
Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2024

Circuit satisfiability and Cook-Levin
Theorem
Lecture 24
Thursday, December 5, 2024

LATEXed: August 25, 2024 14:23

1 / 84

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2024

24.1
Recap
FLNAME:24.1.0.0 ZZZ:24.1.0.0 Recap

2 / 84

Recap

NP: languages that have non-deterministic polynomial time algorithms

A language L is NP-Complete if and only if

▶ L is in NP

▶ for every L′ in NP, L′ ≤P L

L is NP-Hard if for every L′ in NP, L′ ≤P L.

Theorem 24.1 (Cook-Levin).
SAT is NP-Complete.

3 / 84

Recap

NP: languages that have non-deterministic polynomial time algorithms

A language L is NP-Complete if and only if

▶ L is in NP

▶ for every L′ in NP, L′ ≤P L

L is NP-Hard if for every L′ in NP, L′ ≤P L.

Theorem 24.1 (Cook-Levin).
SAT is NP-Complete.

3 / 84

Recap

NP: languages that have non-deterministic polynomial time algorithms

A language L is NP-Complete if and only if

▶ L is in NP

▶ for every L′ in NP, L′ ≤P L

L is NP-Hard if for every L′ in NP, L′ ≤P L.

Theorem 24.1 (Cook-Levin).
SAT is NP-Complete.

3 / 84

Recap

NP: languages that have non-deterministic polynomial time algorithms

A language L is NP-Complete if and only if

▶ L is in NP

▶ for every L′ in NP, L′ ≤P L

L is NP-Hard if for every L′ in NP, L′ ≤P L.

Theorem 24.1 (Cook-Levin).
SAT is NP-Complete.

3 / 84

Pictorial View

P

NP

NP-C

NP-Hard

4 / 84

P and NP

Possible scenarios:

1. P = NP.

2. P ̸= NP

Question: Suppose P ̸= NP. Is every problem in NP \ P also NP-Complete?

Theorem 24.2 (Ladner).

If P ̸= NP then there is a problem/language X ∈ NP \ P such that X is not
NP-Complete.

5 / 84

P and NP

Possible scenarios:

1. P = NP.

2. P ̸= NP

Question: Suppose P ̸= NP. Is every problem in NP \ P also NP-Complete?

Theorem 24.2 (Ladner).

If P ̸= NP then there is a problem/language X ∈ NP \ P such that X is not
NP-Complete.

5 / 84

P and NP

Possible scenarios:

1. P = NP.

2. P ̸= NP

Question: Suppose P ̸= NP. Is every problem in NP \ P also NP-Complete?

Theorem 24.2 (Ladner).

If P ̸= NP then there is a problem/language X ∈ NP \ P such that X is not
NP-Complete.

5 / 84

What do we know so far

1. Independent Set ≤P Clique, Clique ≤P Independent Set.
=⇒ Clique ≊P Independent Set.

2. Vertex Cover ≤P Independent Set, Independent Set ≤P Vertex Cover.
=⇒ Independent Set ≊P Vertex Cover.

3. 3SAT ≤P SAT, SAT ≤P 3SAT =⇒ 3SAT ≊P SAT.

4. 3SAT ≤P Independent Set .
Exercise (or Cook-Levin theorem): Independent Set ≤P SAT
=⇒ 3SAT ≊P Independent Set.

5. SAT ≤P Hamiltonian Cycle
Exercise (or Cook-Levin theorem): Hamiltonian Cycle ≤P 3SAT
=⇒ Hamiltonian Cycle ≊P 3SAT

6. Clique ≊P Independent Set ≊P Vertex Cover ≊P 3SAT
≊P SAT ≊P Hamiltonian Cycle

6 / 84

What do we know so far

1. Independent Set ≤P Clique, Clique ≤P Independent Set.
=⇒ Clique ≊P Independent Set.

2. Vertex Cover ≤P Independent Set, Independent Set ≤P Vertex Cover.
=⇒ Independent Set ≊P Vertex Cover.

3. 3SAT ≤P SAT, SAT ≤P 3SAT =⇒ 3SAT ≊P SAT.

4. 3SAT ≤P Independent Set .
Exercise (or Cook-Levin theorem): Independent Set ≤P SAT
=⇒ 3SAT ≊P Independent Set.

5. SAT ≤P Hamiltonian Cycle
Exercise (or Cook-Levin theorem): Hamiltonian Cycle ≤P 3SAT
=⇒ Hamiltonian Cycle ≊P 3SAT

6. Clique ≊P Independent Set ≊P Vertex Cover ≊P 3SAT
≊P SAT ≊P Hamiltonian Cycle

6 / 84

What do we know so far

1. Independent Set ≤P Clique, Clique ≤P Independent Set.
=⇒ Clique ≊P Independent Set.

2. Vertex Cover ≤P Independent Set, Independent Set ≤P Vertex Cover.
=⇒ Independent Set ≊P Vertex Cover.

3. 3SAT ≤P SAT, SAT ≤P 3SAT =⇒ 3SAT ≊P SAT.

4. 3SAT ≤P Independent Set .
Exercise (or Cook-Levin theorem): Independent Set ≤P SAT
=⇒ 3SAT ≊P Independent Set.

5. SAT ≤P Hamiltonian Cycle
Exercise (or Cook-Levin theorem): Hamiltonian Cycle ≤P 3SAT
=⇒ Hamiltonian Cycle ≊P 3SAT

6. Clique ≊P Independent Set ≊P Vertex Cover ≊P 3SAT
≊P SAT ≊P Hamiltonian Cycle

6 / 84

What do we know so far

1. Independent Set ≤P Clique, Clique ≤P Independent Set.
=⇒ Clique ≊P Independent Set.

2. Vertex Cover ≤P Independent Set, Independent Set ≤P Vertex Cover.
=⇒ Independent Set ≊P Vertex Cover.

3. 3SAT ≤P SAT, SAT ≤P 3SAT =⇒ 3SAT ≊P SAT.

4. 3SAT ≤P Independent Set .
Exercise (or Cook-Levin theorem): Independent Set ≤P SAT
=⇒ 3SAT ≊P Independent Set.

5. SAT ≤P Hamiltonian Cycle
Exercise (or Cook-Levin theorem): Hamiltonian Cycle ≤P 3SAT
=⇒ Hamiltonian Cycle ≊P 3SAT

6. Clique ≊P Independent Set ≊P Vertex Cover ≊P 3SAT
≊P SAT ≊P Hamiltonian Cycle

6 / 84

What do we know so far

1. Independent Set ≤P Clique, Clique ≤P Independent Set.
=⇒ Clique ≊P Independent Set.

2. Vertex Cover ≤P Independent Set, Independent Set ≤P Vertex Cover.
=⇒ Independent Set ≊P Vertex Cover.

3. 3SAT ≤P SAT, SAT ≤P 3SAT =⇒ 3SAT ≊P SAT.

4. 3SAT ≤P Independent Set .
Exercise (or Cook-Levin theorem): Independent Set ≤P SAT
=⇒ 3SAT ≊P Independent Set.

5. SAT ≤P Hamiltonian Cycle
Exercise (or Cook-Levin theorem): Hamiltonian Cycle ≤P 3SAT
=⇒ Hamiltonian Cycle ≊P 3SAT

6. Clique ≊P Independent Set ≊P Vertex Cover ≊P 3SAT
≊P SAT ≊P Hamiltonian Cycle

6 / 84

What do we know so far

1. Independent Set ≤P Clique, Clique ≤P Independent Set.
=⇒ Clique ≊P Independent Set.

2. Vertex Cover ≤P Independent Set, Independent Set ≤P Vertex Cover.
=⇒ Independent Set ≊P Vertex Cover.

3. 3SAT ≤P SAT, SAT ≤P 3SAT =⇒ 3SAT ≊P SAT.

4. 3SAT ≤P Independent Set .
Exercise (or Cook-Levin theorem): Independent Set ≤P SAT
=⇒ 3SAT ≊P Independent Set.

5. SAT ≤P Hamiltonian Cycle
Exercise (or Cook-Levin theorem): Hamiltonian Cycle ≤P 3SAT
=⇒ Hamiltonian Cycle ≊P 3SAT

6. Clique ≊P Independent Set ≊P Vertex Cover ≊P 3SAT
≊P SAT ≊P Hamiltonian Cycle

6 / 84

NP Completeness

Clique ≊P Independent Set ≊P Vertex Cover ≊P 3SAT ≊P SAT ≊P
Hamiltonian Cycle

All these problems are in NP.

SAT is NPC.

All these problems are NP-Complete.

7 / 84

NP Completeness

Clique ≊P Independent Set ≊P Vertex Cover ≊P 3SAT ≊P SAT ≊P
Hamiltonian Cycle

All these problems are in NP.

SAT is NPC.

All these problems are NP-Complete.

7 / 84

NP Completeness

Clique ≊P Independent Set ≊P Vertex Cover ≊P 3SAT ≊P SAT ≊P
Hamiltonian Cycle

All these problems are in NP.

SAT is NPC.

All these problems are NP-Complete.

7 / 84

NP Completeness

Clique ≊P Independent Set ≊P Vertex Cover ≊P 3SAT ≊P SAT ≊P
Hamiltonian Cycle

All these problems are in NP.

SAT is NPC.

All these problems are NP-Complete.

