
CS/ECE 374 Sec A= Spring 2023
9 Homework 5 :

Due Wednesday, March 1, 2023 at 10am

1. Consider n intervals I1, I2, . . . , In. Each interval Ii is specified by its two end points ai and
bi with ai ≤ bi. Two intervals Ii and Ij overlap if there is a number x such that x ∈ [ai, bi]
and x ∈ [aj , bj ]. The overlap length between Ii and Ij is the geometrically natural one —
the length of the longest interval shared between Ii and Ij . We can express this overlap
length formally as the quantity:

max{0,min(bi, bj)−max(ai, aj)}

You may want to draw a picture to see the meaning of the formula. Given the n intervals
we wish to find the two intervals Ii and Ij that have the maximum overlap length. You can
assume that the intervals are specified in two arrays A and B of length n where A[i] = ai
and B[i] = bi. Describe an efficient algorithm for this problem. An O(n2) algorithm is
straight forward. You should aim to beat this easy bound. You may want to first think of
the conceptually easier setting where the ai and bi values are distinct. Hint: you can try
Mergesort like divide and conquer.

2. Recall the Selection problem: given an unsorted array A of n integers and an index k
between 1 and n, output the kth ranked number in the array. We saw a linear time
algorithm for it in lecture. In this problem we see two variants of Selection.

(a) Let A be an unsorted arrary of n elements. Suppose we are given h indices k1 <
k2 . . . < kh. Describe an O(n log h) algorithm to find elements of ranks k1, k2, . . . , kh
in O(n log h) time. Note that one can use Selection h times to solve this problem in
O(nh) time. We can also do this via sorting in O(n log n) time which is advantageous
when h is large. Here we are interested in the intermediate range when h is not too
small but smaller than log n. For istance consider h = Θ(log log n). The O(nh)-time
algorithm will take O(n log logn) time while the sorting based algorithm will take
O(n log n) time while the O(n log h) time algorithm will achieve a running time of
O(n log log log n) which is better.

(b) Given 4 sorted arrarys A1, A2, A3, A4 with a total of n elements, and an index k
between 1 and n, describe an O(log n) time algorithm to find the k’th ranked element
in the union of the four arrays.

(c) Not to submit: Instead of 4 sorted arrays as in the previous problem, suppose we
had h sorted arrays. What running time can you achieve as a function of of h and n?

You do not need to formally prove the correctness of the algorithms but they should be
clear and high-level. You need to justify the running time of your algorithms.



CS/ECE 374 Sec A Homework 5 (due Mar 1) Spring 2023

3. Not to submit: A two-dimensional Turing machine (2D TM for short) uses an infinite two-
dimensional grid of cells as the tape. For simplicity assume that the tape cells corresponds
to integers (i, j) with i, j ≥ 0; in other words the tape corresponds to the positive quadrant
of the two dimensional plane. The machine crashes if it tries to move below the x = 0 line
or to the left of the y = 0 line. The transition function of such a machine has the form
δ : Q× Γ→ Q× Γ× {L,R,U,D, S} where L, R, U , D stand for “left”, “right”, “up” and
“down” respectively, and S stands for “stay put”. You can assume that the input to the 2D
TM is written on the first row and that its head is initially at location (0, 0). Argue that a
2D TM can be simulated by an ordinary TM (1D TM); it may help you to use a multi-tape
TM for simulation. In particular address the following points.

• How does your TM store the grid cells of a 2D TM on a one dimensional tape?
• How does your TM keep track of the head position of the 2D TM?
• How does your 1D TM simulate one step of the 2D TM?

If a 2D TM takes t steps on some input how many steps (asymptotically) does your
simulating 1D TM take on the same input? Give an asymptotic estimate. Note that it is
quite difficult to give a formal proof of the simulation argument, hence we are looking for
high-level arguments similar to those we gave in lecture for various simulations.

