CS/ECE 374 Sec A< Spring 2023

s Homework 4 &
Due Wednesday, February 15, 2023 at 10am

1. (a) Prove that the following languages are not regular by providing a fooling set. You need to
provide an infinite set and also prove that it is a valid fooling set for the given language.
Alternatively, you can describe a fooling set F,, of size n for every n > 0 and prove its validity.

i. L={01172%|i+j=k+1}.

ii. Recall that a block in a string is a maximal non-empty substring of indentical symbols.
Let L be the set of all strings in {0, 1}* that contain two non-empty blocks of 0s of unequal
length. For example, L contains the strings 011001111 and 00100100111000100 but
does not contain the strings 000110001100011 and 00000000111.

iii. L={0Mm&n1|pn>1}.

(b) LetL; ={we{0,1}*: |w| > 2k and last 2k characters of w have unequal number of 0s and 1s}.
If k =3 then 0001111 and 01000110 are in L3 while 010011 and 000111000 are not. Describe
a fooling set for L of size at least 2k and prove that it is valid.
Not to submit for grading: Design an NFA for L, with O(k?) states.

(¢) Suppose L is not regular and L’ is a finite language. Prove that L \ L’ is not regular. Give
a simple example of a non-regular language L and a regular language L’ such that L \ L’ is
regular.

2. Describe a context free grammar for the following languages. Clearly explain how they work and
the role of each non-terminal. Unclear grammars will receive little to no credit.

(@) L={albickd!|i+j=k+0}
(b) L={0"1/2% | k=3(i+j)}
() L ={x #xy#...#x; | k> 1,each x; € {0,1}*, and for some i and j, x; = xf}. Note that i

can be equal to j in the definition and there can be multiple pairs that satisfy the condition.
Here the terminal set T is {0, 1, #}.

(d) L=1{0,1}*\{1"0" | n = 0}, in other words the complement of the language L’ = {1"0" | n >
0}. Note that L’ is not regular but context free. The complement of a context free language
is not necessarily context free, but it is true for this particular language L’.

3. Not to submit: Consider all regular expressions over an alphabet ¥. Each regular expression
is a string over a larger alphabet ' = 3 U {#-Symbol, e-Symbol, +, (,), *}. We use @#-Symbol and
e-Symbol in place of @ and e to avoid confusion with overloading; technically one should do it
with +, (,) as well. Let Ry, be the language of regular expressions over .

(a) Prove that Ry, is not regular.

(b) Describe a context free grammar (CFG) for Ry; which will prove that it is a CFL.

This shows that we need more expressive languages than regular languages to describe regular
expressions.

CS/ECE 374 Sec A Homework 4 (due Feb 15) Spring 2023

Solved problem

4. Let L be the set of all strings over {0, 1}* with exactly twice as many 0s as 1s.

(a) Describe a CFG for the language L.
[Hint: For any string u define A(u) = #(0,u) — 2#(1,u). Introduce intermediate variables
that derive strings with A(u) = 1 and A(u) = —1 and use them to define a non-terminal that
generates L.]

Solution: S — ¢ |SS|00S1|0S1S0| 1500 [|

(b) Prove that your grammar G is correct. As usual, you need to prove both L € L(G) and
L(G) C L.
[Hint: Let u.; denote the prefix of u of length i. If A(u) = 1, what can you say about the
smallest i for which A(u<;) = 1? How does u split up at that position? If A(u) = —1, what
can you say about the smallest i such that A(uc;) =—17?]

Solution: We separately prove L € L(G) and L(G) € L as follows:
Claim 1. L(G) C L, that is, every string in L(G) has exactly twice as many 0s as 1s.

Proof: As suggested by the hint, for any string u, let A(u) = #(0,u) — 2#(1,u). We need to
prove that A(w) = 0 for every string w € L(G).

Let w be an arbitrary string in L(G), and consider an arbitrary derivation of w of length
k. Assume that A(x) = O for every string x € L(G) that can be derived with fewer than
k productions.! There are five cases to consider, depending on the first production in the
derivation of w.

* If w=¢, then #(0,w) = #(1,w) = 0 by definition, so A(w) = 0.