7 / 84

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2024

24.2
Circuit SAT
FLNAME:24.2.0.0 ZZZ:24.2.0.0 Circuit SAT

8 / 84

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2024

24.2.1
The circuit satisfiability (CSAT) problem
FLNAME:24.2.1.0 ZZZ:24.2.1.0 The circuit satisfiability (CSAT) problem

9 / 84

Circuits

Definition 24.1.
A circuit is a directed acyclic graph with

1 ? ? 0 ?

∧ ∨ ∨

¬ ∧

Inputs:

Output: ∧ 1. Input vertices (without incoming
edges) labelled with 0, 1 or a distinct
variable.

2. Every other vertex is labelled ∨, ∧ or
¬.

3. Single node output vertex with no
outgoing edges.

Can safely assume every node has at most two incoming edges.

10 / 84

Circuits

Definition 24.1.
A circuit is a directed acyclic graph with

1 ? ? 0 ?

∧ ∨ ∨

¬ ∧

Inputs:

Output: ∧ 1. Input vertices (without incoming
edges) labelled with 0, 1 or a distinct
variable.

2. Every other vertex is labelled ∨, ∧ or
¬.

3. Single node output vertex with no
outgoing edges.

Can safely assume every node has at most two incoming edges.

10 / 84

CSAT: Circuit Satisfaction

Definition 24.2 (Circuit Satisfaction (CSAT).).
Given a circuit as input, is there an assignment to the input variables that causes the
output to get value 1?

Claim 24.3.
CSAT is in NP.

1. Certificate: Assignment to input variables.

2. Certifier: Evaluate the value of each gate in a topological sort of DAG and check
the output gate value.

11 / 84

CSAT: Circuit Satisfaction

Definition 24.2 (Circuit Satisfaction (CSAT).).
Given a circuit as input, is there an assignment to the input variables that causes the
output to get value 1?

Claim 24.3.
CSAT is in NP.

1. Certificate: Assignment to input variables.

2. Certifier: Evaluate the value of each gate in a topological sort of DAG and check
the output gate value.

11 / 84

Circuit SAT vs SAT

CNF formulas are a rather restricted form of Boolean formulas.

Circuits are a much more powerful (and hence easier) way to express Boolean formulas

However they are equivalent in terms of polynomial-time solvability.

12 / 84

Circuit SAT vs SAT

CNF formulas are a rather restricted form of Boolean formulas.

Circuits are a much more powerful (and hence easier) way to express Boolean formulas

However they are equivalent in terms of polynomial-time solvability.

12 / 84

Converting a CNF formula into a Circuit
3SAT ≤P CSAT

Given 3CNF formula φ with n variables and m clauses, create a Circuit C .

▶ Inputs to C are the n boolean variables x1, x2, . . . , xn

▶ Use NOT gate to generate literal ¬xi for each variable xi

▶ For each clause (ℓ1 ∨ ℓ2 ∨ ℓ3) use two OR gates to mimic formula

▶ Combine the outputs for the clauses using AND gates to obtain the final output

13 / 84

Example
3SAT ≤P CSAT

φ =
(
x1 ∨ ∨x3 ∨ x4

)
∧

(
x1 ∨ ¬x2 ∨ ¬x3

)
∧
(
¬x2 ∨ ¬x3 ∨ x4

)

14 / 84

Example
3SAT ≤P CSAT

φ =
(
x1 ∨ ∨x3 ∨ x4

)
∧

(
x1 ∨ ¬x2 ∨ ¬x3

)
∧
(
¬x2 ∨ ¬x3 ∨ x4

)

x1 x2 x3 x4

14 / 84

Example
3SAT ≤P CSAT

φ =
(
x1 ∨ ∨x3 ∨ x4

)
∧

(
x1 ∨ ¬x2 ∨ ¬x3

)
∧
(
¬x2 ∨ ¬x3 ∨ x4

)

x1 x2 x3 x4

¬ ¬ ¬ ¬

14 / 84

Example
3SAT ≤P CSAT

φ =
(
x1 ∨ ∨x3 ∨ x4

)
∧

(
x1 ∨ ¬x2 ∨ ¬x3

)
∧
(
¬x2 ∨ ¬x3 ∨ x4

)

x1 x2 x3 x4

¬ ¬ ¬ ¬

14 / 84

Example
3SAT ≤P CSAT

φ =
(
x1 ∨ ∨x3 ∨ x4

)
∧

(
x1 ∨ ¬x2 ∨ ¬x3

)
∧
(
¬x2 ∨ ¬x3 ∨ x4

)

x1 x2 x3 x4

¬ ¬ ¬ ¬

∨

14 / 84

Example
3SAT ≤P CSAT

φ =
(
x1 ∨ ∨x3 ∨ x4

)
∧

(
x1 ∨ ¬x2 ∨ ¬x3

)
∧
(
¬x2 ∨ ¬x3 ∨ x4

)

x1 x2 x3 x4

¬ ¬ ¬ ¬

∨ ∨

14 / 84

Example
3SAT ≤P CSAT

φ =
(
x1 ∨ ∨x3 ∨ x4

)
∧

(
x1 ∨ ¬x2 ∨ ¬x3

)
∧
(
¬x2 ∨ ¬x3 ∨ x4

)

x1 x2 x3 x4

¬ ¬ ¬ ¬

∨ ∨ ∨

14 / 84

Example
3SAT ≤P CSAT

φ =
(
x1 ∨ ∨x3 ∨ x4

)
∧

(
x1 ∨ ¬x2 ∨ ¬x3

)
∧
(
¬x2 ∨ ¬x3 ∨ x4

)

x1 x2 x3 x4

¬ ¬ ¬ ¬

∨ ∨ ∨

∨

14 / 84

3SAT ≤P CSAT

Lemma 24.4.
SAT ≤P 3SAT ≤P CSAT.

15 / 84

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2024

24.2.2
Towards reducing CSAT to 3SAT
FLNAME:24.2.2.0 ZZZ:24.2.2.0 Towards reducing CSAT to 3SAT

16 / 84

Converting z = x ∧ y to 3SAT
z x y
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

17 / 84

Converting z = x ∧ y to 3SAT
z x y z = x ∧ y
0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1

17 / 84

Converting z = x ∧ y to 3SAT
z x y z = x ∧ y
0 0 0 1 1 1 1 1
0 0 1 1 1 1 1 1
0 1 0 1 1 1 1 1

0 1 1 0 0 1 1 1

1 0 0 0 1 0 1 1

1 0 1 0 1 1 0 1

1 1 0 0 1 1 1 0
1 1 1 1 1 1 1 1

17 / 84

Converting z = x ∧ y to 3SAT
z x y z = x ∧ y z ∨ x veey

0 0 0 1 1 1 1 1
0 0 1 1 1 1 1 1
0 1 0 1 1 1 1 1

0 1 1 0 0 1 1 1
1 0 0 0 1 0 1 1
1 0 1 0 1 1 0 1
1 1 0 0 1 1 1 0
1 1 1 1 1 1 1 1

17 / 84

Converting z = x ∧ y to 3SAT
z x y z = x ∧ y z ∨ x veey z ∨ x ∨ y

0 0 0 1 1 1 1 1
0 0 1 1 1 1 1 1
0 1 0 1 1 1 1 1
0 1 1 0 0 1 1 1

1 0 0 0 1 0 1 1
1 0 1 0 1 1 0 1
1 1 0 0 1 1 1 0
1 1 1 1 1 1 1 1

17 / 84

Converting z = x ∧ y to 3SAT
z x y z = x ∧ y z ∨ x veey z ∨ x ∨ y z ∨ x ∨ y

0 0 0 1 1 1 1 1
0 0 1 1 1 1 1 1
0 1 0 1 1 1 1 1
0 1 1 0 0 1 1 1
1 0 0 0 1 0 1 1

1 0 1 0 1 1 0 1
1 1 0 0 1 1 1 0
1 1 1 1 1 1 1 1

17 / 84

Converting z = x ∧ y to 3SAT
z x y z = x ∧ y z ∨ x veey z ∨ x ∨ y z ∨ x ∨ y z ∨ x ∨ y

0 0 0 1 1 1 1 1
0 0 1 1 1 1 1 1
0 1 0 1 1 1 1 1
0 1 1 0 0 1 1 1
1 0 0 0 1 0 1 1
1 0 1 0 1 1 0 1

1 1 0 0 1 1 1 0
1 1 1 1 1 1 1 1

17 / 84

Converting z = x ∧ y to 3SAT
z x y z = x ∧ y z ∨ x veey z ∨ x ∨ y z ∨ x ∨ y z ∨ x ∨ y

0 0 0 1 1 1 1 1
0 0 1 1 1 1 1 1
0 1 0 1 1 1 1 1
0 1 1 0 0 1 1 1
1 0 0 0 1 0 1 1
1 0 1 0 1 1 0 1
1 1 0 0 1 1 1 0
1 1 1 1 1 1 1 1

17 / 84

Converting z = x ∧ y to 3SAT
z x y z = x ∧ y z ∨ x veey z ∨ x ∨ y z ∨ x ∨ y z ∨ x ∨ y

0 0 0 1 1 1 1 1
0 0 1 1 1 1 1 1
0 1 0 1 1 1 1 1
0 1 1 0 0 1 1 1
1 0 0 0 1 0 1 1
1 0 1 0 1 1 0 1
1 1 0 0 1 1 1 0
1 1 1 1 1 1 1 1(

z = x ∧ y
)

≡
(z ∨ x ∨ y) ∧(z ∨ x ∨ y) ∧(z ∨ x ∨ y) ∧(z ∨ x ∨ y)

