NP and **NP** Completeness

Lecture 23 Tuesday, December 3, 2024

LATEXed: August 25, 2024 14:23

23.1 NP-Completeness: Cook-Levin Theorem

23.1.1 Completeness

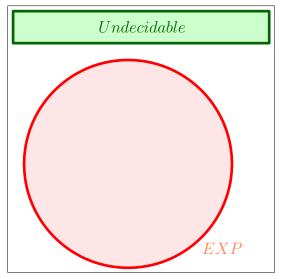
NP: Non-deterministic polynomial

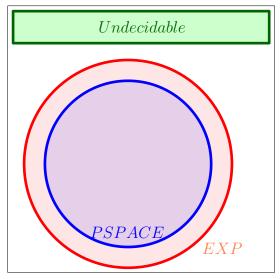
Definition 23.1.

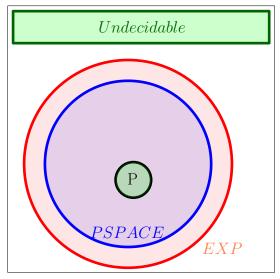
A decision problem is in **NP**, if it has a polynomial time certifier, for all the all the YES instances.

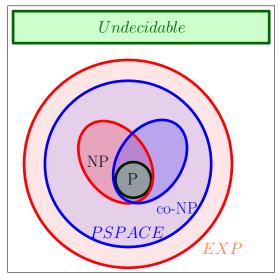
Definition 23.2. A decision problem is in co-NP, if it has a polynomial time certifier, for all the all the NO instances. Example 23.3. 1. 3SAT is in NP.

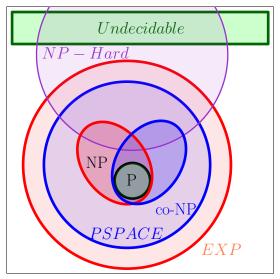
2. But Not3SAT is in co-NP.

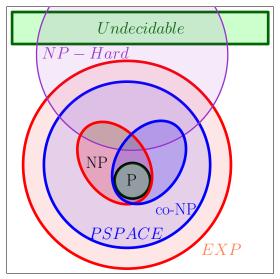


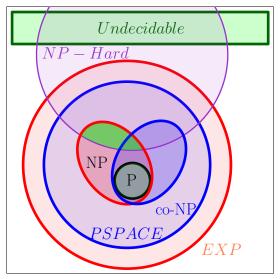


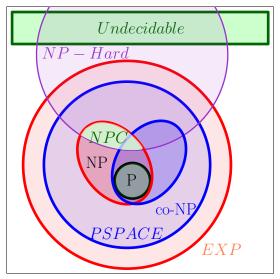












"Hardest" Problems

Question

What is the hardest problem in NP? How do we define it?

Towards a definition

- 1. Hardest problem must be in NP.
- 2. Hardest problem must be at least as "difficult" as every other problem in NP.

NP-Complete Problems

Definition 23.4.

A problem X is said to be NP-Complete if

- 1. $X \in NP$, and
- 2. (Hardness) For any $Y \in NP$, $Y \leq_P X$.

Solving NP-Complete Problems

Proposition 23.5.

Suppose X is NP-Complete. Then X can be solved in polynomial time \iff P = NP.

Proof.

 \Rightarrow Suppose X can be solved in polynomial time

- 0.1 Let $\mathbf{Y} \in \mathbf{NP}$. We know $\mathbf{Y} \leq_{\mathbf{P}} \mathbf{X}$.
- 0.2 We showed that if $\mathbf{Y} \leq_{\mathbf{P}} \mathbf{X}$ and \mathbf{X} can be solved in polynomial time, then \mathbf{Y} can be solved in polynomial time.
- 0.3 Thus, every problem $Y \in NP$ is such that $Y \in P$.
- 0.4 \implies **NP** \subseteq **P**.
- 0.5 Since $P \subseteq NP$, we have P = NP.

 \leftarrow Since **P** = **NP**, and **X** \in **NP**, we have a polynomial time algorithm for **X**.

NP-Hard Problems

Definition 23.6. A problem X is said to be NP-Hard if 1. (Hardness) For any $Y \in NP$, we have that $Y \leq_P X$.