Solved Problem

4. Suppose we are given two sets of n points, one set {p1, p2, . . . , pn} on the line y = 0 and
the other set {q1, q2, . . . , qn} on the line y = 1. Consider the n line segments connecting
each point pi to the corresponding point qi. Describe and analyze a divide-and-conquer
algorithm to determine how many pairs of these line segments intersect, in O(n log n)
time. See the example below.

q1 q4 q7 q3q5 q2 q6

p1 p4p7 p3 p5p2p6
Seven segments with endpoints on parallel lines, with 11 intersecting pairs.

Your input consists of two arrays P [1 .. n] and Q[1 .. n] of x-coordinates; you may
assume that all 2n of these numbers are distinct. No proof of correctness is necessary, but
you should justify the running time.

Solution: We begin by sorting the array P [1 .. n] and permuting the array Q[1 .. n] to
maintain correspondence between endpoints, in O(n log n) time. Then for any indices

2



CS/ECE 374 Sec A Homework 5 (due Mar 1) Spring 2023

i < j, segments i and j intersect if and only if Q[i] > Q[j]. Thus, our goal is to compute
the number of pairs of indices i < j such that Q[i] > Q[j]. Such a pair is called an
inversion.

We count the number of inversions in Q using the following extension of mergesort;
as a side effect, this algorithm also sorts Q. If n < 100, we use brute force in O(1) time.
Otherwise:

• Recursively count inversions in (and sort) Q[1 .. bn/2c].
• Recursively count inversions in (and sort) Q[bn/2c+ 1 .. n].
• Count inversions Q[i] > Q[j] where i ≤ bn/2c and j > bn/2c as follows:

– Color the elements in the Left half Q[1 .. n/2] bLue.
– Color the elements in the Right half Q[n/2 + 1 .. n] Red.
– Merge Q[1 .. n/2] and Q[n/2 + 1 .. n], maintaining their colors.
– For each blue element Q[i], count the number of smaller red elements Q[j].

The last substep can be performed in O(n) time using a simple for-loop:

CountRedBlue(A[1 .. n]):
count← 0
total← 0

for i← 1 to n
if A[i] is red

count← count + 1
else

total← total + count
return total

In fact, we can execute the third merge-and-count step directly by modifying the Merge
algorithm, without any need for “colors”. Here changes to the standard Merge algorithm
are indicated in red.

MergeAndCount(A[1 .. n],m):
i← 1; j ← m+ 1; count← 0; total← 0

for k ← 1 to n
if j > n

B[k]← A[i]; i← i+ 1; total← total + count
else if i > m

B[k]← A[j]; j ← j + 1; count← count + 1
else if A[i] < A[j]

B[k]← A[i]; i← i+ 1; total← total + count
else

B[k]← A[j]; j ← j + 1; count← count + 1

for k ← 1 to n
A[k]← B[k]

return total

We can further optimize this algorithm by observing that count is always equal to j−m−1.
(Proof: Initially, j = m+ 1 and count = 0, and we always increment j and count together.)

3



CS/ECE 374 Sec A Homework 5 (due Mar 1) Spring 2023

MergeAndCount2(A[1 .. n],m):
i← 1; j ← m+ 1; total← 0

for k ← 1 to n
if j > n

B[k]← A[i]; i← i+ 1; total← total + j − m − 1
else if i > m

B[k]← A[j]; j ← j + 1
else if A[i] < A[j]

B[k]← A[i]; i← i+ 1; total← total + j − m − 1
else

B[k]← A[j]; j ← j + 1

for k ← 1 to n
A[k]← B[k]

return total

The modified Merge algorithm still runs in O(n) time, so the running time of the
resulting modified mergesort still obeys the recurrence T (n) = 2T (n/2) + O(n). We
conclude that the overall running time is O(n log n), as required. �

Rubric: 10 points = 2 for base case + 3 for divide (split and recurse) + 3 for conquer
(merge and count) + 2 for time analysis. Max 3 points for a correct O(n2)-time algorithm.
This is neither the only way to correctly describe this algorithm nor the only correct
O(n log n)-time algorithm. No proof of correctness is required.

4