17 / 84

Converting z = x ∧ y to 3SAT
z x y
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

18 / 84

Converting z = x ∧ y to 3SAT
z x y z = x ∧ y
0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1

18 / 84

Converting z = x ∧ y to 3SAT
z x y z = x ∧ y clauses

0 0 0 1
0 0 1 1
0 1 0 1

0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1

18 / 84

Converting z = x ∧ y to 3SAT
z x y z = x ∧ y clauses

0 0 0 1
0 0 1 1
0 1 0 1

0 1 1 0 z ∨ x ∨ y
1 0 0 0 z ∨ x ∨ y
1 0 1 0 z ∨ x ∨ y
1 1 0 0 z ∨ x ∨ y
1 1 1 1

18 / 84

Converting z = x ∧ y to 3SAT
z x y z = x ∧ y clauses

0 0 0 1
0 0 1 1
0 1 0 1

0 1 1 0 z ∨ x ∨ y
1 0 0 0 z ∨ x ∨ y
1 0 1 0 z ∨ x ∨ y
1 1 0 0 z ∨ x ∨ y
1 1 1 1(

z = x ∧ y
)

≡
(z ∨ x ∨ y) ∧(z ∨ x ∨ y) ∧(z ∨ x ∨ y) ∧(z ∨ x ∨ y)

18 / 84

Converting z = x ∧ y to 3SAT
Simplify further if you want to

1. Using that (x ∨ y) ∧ (x ∨ y) = x , we have that:

1.1
(
z ∨ x ∨ u

)
∧
(
z ∨ x ∨ y

)
=
(
z ∨ x

)
1.2

(
z ∨ x ∨ y

)
∧
(
z ∨ x ∨ y

)
=
(
z ∨ y

)
2. Using the above two observation, we have that our formula

ψ ≡
(
z ∨ x ∨ y

)
∧
(
z ∨ x ∨ y

)
∧
(
z ∨ x ∨ y

)
∧
(
z ∨ x ∨ y

)
is equivalent to ψ ≡

(
z ∨ x ∨ y

)
∧
(
z ∨ x

)
∧
(
z ∨ y

)
Lemma 24.5.(
z = x ∧ y

)
≡

(
z ∨ x ∨ y

)
∧
(
z ∨ x

)
∧
(
z ∨ y

)

19 / 84

Converting z = x ∧ y to 3SAT
Simplify further if you want to

1. Using that (x ∨ y) ∧ (x ∨ y) = x , we have that:

1.1
(
z ∨ x ∨ u

)
∧
(
z ∨ x ∨ y

)
=
(
z ∨ x

)
1.2

(
z ∨ x ∨ y

)
∧
(
z ∨ x ∨ y

)
=
(
z ∨ y

)
2. Using the above two observation, we have that our formula

ψ ≡
(
z ∨ x ∨ y

)
∧
(
z ∨ x ∨ y

)
∧
(
z ∨ x ∨ y

)
∧
(
z ∨ x ∨ y

)
is equivalent to ψ ≡

(
z ∨ x ∨ y

)
∧
(
z ∨ x

)
∧
(
z ∨ y

)
Lemma 24.5.(
z = x ∧ y

)
≡

(
z ∨ x ∨ y

)
∧
(
z ∨ x

)
∧
(
z ∨ y

)

19 / 84

Converting z = x ∧ y to 3SAT
Simplify further if you want to

1. Using that (x ∨ y) ∧ (x ∨ y) = x , we have that:

1.1
(
z ∨ x ∨ u

)
∧
(
z ∨ x ∨ y

)
=
(
z ∨ x

)
1.2

(
z ∨ x ∨ y

)
∧
(
z ∨ x ∨ y

)
=
(
z ∨ y

)
2. Using the above two observation, we have that our formula

ψ ≡
(
z ∨ x ∨ y

)
∧
(
z ∨ x ∨ y

)
∧
(
z ∨ x ∨ y

)
∧
(
z ∨ x ∨ y

)
is equivalent to ψ ≡

(
z ∨ x ∨ y

)
∧
(
z ∨ x

)
∧
(
z ∨ y

)
Lemma 24.5.(
z = x ∧ y

)
≡

(
z ∨ x ∨ y

)
∧
(
z ∨ x

)
∧
(
z ∨ y

)

19 / 84

Converting z = x ∧ y to 3SAT
Simplify further if you want to

1. Using that (x ∨ y) ∧ (x ∨ y) = x , we have that:

1.1
(
z ∨ x ∨ u

)
∧
(
z ∨ x ∨ y

)
=
(
z ∨ x

)
1.2

(
z ∨ x ∨ y

)
∧
(
z ∨ x ∨ y

)
=
(
z ∨ y

)
2. Using the above two observation, we have that our formula

ψ ≡
(
z ∨ x ∨ y

)
∧
(
z ∨ x ∨ y

)
∧
(
z ∨ x ∨ y

)
∧
(
z ∨ x ∨ y

)
is equivalent to ψ ≡

(
z ∨ x ∨ y

)
∧
(
z ∨ x

)
∧
(
z ∨ y

)
Lemma 24.5.(
z = x ∧ y

)
≡

(
z ∨ x ∨ y

)
∧
(
z ∨ x

)
∧
(
z ∨ y

)

19 / 84

Converting z = x ∧ y to 3SAT
Simplify further if you want to

1. Using that (x ∨ y) ∧ (x ∨ y) = x , we have that:

1.1
(
z ∨ x ∨ u

)
∧
(
z ∨ x ∨ y

)
=
(
z ∨ x

)
1.2

(
z ∨ x ∨ y

)
∧
(
z ∨ x ∨ y

)
=
(
z ∨ y

)
2. Using the above two observation, we have that our formula

ψ ≡
(
z ∨ x ∨ y

)
∧
(
z ∨ x ∨ y

)
∧
(
z ∨ x ∨ y

)
∧
(
z ∨ x ∨ y

)
is equivalent to ψ ≡

(
z ∨ x ∨ y

)
∧
(
z ∨ x

)
∧
(
z ∨ y

)
Lemma 24.5.(
z = x ∧ y

)
≡

(
z ∨ x ∨ y

)
∧
(
z ∨ x

)
∧
(
z ∨ y

)

19 / 84

Converting z = x ∨ y to 3SAT
z x y
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

20 / 84

Converting z = x ∨ y to 3SAT
z x y z = x ∨ y
0 0 0 1
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

20 / 84

Converting z = x ∨ y to 3SAT
z x y z = x ∨ y clauses

0 0 0 1

0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

20 / 84

Converting z = x ∨ y to 3SAT
z x y z = x ∨ y clauses

0 0 0 1

0 0 1 0 z ∨ x ∨ y
0 1 0 0 z ∨ x ∨ y
0 1 1 0 z ∨ x ∨ y
1 0 0 0 z ∨ x ∨ y
1 0 1 1
1 1 0 1
1 1 1 1

20 / 84

Converting z = x ∨ y to 3SAT
z x y z = x ∨ y clauses

0 0 0 1

0 0 1 0 z ∨ x ∨ y
0 1 0 0 z ∨ x ∨ y
0 1 1 0 z ∨ x ∨ y
1 0 0 0 z ∨ x ∨ y
1 0 1 1
1 1 0 1
1 1 1 1(

z = x ∨ y
)

≡
(z ∨ x ∨ y) ∧(z ∨ x ∨ y) ∧(z ∨ x ∨ y) ∧(z ∨ x ∨ y)

20 / 84

Converting z = x ∨ y to 3SAT
Simplify further if you want to(
z = x ∨ y

)
≡(z ∨ x ∨ y) ∧(z ∨ x ∨ y) ∧(z ∨ x ∨ y) ∧(z ∨ x ∨ y)

1. Using that (x ∨ y) ∧ (x ∨ y) = x , we have that:

1.1 (z ∨ x ∨ y) ∧(z ∨ x ∨ y) = z ∨ y .
1.2 (z ∨ x ∨ y) ∧(z ∨ x ∨ y) = z ∨ x

2. Using the above two observation, we have the following.

Lemma 24.6.
The formula z = x ∨ y is equivalent to the CNF formula(
z = x ∨ y

)
≡ (z ∨ y) ∧(z ∨ x) ∧(z ∨ x ∨ y)

21 / 84

Converting z = x ∨ y to 3SAT
Simplify further if you want to(
z = x ∨ y

)
≡(z ∨ x ∨ y) ∧(z ∨ x ∨ y) ∧(z ∨ x ∨ y) ∧(z ∨ x ∨ y)

1. Using that (x ∨ y) ∧ (x ∨ y) = x , we have that:

1.1 (z ∨ x ∨ y) ∧(z ∨ x ∨ y) = z ∨ y .
1.2 (z ∨ x ∨ y) ∧(z ∨ x ∨ y) = z ∨ x

2. Using the above two observation, we have the following.

Lemma 24.6.
The formula z = x ∨ y is equivalent to the CNF formula(
z = x ∨ y

)
≡ (z ∨ y) ∧(z ∨ x) ∧(z ∨ x ∨ y)

21 / 84

Converting z = x ∨ y to 3SAT
Simplify further if you want to(
z = x ∨ y

)
≡(z ∨ x ∨ y) ∧(z ∨ x ∨ y) ∧(z ∨ x ∨ y) ∧(z ∨ x ∨ y)

