Proving Non-regularity

Lecture 6 Thursday, September 12, 2024

LATEXed: September 17, 2024 18:53

6.1 Not all languages are regular

Regular Languages, DFAs, NFAs

Theorem 6.1.

Languages accepted by DFAs, NFAs, and regular expressions are the same.

Question: Is every language a regular language? No.

- Each DFA M can be represented as a string over a finite alphabet Σ by appropriate encoding
- Hence number of regular languages is <u>countably infinite</u>
- Number of languages is <u>uncountably infinite</u>
- Hence there must be a non-regular language!

A direct proof $L = \{0^{i}1^{i} \mid i \ge 0\} = \{\epsilon, 01, 0011, 000111, \cdots, \}$

Theorem 6.2.

L is not regular.

A Simple and Canonical Non-regular Language $L = \{0^i 1^i \mid i \ge 0\} = \{\epsilon, 01, 0011, 000111, \dots, \}$

Theorem 6.3.

L is not regular.

Question: Proof?

Intuition: Any program to recognize *L* seems to require counting number of zeros in input which cannot be done with fixed memory.

How do we formalize intuition and come up with a formal proof?

Proof by Contradiction

Suppose L is regular. Then there is a DFA M such that L(M) = L.
Let M = (Q, {0,1}, δ, s, A) where |Q| = n.

Consider strings ϵ , 0, 00, 000, \cdots , 0ⁿ total of n + 1 strings.

What states does *M* reach on the above strings? Let $q_i = \delta^*(s, 0^i)$.

By pigeon hole principle $q_i = q_j$ for some $0 \le i < j \le n$. That is, M is in the same state after reading 0^i and 0^j where $i \ne j$.

M should accept $0^i 1^i$ but then it will also accept $0^j 1^i$ where $i \neq j$. This contradicts the fact that *M* accepts *L*. Thus, there is no DFA for *L*.

6.2 When two states are equivalent?

Equivalence between states

Definition 6.1. $M = (Q, \Sigma, \delta, s, A)$: DFA. *Two states* $p, q \in Q$ *are* <u>equivalent</u> *if for all strings* $w \in \Sigma^*$, we have that

 $\delta^*(p,w) \in A \iff \delta^*(q,w) \in A.$

One can merge any two states that are equivalent into a single state.

Distinguishing between states

or

Definition 6.2. $M = (Q, \Sigma, \delta, s, A)$: DFA. *Two states* $p, q \in Q$ *are* **distinguishable** *if there exists a string* $w \in \Sigma^*$, *such that*

$$\delta^*(p,w)\in \mathsf{A}$$
 and $\delta^*(q,w)\notin \mathsf{A}.$
 $\delta^*(p,w)\notin \mathsf{A}$ and $\delta^*(q,w)\in \mathsf{A}.$

Distinguishable prefixes

 $M = (Q, \Sigma, \delta, s, A): DFA$ **Idea:** Every string $w \in \Sigma^*$ defines a state $\nabla w = \delta^*(s, w)$.

Definition 6.3.

Two strings $u, w \in \Sigma^*$ are <u>distinguishable</u> for M (or L(M)) if ∇u and ∇w are distinguishable.

Definition 6.4 (Direct restatement).

Two prefixes $u, w \in \Sigma^*$ are distinguishable for a language L if there exists a string x, such that $ux \in L$ and $wx \notin L$ (or $ux \notin L$ and $wx \in L$).

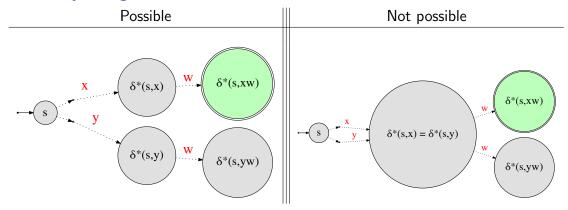
Distinguishable means different states

Lemma 6.5.

L: regular language. $M = (Q, \Sigma, \delta, s, A)$: DFA for L. If $x, y \in \Sigma^*$ are distinguishable, then $\nabla x \neq \nabla y$.