An NP-Hard problem need not be in NP!

Example: Halting problem is **NP-Hard** (why?) but not **NP-Complete**.

Consequences of proving NP-Completeness

If X is NP-Complete

- 1. Since we believe $\mathbf{P} \neq \mathbf{NP}$,
- 2. and solving **X** implies $\mathbf{P} = \mathbf{NP}$.
- X is unlikely to be efficiently solvable.

At the very least, many smart people before you have failed to find an efficient algorithm for X.

(This is proof by mob opinion — take with a grain of salt.)

Consequences of proving NP-Completeness

If X is NP-Complete

- 1. Since we believe $P \neq NP$,
- 2. and solving **X** implies $\mathbf{P} = \mathbf{NP}$.
- X is unlikely to be efficiently solvable.

At the very least, many smart people before you have failed to find an efficient algorithm for \boldsymbol{X} .

(This is proof by mob opinion — take with a grain of salt.)

23.1.2 SAT is NP-Complete

NP-Complete Problems

Question

Are there any problems that are **NP-Complete**?

Answer

Yes! Many, many problems are **NP-Complete**.

Cook-Levin Theorem

Theorem 23.7 (Cook-Levin). SAT *is* NP-Complete.

Need to show

- 1. SAT is in NP.
- 2. every **NP** problem **X** reduces in polynomial time to **SAT**.

Might see proof later...

Steve Cook won the Turing award for his theorem.

23.1.3 Other NP Complete Problems

Proving that a problem X is NP-Complete

To prove **X** is **NP-Complete**, show

- 1. Show that X is in NP.
- 2. Give a polynomial-time reduction from a known NP-Complete problem such as SAT to X

SAT $\leq_P X$ implies that every **NP** problem $Y \leq_P X$. Why? Transitivity of reductions:

 $Y \leq_P SAT$ and $SAT \leq_P X$ and hence $Y \leq_P X$.

3-SAT is NP-Complete

- ► 3-SAT is in NP
- ► SAT ≤_P 3-SAT as we saw

NP-Completeness via Reductions

- 1. SAT is NP-Complete due to Cook-Levin theorem
- 2. SAT ≤_P 3-SAT
- 3. 3-SAT \leq_P Independent Set
- 4. Independent Set \leq_P Vertex Cover
- 5. Independent Set \leq_P Clique
- 6. 3-SAT \leq_P 3-Color
- 7. 3-SAT \leq_P Hamiltonian Cycle

Hundreds and thousands of different problems from many areas of science and engineering have been shown to be **NP-Complete**.

A surprisingly frequent phenomenon!

23.2 Reducing 3-SAT to Independent Set

Independent Set

Problem: Independent Set

Instance: A graph G, integer *k*. **Question:** Is there an independent set in G of size *k*?

Lemma 23.1. Independent set is in NP.

$3SAT \leq_P Independent Set$

The reduction $3SAT \leq_P$ Independent Set

Input: Given a 3CNF formula φ **Goal:** Construct a graph G_{φ} and number k such that G_{φ} has an independent set of size k if and only if φ is satisfiable. G_{φ} should be constructable in time polynomial in size of φ

Importance of reduction: Although **3SAT** is much more expressive, it can be reduced to a seemingly specialized Independent Set problem.

Notice: We handle only 3CNF formulas – reduction would not work for other kinds of boolean formulas.

$3SAT \leq_P Independent Set$

The reduction $3SAT \leq_P$ Independent Set

Input: Given a 3CNF formula φ **Goal:** Construct a graph G_{φ} and number k such that G_{φ} has an independent set of size k if and only if φ is satisfiable. G_{φ} should be constructable in time polynomial in size of φ

Importance of reduction: Although **3SAT** is much more expressive, it can be reduced to a seemingly specialized Independent Set problem.

Notice: We handle only 3CNF formulas – reduction would not work for other kinds of boolean formulas.

There are two ways to think about **3SAT**

- 1. Find a way to assign 0/1 (false/true) to the variables such that the formula evaluates to true, that is each clause evaluates to true.
- 2. Pick a literal from each clause and find a truth assignment to make all of them true. You will fail if two of the literals you pick are in conflict, i.e., you pick x_i and $\neg x_i$

We will take the second view of **3SAT** to construct the reduction.