1. Using that (x ∨ y) ∧ (x ∨ y) = x , we have that:

1.1 (z ∨ x ∨ y) ∧(z ∨ x ∨ y) = z ∨ y .
1.2 (z ∨ x ∨ y) ∧(z ∨ x ∨ y) = z ∨ x

2. Using the above two observation, we have the following.

Lemma 24.6.
The formula z = x ∨ y is equivalent to the CNF formula(
z = x ∨ y

)
≡ (z ∨ y) ∧(z ∨ x) ∧(z ∨ x ∨ y)

21 / 84

Converting z = x ∨ y to 3SAT
Simplify further if you want to(
z = x ∨ y

)
≡(z ∨ x ∨ y) ∧(z ∨ x ∨ y) ∧(z ∨ x ∨ y) ∧(z ∨ x ∨ y)

1. Using that (x ∨ y) ∧ (x ∨ y) = x , we have that:

1.1 (z ∨ x ∨ y) ∧(z ∨ x ∨ y) = z ∨ y .
1.2 (z ∨ x ∨ y) ∧(z ∨ x ∨ y) = z ∨ x

2. Using the above two observation, we have the following.

Lemma 24.6.
The formula z = x ∨ y is equivalent to the CNF formula(
z = x ∨ y

)
≡ (z ∨ y) ∧(z ∨ x) ∧(z ∨ x ∨ y)

21 / 84

Converting z = x to CNF

Lemma 24.7.
z = x ≡ (z ∨ x) ∧(z ∨ x) .

22 / 84

Summary of formulas we derived

Lemma 24.8.
The following identities hold:

1. z = x ≡ (z ∨ x) ∧(z ∨ x) .

2.
(
z = x ∨ y

)
≡ (z ∨ y) ∧(z ∨ x) ∧(z ∨ x ∨ y)

3.
(
z = x ∧ y

)
≡

(
z ∨ x ∨ y

)
∧
(
z ∨ x

)
∧
(
z ∨ y

)

23 / 84

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2024

24.2.3
Reduction from CSAT to SAT
FLNAME:24.2.3.0 ZZZ:24.2.3.0 Reduction from CSAT to SAT

24 / 84

Converting a circuit into a CNF formula
Label the nodes

1 ? ? 0 ?

Inputs

Output:

∧

∧

∧

∨ ∨

¬

1,a ?,b ?,c 0,d ?,e

Inputs

Output: ∧, k

¬, i ∧, j

∧, f ∨, g ∨, h

(A) Input circuit (B) Label the nodes.

25 / 84

Converting a circuit into a CNF formula
Introduce a variable for each node

1,a ?,b ?,c 0,d ?,e

Inputs

Output: ∧, k

¬, i ∧, j

∧, f ∨, g ∨, h

1,a ?,b ?,c 0,d ?,e

Inputs

Output: ∧, k

¬, i ∧, j

∧, f ∨, g ∨, h

xk

xjxi

xf xg xh

xa xb xc xd xe

(B) Label the nodes. (C) Introduce var for each node.

26 / 84

Converting a circuit into a CNF formula
Write a sub-formula for each variable that is true if the var is computed correctly.

1,a ?,b ?,c 0,d ?,e

Inputs

Output: ∧, k

¬, i ∧, j

∧, f ∨, g ∨, h

xk

xjxi

xf xg xh

xa xb xc xd xe

xk (Demand a sat’ assignment!)
xk = xi ∧ xj
xj = xg ∧ xh
xi = ¬xf
xh = xd ∨ xe
xg = xb ∨ xc
xf = xa ∧ xb
xd = 0
xa = 1

(C) Introduce var for each node.
(D) Write a sub-formula for each vari-
able that is true if the var is computed
correctly.

27 / 84

Converting a circuit into a CNF formula
Convert each sub-formula to an equivalent CNF formula

xk xk

xk = xi ∧ xj (¬xk ∨ xi) ∧ (¬xk ∨ xj) ∧ (xk ∨ ¬xi ∨ ¬xj)
xj = xg ∧ xh (¬xj ∨ xg) ∧ (¬xj ∨ xh) ∧ (xj ∨ ¬xg ∨ ¬xh)

xi = ¬xf (xi ∨ xf) ∧ (¬xi ∨ ¬xf)
xh = xd ∨ xe (xh ∨ ¬xd) ∧ (xh ∨ ¬xe) ∧ (¬xh ∨ xd ∨ xe)
xg = xb ∨ xc (xg ∨ ¬xb) ∧ (xg ∨ ¬xc) ∧ (¬xg ∨ xb ∨ xc)
xf = xa ∧ xb (¬xf ∨ xa) ∧ (¬xf ∨ xb) ∧ (xf ∨ ¬xa ∨ ¬xb)

xd = 0 ¬xd

xa = 1 xa

From Lemma 24.8 :

1. z = x ≡ (z ∨ x) ∧(z ∨ x)
2. (z = x ∨ y) ≡ (z ∨ y) ∧(z ∨ x) ∧(z ∨ x ∨ y)
3. (z = x ∧ y) ≡ (z ∨ x ∨ y) ∧(z ∨ x) ∧(z ∨ y)

28 / 84

Converting a circuit into a CNF formula
Convert each sub-formula to an equivalent CNF formula

xk xk

xk = xi ∧ xj (¬xk ∨ xi) ∧ (¬xk ∨ xj) ∧ (xk ∨ ¬xi ∨ ¬xj)
xj = xg ∧ xh (¬xj ∨ xg) ∧ (¬xj ∨ xh) ∧ (xj ∨ ¬xg ∨ ¬xh)

xi = ¬xf (xi ∨ xf) ∧ (¬xi ∨ ¬xf)
xh = xd ∨ xe (xh ∨ ¬xd) ∧ (xh ∨ ¬xe) ∧ (¬xh ∨ xd ∨ xe)
xg = xb ∨ xc (xg ∨ ¬xb) ∧ (xg ∨ ¬xc) ∧ (¬xg ∨ xb ∨ xc)
xf = xa ∧ xb (¬xf ∨ xa) ∧ (¬xf ∨ xb) ∧ (xf ∨ ¬xa ∨ ¬xb)

xd = 0 ¬xd

xa = 1 xa

From Lemma 24.8 :

1. z = x ≡ (z ∨ x) ∧(z ∨ x)
2. (z = x ∨ y) ≡ (z ∨ y) ∧(z ∨ x) ∧(z ∨ x ∨ y)
3. (z = x ∧ y) ≡ (z ∨ x ∨ y) ∧(z ∨ x) ∧(z ∨ y)

28 / 84

Converting a circuit into a CNF formula
Take the conjunction of all the CNF sub-formulas

1,a ?,b ?,c 0,d ?,e

Inputs

Output: ∧, k

¬, i ∧, j

∧, f ∨, g ∨, h

xk

xjxi

xf xg xh

xa xb xc xd xe

xk ∧ (¬xk ∨ xi) ∧ (¬xk ∨ xj)
∧ (xk ∨ ¬xi ∨ ¬xj) ∧ (¬xj ∨ xg)
∧ (¬xj ∨ xh) ∧ (xj ∨ ¬xg ∨ ¬xh)
∧ (xi ∨ xf) ∧ (¬xi ∨ ¬xf)
∧ (xh ∨ ¬xd) ∧ (xh ∨ ¬xe)
∧ (¬xh ∨ xd ∨ xe) ∧ (xg ∨ ¬xb)
∧ (xg ∨ ¬xc) ∧ (¬xg ∨ xb ∨ xc)
∧ (¬xf ∨ xa) ∧ (¬xf ∨ xb)
∧ (xf ∨ ¬xa ∨ ¬xb) ∧ (¬xd) ∧ xa

We got a CNF formula that is satisfiable if and only if the original circuit is satisfiable.

29 / 84

Correctness of Reduction

Need to show circuit C is satisfiable if and only if φC is satisfiable

⇒ Consider a satisfying assignment a for C
1. Find values of all gates in C under a
2. Give value of gate v to variable xv ; call this assignment a′

3. a′ satisfies φC (exercise)

⇐ Consider a satisfying assignment a for φC

1. Let a′ be the restriction of a to only the input variables
2. Value of gate v under a′ is the same as value of xv in a
3. Thus, a′ satisfies C

30 / 84

The result

Lemma 24.9.
CSAT ≤P SAT ≤P 3SAT.

Theorem 24.10.
CSAT is NP-Complete.

31 / 84

The result

Lemma 24.9.
CSAT ≤P SAT ≤P 3SAT.

Theorem 24.10.
CSAT is NP-Complete.

31 / 84

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2024

24.3
NP-Completeness of Graph Coloring
FLNAME:24.3.0.0 ZZZ:24.3.0.0 NP-Completeness of Graph Coloring

32 / 84

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2024

24.3.1
The coloring problem
FLNAME:24.3.1.0 ZZZ:24.3.1.0 The coloring problem

33 / 84

Graph Coloring

Problem: Graph Coloring

Instance: G = (V ,E): Undirected graph, integer k .
Question: Can the vertices of the graph be colored using k colors so
that vertices connected by an edge do not get the same color?

34 / 84

Graph 3-Coloring

Problem: 3 Coloring

Instance: G = (V ,E): Undirected graph.
Question: Can the vertices of the graph be colored using 3 colors so
that vertices connected by an edge do not get the same color?

35 / 84

Graph 3-Coloring

Problem: 3 Coloring

Instance: G = (V ,E): Undirected graph.
Question: Can the vertices of the graph be colored using 3 colors so
that vertices connected by an edge do not get the same color?