Reminder: $\nabla x = \delta^*(s, x) \in Q$ and $\nabla y = \delta^*(s, y) \in Q$

Proof by a figure



Distinguishable strings means different states: Proof

Lemma 6.6.

L: regular language. $M = (Q, \Sigma, \delta, s, A)$: DFA for L. If $x, y \in \Sigma^*$ are distinguishable, then $\nabla x \neq \nabla y$.

Proof.

Assume for the sake of contradiction that $\nabla x = \nabla y$. By assumption $\exists w \in \Sigma^*$ such that $\nabla xw \in A$ and $\nabla yw \notin A$. $\implies A \ni \nabla xw = \delta^*(s, xw) = \delta^*(\nabla x, w) = \delta^*(\nabla y, w)$ $= \delta^*(s, yw) = \nabla yw \notin A$. $\implies A \ni \nabla yw \notin A$. Impossible! Assumption that $\nabla x = \nabla y$ is false.

Review questions...

- 1. Prove for any $i \neq j$ then 0^i and 0^j are distinguishable for the language $\{0^k 1^k \mid k \geq 0\}$.
- 2. Let L be a regular language, and let w_1, \ldots, w_k be strings that are all pairwise distinguishable for L. Prove that any DFA for L must have at least k states.
- 3. Prove that $\{\mathbf{0}^{k}\mathbf{1}^{k} \mid k \geq \mathbf{0}\}$ is not regular.

6.3 Fooling sets: Proving non-regularity

Fooling Sets

Definition 6.1.

For a language L over Σ a set of strings F (could be infinite) is a fooling set or distinguishing set for L if every two distinct strings $x, y \in F$ are distinguishable.

Example: $F = \{0^i \mid i \ge 0\}$ is a fooling set for the language $L = \{0^k 1^k \mid k \ge 0\}$.

Theorem 6.2.

Suppose F is a fooling set for L. If F is finite then there is no DFA M that accepts L with less than |F| states.

Recall

Already proved the following lemma:

Lemma 6.3.

L: regular language. $M = (Q, \Sigma, \delta, s, A)$: DFA for L. If $x, y \in \Sigma^*$ are distinguishable, then $\nabla x \neq \nabla y$.

Reminder: $\nabla x = \delta^*(s, x)$.

Proof of theorem

Theorem 6.4 (Reworded.).

L: A language F: a fooling set for L. If F is finite then any DFA M that accepts L has at least |F| states.

Proof.

Let $F = \{w_1, w_2, \dots, w_m\}$ be the fooling set. Let $M = (Q, \Sigma, \delta, s, A)$ be any DFA that accepts L. Let $q_i = \nabla w_i = \delta^*(s, x_i)$. By lemma $q_i \neq q_j$ for all $i \neq j$. As such, $|Q| \ge |\{q_1, \dots, q_m\}| = |\{w_1, \dots, w_m\}| = |F|$.

Infinite Fooling Sets

Corollary 6.5.

If L has an infinite fooling set F then L is not regular.

Proof.

Let $w_1, w_2, \ldots \subseteq F$ be an infinite sequence of strings such that every pair of them are distinguishable. Assume for contradiction that $\exists M$ a DFA for L. Let $F_i = \{w_1, \ldots, w_i\}$. By theorem, # states of $M \ge |F_i| = i$, for all i. As such, number of states in M is infinite. Contradiction: DFA = deterministic finite automata. But M not finite.

Examples

 $\blacktriangleright \ \{\mathbf{0}^k\mathbf{1}^k \mid k \geq \mathbf{0}\}$

{bitstrings with equal number of 0s and 1s}

 $\blacktriangleright \ \{\mathbf{0}^k \mathbf{1}^\ell \mid k \neq \ell\}$

Harder example: The language of squares is not regular $\{0^{k^2} \mid k \ge 0\}$

Really hard: Primes are not regular

An exercise left for your enjoyment

```
\left\{ \mathbf{0}^{k} \mid k \text{ is a prime number} \right\}
Hints:
```

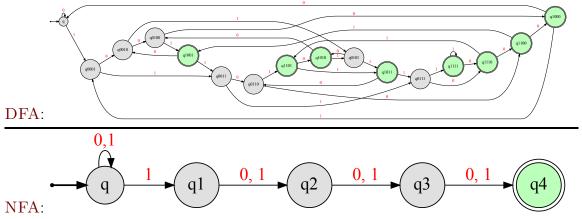
- 1. Probably easier to prove directly on the automata.
- 2. There are infinite number of prime numbers.
- 3. For every n > 0, observe that n!, n! + 1, ..., n! + n are all composite there are arbitrarily big gaps between prime numbers.