There are two ways to think about **3SAT**

- 1. Find a way to assign 0/1 (false/true) to the variables such that the formula evaluates to true, that is each clause evaluates to true.
- Pick a literal from each clause and find a truth assignment to make all of them true. You will fail if two of the literals you pick are in conflict, i.e., you pick x_i and ¬x_i.

There are two ways to think about **3SAT**

- 1. Find a way to assign 0/1 (false/true) to the variables such that the formula evaluates to true, that is each clause evaluates to true.
- Pick a literal from each clause and find a truth assignment to make all of them true. You will fail if two of the literals you pick are in conflict, i.e., you pick x_i and ¬x_i
 will take the second using af 35 or to construct the reduction

There are two ways to think about **3SAT**

- 1. Find a way to assign 0/1 (false/true) to the variables such that the formula evaluates to true, that is each clause evaluates to true.
- 2. Pick a literal from each clause and find a truth assignment to make all of them true. You will fail if two of the literals you pick are in conflict, i.e., you pick x_i and $\neg x_i$

We will take the second view of **3SAT** to construct the reduction.

The Reduction

1. G_{φ} will have one vertex for each literal in a clause

- 2. Connect the 3 literals in a clause to form a triangle; the independent set will pick at most one vertex from each clause, which will correspond to the literal to be set to true
- 3. Connect 2 vertices if they label complementary literals; this ensures that the literals corresponding to the independent set do not have a conflict
- 4. Take *k* to be the number of clauses

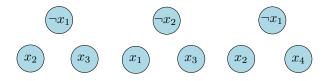
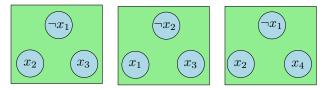
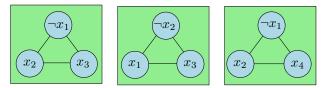


Figure: Graph for $\varphi = (\neg x_1 \lor x_2 \lor x_3) \land (x_1 \lor \neg x_2 \lor x_3) \land (\neg x_1 \lor x_2 \lor x_4)$

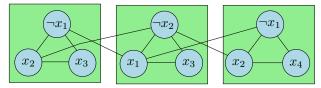
- 1. G_{φ} will have one vertex for each literal in a clause
- 2. Connect the 3 literals in a clause to form a triangle; the independent set will pick at most one vertex from each clause, which will correspond to the literal to be set to true
- 3. Connect 2 vertices if they label complementary literals; this ensures that the literals corresponding to the independent set do not have a conflict
- 4. Take *k* to be the number of clauses



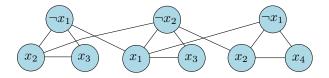
- 1. G_{φ} will have one vertex for each literal in a clause
- 2. Connect the 3 literals in a clause to form a triangle; the independent set will pick at most one vertex from each clause, which will correspond to the literal to be set to true
- 3. Connect 2 vertices if they label complementary literals; this ensures that the literals corresponding to the independent set do not have a conflict
- 4. Take *k* to be the number of clauses



- 1. G_{φ} will have one vertex for each literal in a clause
- 2. Connect the 3 literals in a clause to form a triangle; the independent set will pick at most one vertex from each clause, which will correspond to the literal to be set to true
- 3. Connect 2 vertices if they label complementary literals; this ensures that the literals corresponding to the independent set do not have a conflict
- 4. Take *k* to be the number of clauses



- 1. G_{φ} will have one vertex for each literal in a clause
- 2. Connect the 3 literals in a clause to form a triangle; the independent set will pick at most one vertex from each clause, which will correspond to the literal to be set to true
- 3. Connect 2 vertices if they label complementary literals; this ensures that the literals corresponding to the independent set do not have a conflict
- 4. Take \boldsymbol{k} to be the number of clauses



Correctness

Proposition 23.2.

 φ is satisfiable iff G_{φ} has an independent set of size k (= number of clauses in φ).

Proof.

\Rightarrow Let a be the truth assignment satisfying φ

Pick one of the vertices, corresponding to true literals under *a*, from each triangle. This is an independent set of the appropriate size. Why?