35 / 84

Graph Coloring

1. Observation: If G is colored with k colors then each color class (nodes of same
color) form an independent set in G.

2. G can be partitioned into k independent sets ⇐⇒ G is k-colorable.
3. Graph 2-Coloring can be decided in polynomial time.

4. G is 2-colorable ⇐⇒ G is bipartite.

5. There is a linear time algorithm to check if G is bipartite using BFS (we saw this
earlier).

36 / 84

Graph Coloring

1. Observation: If G is colored with k colors then each color class (nodes of same
color) form an independent set in G.

2. G can be partitioned into k independent sets ⇐⇒ G is k-colorable.
3. Graph 2-Coloring can be decided in polynomial time.

4. G is 2-colorable ⇐⇒ G is bipartite.

5. There is a linear time algorithm to check if G is bipartite using BFS (we saw this
earlier).

36 / 84

Graph Coloring

1. Observation: If G is colored with k colors then each color class (nodes of same
color) form an independent set in G.

2. G can be partitioned into k independent sets ⇐⇒ G is k-colorable.
3. Graph 2-Coloring can be decided in polynomial time.

4. G is 2-colorable ⇐⇒ G is bipartite.

5. There is a linear time algorithm to check if G is bipartite using BFS (we saw this
earlier).

36 / 84

Graph Coloring

1. Observation: If G is colored with k colors then each color class (nodes of same
color) form an independent set in G.

2. G can be partitioned into k independent sets ⇐⇒ G is k-colorable.
3. Graph 2-Coloring can be decided in polynomial time.

4. G is 2-colorable ⇐⇒ G is bipartite.

5. There is a linear time algorithm to check if G is bipartite using BFS (we saw this
earlier).

36 / 84

Graph Coloring

1. Observation: If G is colored with k colors then each color class (nodes of same
color) form an independent set in G.

2. G can be partitioned into k independent sets ⇐⇒ G is k-colorable.
3. Graph 2-Coloring can be decided in polynomial time.

4. G is 2-colorable ⇐⇒ G is bipartite.

5. There is a linear time algorithm to check if G is bipartite using BFS (we saw this
earlier).

36 / 84

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2024

24.3.2
Problems related to graph coloring
FLNAME:24.3.2.0 ZZZ:24.3.2.0 Problems related to graph coloring

37 / 84

Register allocation during compilation

1. When a compiler generates the assembly/VM code it needs to allocation registers
to values being handled.

2. Need to make sure registers are not in conflict.

3. Build a conflict graph.

4. Color the conflict graph.

5. Every color is a register.

6. If not enough registers, then use memory/stack to store values.

7. CISC v.s. RISC.

38 / 84

Register allocation during compilation

1. When a compiler generates the assembly/VM code it needs to allocation registers
to values being handled.

2. Need to make sure registers are not in conflict.

3. Build a conflict graph.

4. Color the conflict graph.

5. Every color is a register.

6. If not enough registers, then use memory/stack to store values.

7. CISC v.s. RISC.

38 / 84

Graph Coloring and Register Allocation

Register Allocation

Assign variables to (at most) k registers such that variables needed at the same time
are not assigned to the same register

Interference Graph
Vertices are variables, and there is an edge between two vertices, if the two variables are
“live” at the same time.

Observations
▶ [Chaitin] Register allocation problem is equivalent to coloring the interference

graph with k colors

▶ Moreover, 3-COLOR ≤P k-Register Allocation, for any k ≥ 3

39 / 84

Class Room Scheduling

1. Given n classes and their meeting times, are k rooms sufficient?

2. Reduce to Graph k-Coloring problem

3. Create graph G
▶ a node vi for each class i
▶ an edge between vi and vj if classes i and j conflict

4. Exercise: G is k-colorable ⇐⇒ k rooms are sufficient.

40 / 84

Class Room Scheduling

1. Given n classes and their meeting times, are k rooms sufficient?

2. Reduce to Graph k-Coloring problem

3. Create graph G
▶ a node vi for each class i
▶ an edge between vi and vj if classes i and j conflict

4. Exercise: G is k-colorable ⇐⇒ k rooms are sufficient.

40 / 84

Class Room Scheduling

1. Given n classes and their meeting times, are k rooms sufficient?

2. Reduce to Graph k-Coloring problem

3. Create graph G
▶ a node vi for each class i
▶ an edge between vi and vj if classes i and j conflict

4. Exercise: G is k-colorable ⇐⇒ k rooms are sufficient.

40 / 84

Class Room Scheduling

1. Given n classes and their meeting times, are k rooms sufficient?

2. Reduce to Graph k-Coloring problem

3. Create graph G
▶ a node vi for each class i
▶ an edge between vi and vj if classes i and j conflict

4. Exercise: G is k-colorable ⇐⇒ k rooms are sufficient.

40 / 84

Frequency Assignments in Cellular Networks

1. Cellular telephone systems that use Frequency Division Multiple Access (FDMA)
(example: GSM in Europe and Asia and AT&T in USA)
▶ Breakup a frequency range [a, b] into disjoint bands of frequencies

[a0, b0], [a1, b1], . . . , [ak , bk]
▶ Each cell phone tower (simplifying) gets one band
▶ Constraint: nearby towers cannot be assigned same band, otherwise signals will

interference

2. Problem: given k bands and some region with n towers, is there a way to assign
the bands to avoid interference?

3. Can reduce to k-coloring by creating interference/conflict graph on towers.

41 / 84

Frequency Assignments in Cellular Networks

1. Cellular telephone systems that use Frequency Division Multiple Access (FDMA)
(example: GSM in Europe and Asia and AT&T in USA)
▶ Breakup a frequency range [a, b] into disjoint bands of frequencies

[a0, b0], [a1, b1], . . . , [ak , bk]
▶ Each cell phone tower (simplifying) gets one band
▶ Constraint: nearby towers cannot be assigned same band, otherwise signals will

interference

2. Problem: given k bands and some region with n towers, is there a way to assign
the bands to avoid interference?

3. Can reduce to k-coloring by creating interference/conflict graph on towers.

41 / 84

Frequency Assignments in Cellular Networks

1. Cellular telephone systems that use Frequency Division Multiple Access (FDMA)
(example: GSM in Europe and Asia and AT&T in USA)
▶ Breakup a frequency range [a, b] into disjoint bands of frequencies

[a0, b0], [a1, b1], . . . , [ak , bk]
▶ Each cell phone tower (simplifying) gets one band
▶ Constraint: nearby towers cannot be assigned same band, otherwise signals will

interference

2. Problem: given k bands and some region with n towers, is there a way to assign
the bands to avoid interference?

3. Can reduce to k-coloring by creating interference/conflict graph on towers.

41 / 84

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2024

24.3.3
Showing NP-Completeness of 3
COLORING
FLNAME:24.3.3.0 ZZZ:24.3.3.0 Showing NP-Completeness of 3 COLORING

42 / 84

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2024

24.3.3.1
The variable assignment gadget
FLNAME:24.3.3.1 ZZZ:24.3.3.1 The variable assignment gadget

43 / 84

3-Coloring is NP-Complete

▶ 3-Coloring is in NP.
▶ Certificate: for each node a color from {1, 2, 3}.
▶ Certifier: Check if for each edge (u, v), the color of u is different from that of v .

▶ Hardness: We will show 3-SAT ≤P 3-Coloring.

44 / 84

Reduction idea

1. φ: Given 3SAT formula (i.e., 3CNF formula).

2. φ: variables x1, . . . , xn and clauses C1, . . . ,Cm.

3. Create graph Gφ s.t. Gφ 3-colorable ⇐⇒ φ satisfiable.
▶ encode assignment x1, . . . , xn in colors assigned nodes of Gφ.
▶ create triangle with node True, False, Base
▶ for each variable xi two nodes vi and v̄i connected in a triangle with common Base
▶ If graph is 3-colored, either vi or v̄i gets the same color as True. Interpret this as a

truth assignment to vi
▶ Need to add constraints to ensure clauses are satisfied (next phase)

45 / 84

Reduction idea

1. φ: Given 3SAT formula (i.e., 3CNF formula).

2. φ: variables x1, . . . , xn and clauses C1, . . . ,Cm.

3. Create graph Gφ s.t. Gφ 3-colorable ⇐⇒ φ satisfiable.
▶ encode assignment x1, . . . , xn in colors assigned nodes of Gφ.
▶ create triangle with node True, False, Base
▶ for each variable xi two nodes vi and v̄i connected in a triangle with common Base
▶ If graph is 3-colored, either vi or v̄i gets the same color as True. Interpret this as a

truth assignment to vi
▶ Need to add constraints to ensure clauses are satisfied (next phase)

45 / 84

Reduction idea

1. φ: Given 3SAT formula (i.e., 3CNF formula).

2. φ: variables x1, . . . , xn and clauses C1, . . . ,Cm.

3. Create graph Gφ s.t. Gφ 3-colorable ⇐⇒ φ satisfiable.
▶ encode assignment x1, . . . , xn in colors assigned nodes of Gφ.
▶ create triangle with node True, False, Base
▶ for each variable xi two nodes vi and v̄i connected in a triangle with common Base
▶ If graph is 3-colored, either vi or v̄i gets the same color as True. Interpret this as a

truth assignment to vi
▶ Need to add constraints to ensure clauses are satisfied (next phase)

45 / 84

Reduction idea

1. φ: Given 3SAT formula (i.e., 3CNF formula).

