divisible by 3
e 00: {}

@ (e + 1)(01)*(e + 0): alteranting Os and 1s. Alternatively, strings
with no two consecutive Os and no two conescutive 1s

@ (e +0)(1 + 10)*: strings without two consecutive Os.

Chandra Chekuri (UIUC) CS/ECE 374 16 Spring 2023 16/20

Creating regular expressions

@ bitstrings with the substring 001 or substring 100 ocurring as a
substring

Chandra Chekuri (UIUC) CS/ECE 374 17 Spring 2023 17 /20

Creating regular expressions

@ bitstrings with the substring 001 or substring 100 ocurring as a
substring
one answer: (0 + 1)*001(0 + 1)* + (0 + 1)*100(0 + 1)*

Chandra Chekuri (UIUC) CS/ECE 374 17 Spring 2023 17 /20

Creating regular expressions

@ bitstrings with the substring 001 or substring 100 ocurring as a

substring
one answer: (0 + 1)*001(0 + 1)* + (0 + 1)*100(0 + 1)*

@ bitstrings with an even number of 1's

Chandra Chekuri (UIUC) CS/ECE 374 17 Spring 2023 17 /20

Creating regular expressions

@ bitstrings with the substring 001 or substring 100 ocurring as a
substring
one answer: (0 + 1)*001(0 + 1)* + (0 + 1)*100(0 + 1)*

@ bitstrings with an even number of 1's
one answer: 0* + (0*10*10*)*

Chandra Chekuri (UIUC) CS/ECE 374 17 Spring 2023 17 /20

Creating regular expressions

@ bitstrings with the substring 001 or substring 100 ocurring as a

substring
one answer: (0 + 1)*001(0 + 1)* + (0 + 1)*100(0 + 1)*

@ bitstrings with an even number of 1's
one answer: 0* + (0*10*10*)*
@ bitstrings with an odd number of 1's

Chandra Chekuri (UIUC) CS/ECE 374 17 Spring 2023 17 /20

Creating regular expressions

@ bitstrings with the substring 001 or substring 100 ocurring as a
substring
one answer: (0 + 1)*001(0 + 1)* + (0 + 1)*100(0 + 1)*
@ bitstrings with an even number of 1's
one answer: 0* + (0*10*10*)*
@ bitstrings with an odd number of 1's
one answer: 0*1r where r is solution to previous part

Chandra Chekuri (UIUC) CS/ECE 374 17 Spring 2023 17 /20

Creating regular expressions

@ bitstrings with the substring 001 or substring 100 ocurring as a

substring

one answer: (0 + 1)*001(0 + 1)* + (0 + 1)*100(0 + 1)*
@ bitstrings with an even number of 1's

one answer: 0* + (0*10*10*)*
@ bitstrings with an odd number of 1's

one answer: 0*1r where r is solution to previous part

@ bitstrings that do not contain 011 as a substring

Chandra Chekuri (UIUC) CS/ECE 374 17 Spring 2023 17/20

Creating regular expressions

@ bitstrings with the substring 001 or substring 100 ocurring as a
substring
one answer: (0 + 1)*001(0 + 1)* + (0 + 1)*100(0 + 1)*
@ bitstrings with an even number of 1's
one answer: 0* + (0*10*10*)*
@ bitstrings with an odd number of 1's
one answer: 0*1r where r is solution to previous part

@ bitstrings that do not contain 011 as a substring
one answer: 1*0*(107)*(1 + €)

Chandra Chekuri (UIUC) CS/ECE 374 17 Spring 2023 17/20

Creating regular expressions

@ bitstrings with the substring 001 or substring 100 ocurring as a
substring
one answer: (0 + 1)*001(0 + 1)* + (0 + 1)*100(0 + 1)*

@ bitstrings with an even number of 1's
one answer: 0* + (0*10*10*)*

@ bitstrings with an odd number of 1's
one answer: 0*1r where r is solution to previous part

@ bitstrings that do not contain 011 as a substring
one answer: 1*0*(107)*(1 + €)

@ Hard: bitstrings with an odd number of 1s and an odd number
of Os.

Chandra Chekuri (UIUC) CS/ECE 374 17 Spring 2023 17 /20

Regular expression identities

@ r*r* = r* meaning for any regular expression r,
L(r*r*) = L(r*)

o (r')*=r

o (r+s)=(rs"y =" +s)=(r+s)=...

Chandra Chekuri (UIUC) CS/ECE 374 18 Spring 2023 18/20

Regular expression identities

@ r*r* = r* meaning for any regular expression r,
L(r*r*) = L(r*)

o (r')*=r

o (r+s)=(rs"y =" +s)=(r+s)=...

Question: How does on prove an identity?

Chandra Chekuri (UIUC) CS/ECE 374 18 Spring 2023

18/20

Regular expression identities
@ r*r* = r* meaning for any regular expression r,
L(rr*) = L(r*)
o (r')*=r
r
r
o (r+s)=(rs"y =" +s)=(r+s)=...

Question: How does on prove an identity?
By induction. On what?

Chandra Chekuri (UIUC) CS/ECE 374 18 Spring 2023

18/20

Regular expression identities

@ r*r* = r* meaning for any regular expression r,
L(r*r*) = L(r*)

o (r')*=r

o (r+s)=(rs"y =" +s)=(r+s)=...

Question: How does on prove an identity?
By induction. On what? Length of r since r is a string obtained from
specific inductive rules.

Chandra Chekuri (UIUC) CS/ECE 374 18 Spring 2023 18/20

A non-regular language and other closure
properties

Consider L = {0717 | n > 0} = {e, 01,0011, 000111, ...}.

Chandra Chekuri (UIUC) CS/ECE 374 19 Spring 2023 19/20

A non-regular language and other closure
properties

Consider L = {0717 | n > 0} = {e, 01,0011, 000111, ...}.

L is not a regular language.

Chandra Chekuri (UIUC) CS/ECE 374 19 Spring 2023 19/20

A non-regular language and other closure
properties

Consider L = {0717 | n > 0} = {e, 01,0011, 000111, ...}.

L is not a regular language.

How do we prove it?

Chandra Chekuri (UIUC) CS/ECE 374 19 Spring 2023 19/20

A non-regular language and other closure
properties

Consider L = {0717 | n > 0} = {e, 01,0011, 000111, ...}.

L is not a regular language.

How do we prove it?

Other questions:
@ Suppose R is regular and R, is regular. Is Ry N R, regular?
@ Suppose R is regular is R; (complement of R;) regular?

Chandra Chekuri (UIUC) CS/ECE 374 19 Spring 2023 19/20

Summary and Skills

Regular languages and expressions defined inductively via simple base
cases and three operations: union, concatenation, Kleene star

Skills:

@ Given a laguage L described in English, design a regular
expression r such that L = L(r)

@ Given a regular expression r, give an English description of the
language L(r)

Later:
@ see equivalence with DFAs, NFAs
@ technique to prove that languages are not regular

Chandra Chekuri (UIUC) CS/ECE 374 20 Spring 2023 20/20

	Regular Languages
	Regular Expressions