Correctness

Proposition 23.2.

 φ is satisfiable iff G_{φ} has an independent set of size k (= number of clauses in φ).

Proof.

- \Rightarrow Let a be the truth assignment satisfying arphi
 - Pick one of the vertices, corresponding to true literals under *a*, from each triangle. This is an independent set of the appropriate size. Why?

Correctness

Proposition 23.2.

 φ is satisfiable iff G_{φ} has an independent set of size k (= number of clauses in φ).

Proof.

- $\leftarrow \text{Let } \boldsymbol{S} \text{ be an independent set of size } \boldsymbol{k}$
 - 1. S must contain exactly one vertex from each clause
 - 2. \boldsymbol{S} cannot contain vertices labeled by conflicting literals
 - 3. Thus, it is possible to obtain a truth assignment that makes in the literals in *S* true; such an assignment satisfies one literal in every clause

Summary

Theorem 23.3. Independent set is NP-Complete (i.e., NPC).

Intro. Algorithms & Models of Computation CS/ECE 374A, Fall 2024

23.3 NP-Completeness of Hamiltonian Cycle

Intro. Algorithms & Models of Computation CS/ECE 374A, Fall 2024

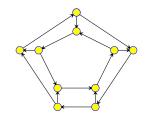
23.3.1 Reduction from 3SAT to Hamiltonian Cycle: Basic idea

Directed Hamiltonian Cycle

Input Given a directed graph G = (V, E) with *n* vertices Goal Does *G* have a Hamiltonian cycle?

A Hamiltonian cycle is a cycle in the graph that visits every vertex in

G exactly once

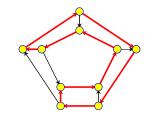


Directed Hamiltonian Cycle

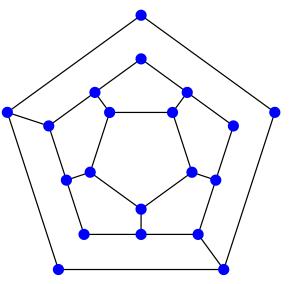
Input Given a directed graph G = (V, E) with *n* vertices

Goal Does **G** have a Hamiltonian cycle?

A Hamiltonian cycle is a cycle in the graph that visits every vertex in
 G exactly once



Is the following graph Hamiltonian?



(A) Yes.(B) No.

Directed Hamiltonian Cycle is NP-Complete

- Directed Hamiltonian Cycle is in NP: exercise
- **Hardness:** We will show **3SAT** \leq_P **Directed Hamiltonian Cycle**.

From 3SAT to Hamiltonian cycle in directed graph

- 1. To show reduction, we next describe an algorithm:
 - Input: 3SAT formula φ
 - Output: A graph G_{φ} .
 - Running time is polynomial.
 - ▶ Requirement: φ is satisfiable $\iff G_{\varphi}$ is Hamiltonian.
- 2. Given ${f 3SAT}$ formula ${m arphi}$ create a graph ${f G}_{m arphi}$ such that
 - \blacktriangleright ${\it G}_{arphi}$ has a Hamiltonian cycle if and only if arphi is satisfiable
 - $\blacktriangleright \ {\it G}_{\varphi}$ should be constructible from φ by a polynomial time algorithm ${\cal A}$
- 3. Notation: φ has *n* variables x_1, x_2, \ldots, x_n and *m* clauses C_1, C_2, \ldots, C_m .

From 3SAT to Hamiltonian cycle in directed graph

- 1. To show reduction, we next describe an algorithm:
 - Input: 3SAT formula φ
 - Output: A graph G_{φ} .
 - Running time is polynomial.
 - ▶ Requirement: φ is satisfiable $\iff G_{\varphi}$ is Hamiltonian.
- 2. Given **3SAT** formula φ create a graph G_{φ} such that
 - \blacktriangleright G_{arphi} has a Hamiltonian cycle if and only if arphi is satisfiable
 - $\blacktriangleright \ {\it G}_{\varphi}$ should be constructible from φ by a polynomial time algorithm ${\cal A}$