2. φ: variables x1, . . . , xn and clauses C1, . . . ,Cm.

3. Create graph Gφ s.t. Gφ 3-colorable ⇐⇒ φ satisfiable.
▶ encode assignment x1, . . . , xn in colors assigned nodes of Gφ.
▶ create triangle with node True, False, Base
▶ for each variable xi two nodes vi and v̄i connected in a triangle with common Base
▶ If graph is 3-colored, either vi or v̄i gets the same color as True. Interpret this as a

truth assignment to vi
▶ Need to add constraints to ensure clauses are satisfied (next phase)

45 / 84

Reduction idea

1. φ: Given 3SAT formula (i.e., 3CNF formula).

2. φ: variables x1, . . . , xn and clauses C1, . . . ,Cm.

3. Create graph Gφ s.t. Gφ 3-colorable ⇐⇒ φ satisfiable.
▶ encode assignment x1, . . . , xn in colors assigned nodes of Gφ.
▶ create triangle with node True, False, Base
▶ for each variable xi two nodes vi and v̄i connected in a triangle with common Base
▶ If graph is 3-colored, either vi or v̄i gets the same color as True. Interpret this as a

truth assignment to vi
▶ Need to add constraints to ensure clauses are satisfied (next phase)

45 / 84

Reduction idea

1. φ: Given 3SAT formula (i.e., 3CNF formula).

2. φ: variables x1, . . . , xn and clauses C1, . . . ,Cm.

3. Create graph Gφ s.t. Gφ 3-colorable ⇐⇒ φ satisfiable.
▶ encode assignment x1, . . . , xn in colors assigned nodes of Gφ.
▶ create triangle with node True, False, Base
▶ for each variable xi two nodes vi and v̄i connected in a triangle with common Base
▶ If graph is 3-colored, either vi or v̄i gets the same color as True. Interpret this as a

truth assignment to vi
▶ Need to add constraints to ensure clauses are satisfied (next phase)

45 / 84

Reduction idea

1. φ: Given 3SAT formula (i.e., 3CNF formula).

2. φ: variables x1, . . . , xn and clauses C1, . . . ,Cm.

3. Create graph Gφ s.t. Gφ 3-colorable ⇐⇒ φ satisfiable.
▶ encode assignment x1, . . . , xn in colors assigned nodes of Gφ.
▶ create triangle with node True, False, Base
▶ for each variable xi two nodes vi and v̄i connected in a triangle with common Base
▶ If graph is 3-colored, either vi or v̄i gets the same color as True. Interpret this as a

truth assignment to vi
▶ Need to add constraints to ensure clauses are satisfied (next phase)

45 / 84

Assignment encoding using 3-coloring

v1

v1

v2

v2

vn

vn

T

Base

F

46 / 84

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2024

24.3.3.2
The clause gadget
FLNAME:24.3.3.2 ZZZ:24.3.3.2 The clause gadget

47 / 84

3 color this gadget.
Clicker question

You are given three colors: red, green and blue. Can the following graph be three
colored in a valid way (assuming the two nodes are already colored as indicated).

(A) Yes.

(B) No.

48 / 84

3 color this gadget II
Clicker question

You are given three colors: red, green and blue. Can the following graph be three
colored in a valid way (assuming the two nodes are already colored as indicated).

(A) Yes.

(B) No.

49 / 84

Clause Satisfiability Gadget

1. For each clause Cj = (a ∨ b ∨ c), create a small gadget graph
▶ gadget graph connects to nodes corresponding to a, b, c
▶ needs to implement OR

2. OR-gadget-graph:

50 / 84

Clause Satisfiability Gadget

1. For each clause Cj = (a ∨ b ∨ c), create a small gadget graph
▶ gadget graph connects to nodes corresponding to a, b, c
▶ needs to implement OR

2. OR-gadget-graph:

a

b

c

a ∨ b

a ∨ b ∨ c

50 / 84

OR-Gadget Graph

Property: if a, b, c are colored False in a 3-coloring then output node of OR-gadget has
to be colored False.

Property: if one of a, b, c is colored True then OR-gadget can be 3-colored such that
output node of OR-gadget is colored True.

51 / 84

Reduction

▶ create triangle with nodes True, False, Base

▶ for each variable xi two nodes vi and v̄i connected in a triangle with common Base

▶ for each clause Cj = (a ∨ b ∨ c), add OR-gadget graph with input nodes a, b, c
and connect output node of gadget to both False and Base

a

b

c

a ∨ b

a ∨ b ∨ c

T

F

Base

52 / 84

Reduction

a

b

c

a ∨ b

a ∨ b ∨ c

T

F

Base

Claim 24.1.
No legal 3-coloring of above graph (with coloring of nodes T ,F ,B fixed) in which
a, b, c are colored False. If any of a, b, c are colored True then there is a legal
3-coloring of above graph.

53 / 84

3 coloring of the clause gadget

s

a

b

c

w

u

v
r

T

s

a

b

c

w

u

v
r

T

s

a

b

c

w

u

v
r

T

FFF - BAD FFT FTF

s

a

b

c

w

u

v
r

T

s

a

b

c

w

u

v
r

T

s

a

b

c

w

u

v
r

T

FTT TFF TFT

s

a

b

c

w

u

v
r

T

s

a

b

c

w

u

v
r

T

TTF TTT

54 / 84

Reduction Outline

Example 24.2.
φ = (u ∨ ¬v ∨ w) ∧ (v ∨ x ∨ ¬y)

or
gates

Palette

Variable and nega-

tions have com-

plemantory colors.

Literals get colors

T or F.

T F

B

¬u

v¬v

¬w

¬x

¬y

u

w

x

y

55 / 84

Correctness of Reduction

φ is satisfiable implies Gφ is 3-colorable

▶ if xi is assigned True, color vi True and v̄i False

▶ for each clause Cj = (a ∨ b ∨ c) at least one of a, b, c is colored True.
OR-gadget for Cj can be 3-colored such that output is True.

Gφ is 3-colorable implies φ is satisfiable

▶ if vi is colored True then set xi to be True, this is a legal truth assignment

▶ consider any clause Cj = (a ∨ b ∨ c). it cannot be that all a, b, c are False. If
so, output of OR-gadget for Cj has to be colored False but output is connected to
Base and False!

56 / 84

Correctness of Reduction

φ is satisfiable implies Gφ is 3-colorable

▶ if xi is assigned True, color vi True and v̄i False

▶ for each clause Cj = (a ∨ b ∨ c) at least one of a, b, c is colored True.
OR-gadget for Cj can be 3-colored such that output is True.

Gφ is 3-colorable implies φ is satisfiable

▶ if vi is colored True then set xi to be True, this is a legal truth assignment

▶ consider any clause Cj = (a ∨ b ∨ c). it cannot be that all a, b, c are False. If
so, output of OR-gadget for Cj has to be colored False but output is connected to
Base and False!

56 / 84

Correctness of Reduction

φ is satisfiable implies Gφ is 3-colorable

▶ if xi is assigned True, color vi True and v̄i False

▶ for each clause Cj = (a ∨ b ∨ c) at least one of a, b, c is colored True.
OR-gadget for Cj can be 3-colored such that output is True.

Gφ is 3-colorable implies φ is satisfiable

▶ if vi is colored True then set xi to be True, this is a legal truth assignment

▶ consider any clause Cj = (a ∨ b ∨ c). it cannot be that all a, b, c are False. If
so, output of OR-gadget for Cj has to be colored False but output is connected to
Base and False!

56 / 84

Correctness of Reduction

φ is satisfiable implies Gφ is 3-colorable

▶ if xi is assigned True, color vi True and v̄i False

▶ for each clause Cj = (a ∨ b ∨ c) at least one of a, b, c is colored True.
OR-gadget for Cj can be 3-colored such that output is True.

Gφ is 3-colorable implies φ is satisfiable

▶ if vi is colored True then set xi to be True, this is a legal truth assignment

▶ consider any clause Cj = (a ∨ b ∨ c). it cannot be that all a, b, c are False. If
so, output of OR-gadget for Cj has to be colored False but output is connected to
Base and False!

56 / 84

Correctness of Reduction

φ is satisfiable implies Gφ is 3-colorable

▶ if xi is assigned True, color vi True and v̄i False

▶ for each clause Cj = (a ∨ b ∨ c) at least one of a, b, c is colored True.
OR-gadget for Cj can be 3-colored such that output is True.

Gφ is 3-colorable implies φ is satisfiable

▶ if vi is colored True then set xi to be True, this is a legal truth assignment

▶ consider any clause Cj = (a ∨ b ∨ c). it cannot be that all a, b, c are False. If
so, output of OR-gadget for Cj has to be colored False but output is connected to
Base and False!