6.3.1

Exponential gap in number of states between $\ensuremath{\mathrm{DFA}}$ and $\ensuremath{\mathrm{NFA}}$ sizes

Exponential gap between NFA and DFA size

 $L_4 = \{w \in \{0,1\}^* \mid w \text{ has a } 1 \text{ located 4 positions from the end}\}$



Exponential gap between NFA and DFA size

 $L_k = \{w \in \{0,1\}^* \mid w \text{ has a } 1 \ k \text{ positions from the end}\}$ Recall that L_k is accepted by a NFA N with k + 1 states.

Theorem 6.6.

Every DFA that accepts L_k has at least 2^k states.

Claim 6.7.

 $F = \{w \in \{0,1\}^* : |w| = k\}$ is a fooling set of size 2^k for L_k .

Why?

- Suppose $a_1a_2 \ldots a_k$ and $b_1b_2 \ldots b_k$ are two distinct bitstrings of length k
- Let *i* be first index where $a_i \neq b_i$
- $y = 0^{k-i-1}$ is a distinguishing suffix for the two strings

How to pick a fooling set

How do we pick a fooling set F?

- If x, y are in F and $x \neq y$ they should be distinguishable! Of course.
- All strings in F except maybe one should be prefixes of strings in the language L. For example if $L = \{0^k 1^k \mid k \ge 0\}$ do not pick 1 and 10 (say). Why?

6.4 Closure properties: Proving non-regularity

Non-regularity via closure properties $H = \{$ bitstrings with equal number of 0s and 1s $\}$

 $H'=\{0^k1^k\mid k\geq 0\}$

Suppose we have already shown that H' is non-regular. Can we show that L is non-regular without using the fooling set argument from scratch?

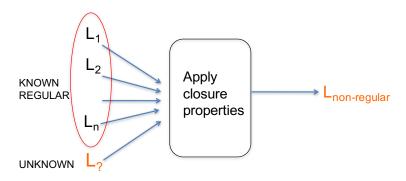
$H'=H\cap L(0^*1^*)$

Claim: The above and the fact that L' is non-regular implies H is non-regular. Why?

Suppose H is regular. Then since $L(0^*1^*)$ is regular, and regular languages are closed under intersection, H' also would be regular. But we know H' is not regular, a contradiction.

Non-regularity via closure properties

General recipe:



Proving non-regularity: Summary

- Method of distinguishing suffixes. To prove that L is non-regular find an infinite fooling set.
- Closure properties. Use existing non-regular languages and regular languages to prove that some new language is non-regular.
- Pumping lemma. We did not cover it but it is sometimes an easier proof technique to apply, but not as general as the fooling set technique.

6.5 Myhill-Nerode Theorem

One automata to rule them all

"Myhill-Nerode Theorem": A regular language L has a unique (up to naming) minimal automata, and it can be computed efficiently once any DFA is given for L.

6.5.1 Myhill-Nerode Theorem: Equivalence between strings

Indistinguishability

Recall:

Definition 6.1.

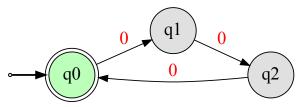
For a language L over Σ and two strings $x, y \in \Sigma^*$ we say that x and y are distinguishable with respect to L if there is a string $w \in \Sigma^*$ such that exactly one of xw, yw is in L. x, y are indistinguishable with respect to L if there is no such w.

Given language L over Σ define a relation \equiv_L over strings in Σ^* as follows: $x \equiv_L y$ iff x and y are indistinguishable with respect to L.

Definition 6.2.