* Suppose the derivation begins S »» SS ~* w. Then w = xy for some strings x,y € L(G),
each of which can be derived with fewer than k productions. The inductive hypothesis
implies A(x) = A(y) = 0. It immediately follows that A(w) = 0.

* Suppose the derivation begins S ~» 00S1 ~" w. Then w = 00x 1 for some string x € L(G).
The inductive hypothesis implies A(x) = 0. It immediately follows that A(w) = 0.

* Suppose the derivation begins S ~» 1500 ~* w. Then w = 1x00 for some string x € L(G).
The inductive hypothesis implies A(x) = 0. It immediately follows that A(w) = 0.

* Suppose the derivation begins S »» 0S1S1 ~* w. Then w = 0x1y0 for some strings
x,y € L(G). The inductive hypothesis implies A(x) = A(y) = 0. It immediately follows
that A(w) =0.

In all cases, we conclude that A(w) = 0, as required. O

Claim 2. L C L(G); that is, G generates every binary string with exactly twice as many 0s
as 1s.

! Alternatively: Consider the shortest derivation of w, and assume A(x) = 0 for every string x € L(G) such that |x| < |w|.

2Alternatively: Suppose the shortest derivation of w begins S ~ SS ~ w. Then w = xy for some strings x,y € L(G).
Neither x or y can be empty, because otherwise we could shorten the derivation of w. Thus, x and y are both shorter than w,
so the induction hypothesis implies. ... We need some way to deal with the decompositions w = ¢ * w and w = w * ¢, which are
both consistent with the production S — SS, without falling into an infinite loop.

CS/ECE 374 Sec A Homework 4 (due Feb 15) Spring 2023

Proof: As suggested by the hint, for any string u, let A(u) = #(0,u) — 2#(1,u). For any
string u and any integer 0 < i < |ul, let u; denote the ith symbol in u, and let u<; denote the
prefix of u of length i.

Let w be an arbitrary binary string with twice as many 0s as 1s. Assume that G generates
every binary string x that is shorter than w and has twice as many 0s as 1s. There are two
cases to consider:

* If w=¢, then ¢ € L(G) because of the production S — ¢.

» Suppose w is non-empty. To simplify notation, let A; = A(w;) for every index i, and
observe that Ay = Ap,| = 0. There are several subcases to consider:

— Suppose A; = 0 for some index 0 < i < |w|. Then we can write w = xy, where x and
y are non-empty strings with A(x) = A(y) = 0. The induction hypothesis implies
that x, y € L(G), and thus the production rule S — SS implies that w € L(G).

— Suppose A; > 0 for all 0 < i < |w|. Then w must begin with 00, since otherwise
Ay =—2or Ay =—1, and the last symbol in w must be 1, since otherwise A},_; =
—1. Thus, we can write w = 00x1 for some binary string x. We easily observe that
A(x) = 0, so the induction hypothesis implies x € L(G), and thus the production
rule S — 00S1 implies w € L(G).

- Suppose A; < 0 for all 0 < i < |w|. A symmetric argument to the previous case
implies w = 1x00 for some binary string x with A(x) = 0. The induction hypothesis
implies x € L(G), and thus the production rule S — 1500 implies w € L(G).

- Finally, suppose none of the previous cases applies: A; < 0 and A; > 0 for some
indices i and j, but A; #0 for all 0 < i < |w]|.

Let i be the smallest index such that A; < 0. Because A; either increases by 1
or decreases by 2 when we increment j, for all indices 0 < j < |w|, we must have
Aj>0if j<iand A; <0if j >1.

In other words, there is a unique index i such that A;_; > 0 and A; < 0. In
particular, we have A; > 0 and A,|_; < 0. Thus, we can write w = 0x1y0 for some
binary strings x and y, where |0x1| =1i.

We easily observe that A(x) = A(y) = 0, so the inductive hypothesis implies
x,y € L(G), and thus the production rule S — 05150 implies w € L(G).

In all cases, we conclude that G generates w. O

Together, Claim 1 and Claim 2 imply L = L(G). [|

Rubric: 10 points:
* part (a) = 4 points. As usual, this is not the only correct grammar.
* part (b) = 6 points = 3 points for € + 3 points for 2, each using the standard
induction template (scaled).