56 / 84

Graph generated in reduction...
... from 3SAT to 3COLOR

(a ∨ b ∨ c) ∧
(
b ∨ c ∨ d

)
∧(a ∨ c ∨ d) ∧

(
a ∨ b ∨ d

)

d

X

ca b

T

a b c d

F

57 / 84

Graph generated in reduction...
... from 3SAT to 3COLOR

(a ∨ b ∨ c) ∧
(
b ∨ c ∨ d

)
∧(a ∨ c ∨ d) ∧

(
a ∨ b ∨ d

)

d

X

ca b

T

a b c d

F

57 / 84

Graph generated in reduction...
... from 3SAT to 3COLOR

(a ∨ b ∨ c) ∧
(
b ∨ c ∨ d

)
∧(a ∨ c ∨ d) ∧

(
a ∨ b ∨ d

)

d

X

ca b

T

a b c d

F

57 / 84

Graph generated in reduction...
... from 3SAT to 3COLOR

(a ∨ b ∨ c) ∧
(
b ∨ c ∨ d

)
∧(a ∨ c ∨ d) ∧

(
a ∨ b ∨ d

)

d

X

ca b

T

a b c d

F

57 / 84

Graph generated in reduction...
... from 3SAT to 3COLOR

(a ∨ b ∨ c) ∧
(
b ∨ c ∨ d

)
∧(a ∨ c ∨ d) ∧

(
a ∨ b ∨ d

)

d

X

ca b

T

a b c d

F

57 / 84

Graph generated in reduction...
... from 3SAT to 3COLOR

(a ∨ b ∨ c) ∧
(
b ∨ c ∨ d

)
∧(a ∨ c ∨ d) ∧

(
a ∨ b ∨ d

)

d

X

ca b

T

a b c d

F

57 / 84

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2024

24.4
Proof of Cook-Levin Theorem
FLNAME:24.4.0.0 ZZZ:24.4.0.0 Proof of Cook-Levin Theorem

58 / 84

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2024

24.4.1
Statement and sketch of idea for the proof
FLNAME:24.4.1.0 ZZZ:24.4.1.0 Statement and sketch of idea for the proof

59 / 84

Cook-Levin Theorem

Theorem 24.1 (Cook-Levin).
SAT is NP-Complete.

We have already seen that SAT is in NP.

Need to prove that every language L ∈ NP, L ≤P SAT

Difficulty: Infinite number of languages in NP. Must simultaneously show a generic
reduction strategy.

60 / 84

Cook-Levin Theorem

Theorem 24.1 (Cook-Levin).
SAT is NP-Complete.

We have already seen that SAT is in NP.

Need to prove that every language L ∈ NP, L ≤P SAT

Difficulty: Infinite number of languages in NP. Must simultaneously show a generic
reduction strategy.

60 / 84

The plot against SAT
High-level plan to proving the Cook-Levin theorem

What does it mean that L ∈ NP?
L ∈ NP implies that there is a non-deterministic TM M and polynomial p() such that

L = {x ∈ Σ∗ | M accepts x in at most p(|x|) steps}

Input: M, x, p.
Question: Does M stops on input x after p(|x|) steps?

Describe a reduction R that computes from M, x, p a SAT formula φ.

▶ R takes as input a string x and outputs a SAT formula φ

▶ R runs in time polynomial in |x|, |M|
▶ x ∈ L if and only if φ is satisfiable

61 / 84

The plot against SAT
High-level plan to proving the Cook-Levin theorem

What does it mean that L ∈ NP?
L ∈ NP implies that there is a non-deterministic TM M and polynomial p() such that

L = {x ∈ Σ∗ | M accepts x in at most p(|x|) steps}

Input: M, x, p.
Question: Does M stops on input x after p(|x|) steps?

Describe a reduction R that computes from M, x, p a SAT formula φ.

▶ R takes as input a string x and outputs a SAT formula φ

▶ R runs in time polynomial in |x|, |M|
▶ x ∈ L if and only if φ is satisfiable

61 / 84

The plot against SAT
High-level plan to proving the Cook-Levin theorem

What does it mean that L ∈ NP?
L ∈ NP implies that there is a non-deterministic TM M and polynomial p() such that

L = {x ∈ Σ∗ | M accepts x in at most p(|x|) steps}

Input: M, x, p.
Question: Does M stops on input x after p(|x|) steps?

Describe a reduction R that computes from M, x, p a SAT formula φ.

▶ R takes as input a string x and outputs a SAT formula φ

▶ R runs in time polynomial in |x|, |M|
▶ x ∈ L if and only if φ is satisfiable

61 / 84

The plot against SAT continued

〈x,M, p〉 ϕ
R

poly-time computable

φ is satisfiable if and only if x ∈ L
φ is satisfiable if and only if nondeterministic M accepts x in p(|x|) steps

BIG IDEA

▶ φ will express “M on input x accepts in p(|x|) steps”

▶ φ will encode a computation history of M on x
φ: CNF formula s.t if we have a satisfying assignment to it =⇒ accepting
computation of M on x down to the last details (where the head is, what transition is
chosen, what the tape contents are, at each step, etc).

62 / 84

The plot against SAT continued

〈x,M, p〉 ϕ
R

poly-time computable

φ is satisfiable if and only if x ∈ L
φ is satisfiable if and only if nondeterministic M accepts x in p(|x|) steps

BIG IDEA

▶ φ will express “M on input x accepts in p(|x|) steps”

▶ φ will encode a computation history of M on x
φ: CNF formula s.t if we have a satisfying assignment to it =⇒ accepting
computation of M on x down to the last details (where the head is, what transition is
chosen, what the tape contents are, at each step, etc).

62 / 84

The plot against SAT continued

〈x,M, p〉 ϕ
R

poly-time computable

φ is satisfiable if and only if x ∈ L
φ is satisfiable if and only if nondeterministic M accepts x in p(|x|) steps

BIG IDEA

▶ φ will express “M on input x accepts in p(|x|) steps”

▶ φ will encode a computation history of M on x
φ: CNF formula s.t if we have a satisfying assignment to it =⇒ accepting
computation of M on x down to the last details (where the head is, what transition is
chosen, what the tape contents are, at each step, etc).

62 / 84

The plot against SAT continued

〈x,M, p〉 ϕ
R

poly-time computable

φ is satisfiable if and only if x ∈ L
φ is satisfiable if and only if nondeterministic M accepts x in p(|x|) steps

BIG IDEA

▶ φ will express “M on input x accepts in p(|x|) steps”

▶ φ will encode a computation history of M on x
φ: CNF formula s.t if we have a satisfying assignment to it =⇒ accepting
computation of M on x down to the last details (where the head is, what transition is
chosen, what the tape contents are, at each step, etc).

62 / 84

The Matrix Executions
Tableau of Computation

M runs in time p(|x|) on x . Entire computation of M on x can be represented by a
“tableau”

time

tape cell position

0

1

2

3

1 2 3 p(|x|)

p(|x|)

state q0

state q2

1 0 0 1

0 0 0 1

blanks

blanks

4

Row i gives contents of all cells at time i
At time 0 tape has input x followed by blanks
Each row long enough to hold all cells M might ever have scanned.

63 / 84

Variables of φ

Four types of variables to describe computation of M on x
▶ T (b, h, i) : tape cell at position h holds symbol b at time i .

For h = 1, . . . , p(|x|), b ∈ Γ, i = 0, . . . , p(|x|).
▶ H(h, i): read/write head is at position h at time i .

Fir h = 1, . . . , p(|x|), and i = 0, . . . , p(|x|)
▶ S(q, i) state of M is q at time i .

For all q ∈ Q and i = 0, . . . , p(|x|) .

▶ I (j , i) instruction number j is executed at time i
M is non-deterministic, need to specify transitions in some way. Number
transitions as 1, 2, . . . , ℓ where j th transition is < qj , bj , q′

j , b
′
j , dj > indication

(q′
j , b

′
j , dj) ∈ δ(qj , bj), direction dj ∈ {−1, 0, 1}.

Number of variables is O(p(|x|)2|M|2)

64 / 84

Notation

Some abbreviations for ease of notation∧m
k=1 xk means x1 ∧ x2 ∧ . . . ∧ xm∨m
k=1 xk means x1 ∨ x2 ∨ . . . ∨ xm⊕
(x1, x2, . . . , xk) is a formula that means exactly one of x1, x2, . . . , xm is true. Can

be converted to CNF form

CNF formula showing making sure that at most one variable is assigned value 1:∧
1≤i<j≤k

(xi ∨ xj)

Making sure that one of the variables is true:
∨k

i=1 xi .⊕
(x1, x2, . . . , xk) =

∧
1≤i<j≤k

(xi ∨ xj)
∧

(x1 ∨ x2 ∨ · · · ∨ xk).

65 / 84

Notation

Some abbreviations for ease of notation∧m
k=1 xk means x1 ∧ x2 ∧ . . . ∧ xm∨m
k=1 xk means x1 ∨ x2 ∨ . . . ∨ xm⊕
(x1, x2, . . . , xk) is a formula that means exactly one of x1, x2, . . . , xm is true. Can

be converted to CNF form

CNF formula showing making sure that at most one variable is assigned value 1:∧
1≤i<j≤k

(xi ∨ xj)

Making sure that one of the variables is true:
∨k

i=1 xi .⊕
(x1, x2, . . . , xk) =

∧
1≤i<j≤k

(xi ∨ xj)
∧

(x1 ∨ x2 ∨ · · · ∨ xk).

65 / 84

Notation

Some abbreviations for ease of notation∧m
k=1 xk means x1 ∧ x2 ∧ . . . ∧ xm∨m
k=1 xk means x1 ∨ x2 ∨ . . . ∨ xm⊕
(x1, x2, . . . , xk) is a formula that means exactly one of x1, x2, . . . , xm is true. Can

be converted to CNF form

CNF formula showing making sure that at most one variable is assigned value 1:∧
1≤i<j≤k

(xi ∨ xj)

Making sure that one of the variables is true:
∨k

i=1 xi .⊕
(x1, x2, . . . , xk) =

∧
1≤i<j≤k

(xi ∨ xj)
∧

(x1 ∨ x2 ∨ · · · ∨ xk).