 $x \equiv_L y$ means that $\forall w \in \Sigma^*$: $xw \in L \iff yw \in L$. In words: x is equivalent to y under L.

Example: Equivalence classes



Indistinguishability

Claim 6.3.

 \equiv_{L} is an equivalence relation over Σ^* .

Proof.

- 1. Reflexive: $\forall x \in \Sigma^*$: $\forall w \in \Sigma^*$: $xw \in L \iff xw \in L$. $\implies x \equiv_L x$.
- 2. Symmetry: $x \equiv_L y$ then $\forall w \in \Sigma^*$: $xw \in L \iff yw \in L$ $\forall w \in \Sigma^*$: $yw \in L \iff xw \in L \implies y \equiv_L x$.
- 3. Transitivity: $x \equiv_L y$ and $y \equiv_L z$ $\forall w \in \Sigma^*$: $xw \in L \iff yw \in L$ and $\forall w \in \Sigma^*$: $yw \in L \iff zw \in L$ $\implies \forall w \in \Sigma^*$: $xw \in L \iff zw \in L$ $\implies x \equiv_L z$.

Equivalences over automatas...

Claim 6.4 (Just proved.).

 \equiv_{L} is an equivalence relation over Σ^* .

Therefore, \equiv_{L} partitions Σ^{*} into a collection of equivalence classes.

Definition 6.5.

L: A language For a string
$$x \in \Sigma^*$$
, let

$$[x] = [x]_L = \{y \in \Sigma^* \mid x \equiv_L y\}$$
be the equivalence class of x according to L.

Definition 6.6. $[L] = \{ [x]_L \mid x \in \Sigma^* \} \text{ is the set of equivalence classes of } L.$

Strings in the same equivalence class are indistinguishable

Lemma 6.7.

Let x, y be two distinct strings. $x \equiv_L y \iff x, y$ are indistinguishable for L.

Proof.

$$x \equiv_L y \implies \forall w \in \mathbf{\Sigma}^*: xw \in L \iff yw \in L$$

x and y are indistinguishable for L.

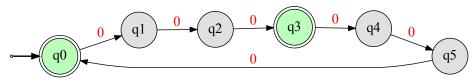
$$x \not\equiv_L y \implies \exists w \in \mathbf{\Sigma}^*: xw \in L \text{ and } yw \not\in L$$

 \implies x and y are distinguishable for L.

All strings arriving at a state are in the same class

Lemma 6.8. $M = (Q, \Sigma, \delta, s, A) \text{ a DFA for a language } L.$ For any $q \in A$, let $L_q = \{w \in \Sigma^* \mid \nabla w = \delta^*(s, w) = q\}$. Then, there exists a string x, such that $L_q \subseteq [x]_L$.

An inefficient automata



Intro. Algorithms & Models of Computation CS/ECE 374A, Fall 2024

6.5.2 Stating and proving the Myhill-Nerode Theorem

Equivalences over automatas...

Claim 6.9 (Just proved).

Let x, y be two distinct strings. $x \equiv_L y \iff x, y$ are indistinguishable for L.

Corollary 6.10.

If \equiv_L is finite with **n** equivalence classes then there is a fooling set **F** of size **n** for **L**.

Corollary 6.11.

If \equiv_{L} has infinite number of equivalence classes $\implies \exists$ infinite fooling set for L. $\implies L$ is not regular.

Equivalence classes as automata

Lemma 6.12. For all $x, y \in \Sigma^*$, if $[x]_L = [y]_L$, then for any $a \in \Sigma$, we have $[xa]_L = [ya]_L$.

Proof. $[x] = [y] \implies \forall w \in \Sigma^*: xw \in L \iff yw \in L$ $\implies \forall w' \in \Sigma^*: xaw' \in L \iff yaw' \in L \qquad //w = aw'$ $\implies [xa]_L = [ya]_L.$

Set of equivalence classes

Lemma 6.13.

If **L** has **n** distinct equivalence classes, then there is a DFA that accepts it using **n** states.

Proof.