65 / 84

Notation

Some abbreviations for ease of notation∧m
k=1 xk means x1 ∧ x2 ∧ . . . ∧ xm∨m
k=1 xk means x1 ∨ x2 ∨ . . . ∨ xm⊕
(x1, x2, . . . , xk) is a formula that means exactly one of x1, x2, . . . , xm is true. Can

be converted to CNF form

CNF formula showing making sure that at most one variable is assigned value 1:∧
1≤i<j≤k

(xi ∨ xj)

Making sure that one of the variables is true:
∨k

i=1 xi .⊕
(x1, x2, . . . , xk) =

∧
1≤i<j≤k

(xi ∨ xj)
∧

(x1 ∨ x2 ∨ · · · ∨ xk).

65 / 84

Clauses of φ

φ is the conjunction of 8 clause groups:

φ =
12∧
i=1

φi

where each φi is a CNF formula. Described in subsequent slides.

Property: φ is satisfied ⇐⇒ there is an execution of M on x that accepts the
language in p(|x|) time.

66 / 84

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2024

24.4.2
The consistency of execution
FLNAME:24.4.2.0 ZZZ:24.4.2.0 The consistency of execution

67 / 84

The variables of φ

Variables:〈
qj , bj , q′

j , b
′
j , dj

〉
: j th instruction of M

I (j , i): Instruction j was issued at time i .
H(h, i): The head is at location h at time i .
T (c, h, i): The tape at location h at time i stored the character c .

68 / 84

φ1: The input is encoded correctly

φ1 asserts (is true iff) the variables are set T/F indicating that M starts in state q0 at
time 0 with tape contents containing x followed by blanks. Let x = x1x2 . . . xn

φ1 = S(q0, 0) // state at time 0 is q0

n∧
h=1

T (xh, h, 0) // at time 0 cells 1 to n have value x1 to xn

∧
p(n)∧

h=n+1

T (, h, 0) // all remaining cells are blank

∧ H(1, 0) // The head is at time 0 at start of tape

69 / 84

φ2: M is in exactly one state at any point in time

φ2 asserts M in exactly one state at any time i :

φ2 =

p(|x|)∧
i=0

(
⊕
(
S(q0, i), S(q1, i), . . . , S(q|Q|, i)

))

Variables:〈
qj , bj , q′

j , b
′
j , dj

〉
: j th instruction of M

I (j , i): Instruction j was issued at time i .
H(h, i): The head is at location h at time i .
T (c, h, i): The tape at location h at time i stored the character c .

70 / 84

φ3: Each tape cell holds a unique symbol at any time

φ3 asserts that each tape cell holds a unique symbol at any given time.

φ3 =

p(|x|)∧
i=0

p(|x|)∧
h=1

⊕(T (b1, h, i),T (b2, h, i), . . . ,T (b|Γ|, h, i))

For each time i and for each cell position h exactly one symbol b ∈ Γ at cell position h
at time i

Variables:〈
qj , bj , q′

j , b
′
j , dj

〉
: j th instruction of M

I (j , i): Instruction j was issued at time i .
H(h, i): The head is at location h at time i .
T (c, h, i): The tape at location h at time i stored the character c .

71 / 84

φ4: tape head of M is in exactly one position at any time i
φ4 asserts that the read/write head of M is in exactly one position at any time i

φ4 =

p(|x|)∧
i=0

(⊕ (H(1, i),H(2, i), . . . ,H(p(|x|), i)))

Variables:〈
qj , bj , q′

j , b
′
j , dj

〉
: j th instruction of M

I (j , i): Instruction j was issued at time i .
H(h, i): The head is at location h at time i .
T (c, h, i): The tape at location h at time i stored the character c .

72 / 84

φ5: M accepts the input

φ5 asserts that M accepts

▶ Let qa be unique accept state of M
▶ without loss of generality assume M runs all p(|x|) steps

φ5 = S(qa, p(|x|))

State at time p(|x|) is qa the accept state.

If we don’t want to make assumption of running for all steps

φ5 =

p(|x|)∨
i=1

S(qa, i)

which means M enters accepts state at some time.
73 / 84

φ6: M executes a unique instruction at each time

φ6 asserts that M executes a unique instruction at each time

φ6 =

p(|x|)∧
i=0

⊕(I (1, i), I (2, i), . . . , I (m, i))

where m is max instruction number.

Variables:〈
qj , bj , q′

j , b
′
j , dj

〉
: j th instruction of M

I (j , i): Instruction j was issued at time i .
H(h, i): The head is at location h at time i .
T (c, h, i): The tape at location h at time i stored the character c .

74 / 84

φ7: Tape changes only because of the head writing something

φ7 ensures that variables don’t allow tape to change from one moment to next if the
read/write head was not there.

“If head is not at position h at time i then at time i + 1 the symbol at cell h must be
unchanged”

φ7 =
∧
i

∧
h

∧
b ̸=c

(
H(h, i) ⇒ T (b, h, i)

∧
T (c, h, i + 1)

)

since A ⇒ B is same as ¬A ∨ B, rewrite above in CNF form

φ7 =
∧
i

∧
h

∧
b ̸=c

(H(h, i) ∨ ¬T (b, h, i) ∨ ¬T (c, h, i + 1))

75 / 84

φ8: Transitions are done from correct states

j th instruction of M : < qj , bj , q′
j , b

′
j , dj >

φ8 =
∧
i

∧
j

(I (j , i) ⇒ S(qj , i))

If instruction j is executed at time i then state at time i must be qj .

Variables:〈
qj , bj , q′

j , b
′
j , dj

〉
: j th instruction of M

I (j , i): Instruction j was issued at time i .
H(h, i): The head is at location h at time i .
T (c, h, i): The tape at location h at time i stored the character c .

76 / 84

φ9: Transitions are done into correct state

j th instruction of M : < qj , bj , q′
j , b

′
j , dj >

φ9 =
∧
i

∧
j

(I (j , i) ⇒ S(q′
j , i + 1))

If instruction j was performed at time i , then state at time i + 1 must be q′
j .

Variables:〈
qj , bj , q′

j , b
′
j , dj

〉
: j th instruction of M

I (j , i): Instruction j was issued at time i .
H(h, i): The head is at location h at time i .
T (c, h, i): The tape at location h at time i stored the character c .

77 / 84

φ10: The character written on tape that triggered an

instruction, is the correct one

φ10 =
∧
i

∧
h

∧
j

[(I (j , i)
∧

H(h, i)) ⇒ T (bj , h, i)]

If instruction j was executed at time i and head was at position h, then cell h has the
symbol needed to issue instruction j is written under the head location on the tape.

Variables:〈
qj , bj , q′

j , b
′
j , dj

〉
: j th instruction of M

I (j , i): Instruction j was issued at time i .
H(h, i): The head is at location h at time i .
T (c, h, i): The tape at location h at time i stored the character c .

78 / 84

φ11: The correct symbol was written to the tape at time i

φ11 =
∧
i

∧
j

∧
h

[(I (j , i) ∧ H(h, i)) ⇒ T (b′
j , h, i + 1)]

If instruction j was executed time i with head at h, then at next time step symbol b′
j

was written in position h

Variables:〈
qj , bj , q′

j , b
′
j , dj

〉
: j th instruction of M

I (j , i): Instruction j was issued at time i .
H(h, i): The head is at location h at time i .
T (c, h, i): The tape at location h at time i stored the character c .

79 / 84

φ12: Head was moved in the right direction at time i

φ12 =
∧
i

∧
j

∧
h

[(I (j , i) ∧ H(h, i)) ⇒ H(h + dj , i + 1)]

The head is moved properly according to instr j .

Variables:〈
qj , bj , q′

j , b
′
j , dj

〉
: j th instruction of M

I (j , i): Instruction j was issued at time i .
H(h, i): The head is at location h at time i .
T (c, h, i): The tape at location h at time i stored the character c .

80 / 84

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2024

24.4.3
Proof of correctness
FLNAME:24.4.3.0 ZZZ:24.4.3.0 Proof of correctness

81 / 84

Proof of Correctness

(Sketch)

▶ Given M , x , poly-time algorithm to construct φ

▶ if φ is satisfiable then the truth assignment completely specifies an accepting
computation of M on x

▶ if M accepts x then the accepting computation leads to an ”obvious” truth
assignment to φ. Simply assign the variables according to the state of M and cells
at each time i .

Thus M accepts x if and only if φ is satisfiable

82 / 84

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2024

24.5
NP-Complete problems to know and
remember
FLNAME:24.5.0.0 ZZZ:24.5.0.0 NP-Complete problems to know and remember

83 / 84

List of NP-Complete Problems to Remember

Problems
1. SAT

2. 3SAT

3. CircuitSAT

4. Independent Set

5. Clique

6. Vertex Cover

7. Hamilton Cycle and Hamilton Path in both directed and undirected graphs

8. 3Color and Color

84 / 84

	Recap
	Circuit SAT
	The circuit satisfiability (CSAT) problem
	Towards reducing CSAT to 3SAT
	Reduction from CSAT to SAT

	NP-Completeness of Graph Coloring
	The coloring problem
	Problems related to graph coloring
	Showing NP-Completeness of 3 COLORING

	Proof of Cook-Levin Theorem
	Statement and sketch of idea for the proof
	The consistency of execution
	Proof of correctness

	NP-Complete problems to know and remember