Set of states: Q = [L]Start state: $s = [\varepsilon]_L$. Accept states: $A = \{[x]_L \mid x \in L\}$. Transition function: $\delta([x]_L, a) = [xa]_L$. $M = (Q, \Sigma, \delta, s, A)$: The resulting DFA. Clearly, M is a DFA with n states, and it accepts L.

Myhill-Nerode Theorem

Theorem 6.14 (Myhill-Nerode).

L is regular $\iff \equiv_L$ has a finite number of equivalence classes. If \equiv_L is finite with *n* equivalence classes then there is a DFA *M* accepting *L* with exactly *n* states and this is the minimum possible.

Corollary 6.15.

A language L is non-regular if and only if there is an infinite fooling set F for L.

Algorithmic implication: For every DFA M one can find in polynomial time a DFA M' such that L(M) = L(M') and M' has the fewest possible states among all such DFAs.

What was that all about

Summary: A regular language L has a unique (up to naming) minimal automata, and it can be computed efficiently once any DFA is given for L.

Exercise

- 1. Given two DFAs M_1 , M_2 describe an efficient algorithm to decide if $L(M_1) = L(M_2)$.
- Given DFA *M*, and two states *q*, *q'* of *M*, show an efficient algorithm to decide if *q* and *q'* are distinguishable. (Hint: Use the first part.)
- 3. Given a DFA M for a language L, describe an efficient algorithm for computing the minimal automata (as far as the number of states) that accepts L.

Intro. Algorithms & Models of Computation CS/ECE 374A, Fall 2024

6.6

Roads not taken: Non-regularity via pumping lemma

Non-regularity via "looping"

Claim 6.1.

The language $L = \{a^n b^n \mid n \ge 0\}$ is not regular.

Proof: Assume for contradiction *L* is regular. $\implies \exists \text{ DFA } M = (Q, \Sigma, \delta, q_0, F) \text{ for } L. \text{ That is } L = L(M).$ n = |Q|: number of states of M.Consider the string $a^n b^n$. Let $p_{\tau} = \delta^*(q_0, a^{\tau})$, for $\tau = 0, \dots, n$. $p_0 p_1 \dots p_n: n + 1 \text{ states. } M \text{ has } n \text{ states.}$ By pigeon hole principle, must be i < j, such that $p_i = p_j$. $\implies \delta^*(p_i.a^{j-i}) = p_i \text{ (its a loop!)}.$ For $x = a^i, y = a^{j-i}, z = a^{n-j}b^n$, we have

$$\delta^*(q_0, a^{n+j-i}b^n) = \delta^*(q_0, xyyz) = \delta^*\left(\delta^*(\delta^*(q_0, x), y), y\right), z\right)$$

Proof continued

Non-regularity via "looping"

We have: $p_i = \delta^*(q_0, a^i)$ and $\delta^*(p_i.a^{j-}) = p_i$.

$$\begin{split} \delta^*(q_0, a^{n+j-i}b^n) &= \delta^* \left(\delta^* \left(\delta^* (q_0, a^i), a^{j-i} \right), a^{j-i} \right), a^{n-j}b^n \right) \\ &= \delta^* \left(\delta^* \left(\delta^* \left(\delta^* (p_i, a^{j-i}), a^{j-i} \right), a^{n-j}b^n \right) \right) \\ &= \delta^* \left(\delta^* \left(\delta^* \left(\delta^* (q_0, a^i), a^{j-i} \right), a^{n-j}b^n \right) \right) \\ &= \delta^* \left(\delta^* \left(\delta^* \left(p_i, a^{j-i} \right), a^{n-j}b^n \right) \right) \\ &= \delta^* (q_0, a^n b^n) \in A. \end{split}$$

 $\implies a^{n+j-i}b^n \in L$, which is false. Contradiction. \Box

The pumping lemma

The previous argument implies that any regular language must suffer from loops (we omit the proof):

Theorem 6.2 (Pumping Lemma.).

Let **L** be a regular language. Then there exists an integer **p** (the "pumping length") such that for any string $w \in L$ with $|w| \ge p$, w can be written as xyz with the following properties:

- $|xy| \leq p.$
- $|y| \ge 1$ (i.e. y is not the empty string).
- ▶ $xy^k z \in L$ for every $k \ge 0$.