3. Notation: φ has *n* variables x_1, x_2, \ldots, x_n and *m* clauses C_1, C_2, \ldots, C_m .

From 3SAT to Hamiltonian cycle in directed graph

- $1. \ \mbox{To show reduction, we next describe an algorithm:}$
 - Input: 3SAT formula φ
 - Output: A graph G_{φ} .
 - Running time is polynomial.
 - Requirement: φ is satisfiable $\iff G_{\varphi}$ is Hamiltonian.
- 2. Given **3SAT** formula φ create a graph G_{φ} such that
 - G_{arphi} has a Hamiltonian cycle if and only if arphi is satisfiable
 - $\blacktriangleright \ {\it G}_{\varphi}$ should be constructible from φ by a polynomial time algorithm ${\cal A}$
- 3. Notation: φ has *n* variables x_1, x_2, \ldots, x_n and *m* clauses C_1, C_2, \ldots, C_m .

From 3SAT to Hamiltonian cycle in directed graph

- $1. \ \mbox{To show reduction, we next describe an algorithm:}$
 - Input: 3SAT formula φ
 - Output: A graph G_{φ} .
 - Running time is polynomial.
 - Requirement: φ is satisfiable $\iff G_{\varphi}$ is Hamiltonian.
- 2. Given **3SAT** formula φ create a graph G_{φ} such that
 - G_{arphi} has a Hamiltonian cycle if and only if arphi is satisfiable
 - ▶ G_{φ} should be constructible from φ by a polynomial time algorithm \mathcal{A}

3. Notation: φ has *n* variables x_1, x_2, \ldots, x_n and *m* clauses C_1, C_2, \ldots, C_m .

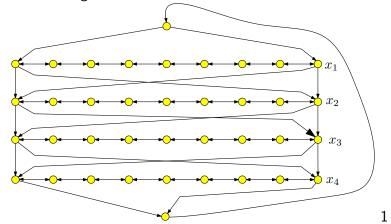
From 3SAT to Hamiltonian cycle in directed graph

- 1. To show reduction, we next describe an algorithm:
 - Input: 3SAT formula φ
 - Output: A graph G_{φ} .
 - Running time is polynomial.
 - ▶ Requirement: φ is satisfiable $\iff G_{\varphi}$ is Hamiltonian.
- 2. Given **3SAT** formula φ create a graph G_{φ} such that
 - G_{arphi} has a Hamiltonian cycle if and only if arphi is satisfiable
 - ▶ G_{φ} should be constructible from φ by a polynomial time algorithm \mathcal{A}

3. Notation: φ has *n* variables x_1, x_2, \ldots, x_n and *m* clauses C_1, C_2, \ldots, C_m .

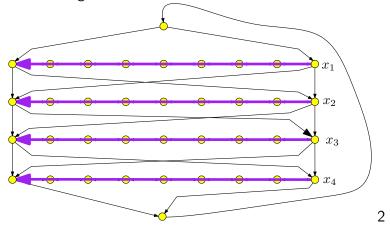
Converting φ to a graph

Given a formula with n variables, we need a graph with 2^n different Hamiltonian paths, that can encode their assignments.



Converting φ to a graph

Given a formula with n variables, we need a graph with 2^n different Hamiltonian paths, that can encode their assignments.

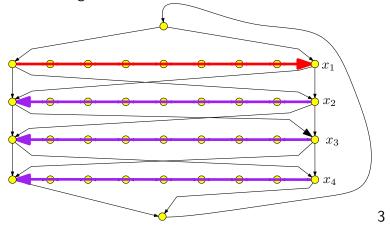


 $x_1 = 0, x_2 = 0, x_3 = 0, x_4 = 0$

5

Converting φ to a graph

Given a formula with n variables, we need a graph with 2^n different Hamiltonian paths, that can encode their assignments.

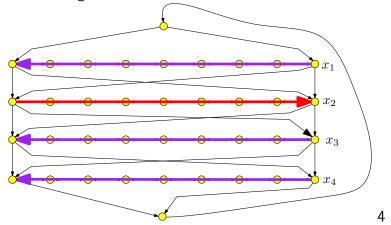


 $x_1 = 1, x_2 = 0, x_3 = 0, x_4 = 0$

5

Converting φ to a graph

Given a formula with n variables, we need a graph with 2^n different Hamiltonian paths, that can encode their assignments.



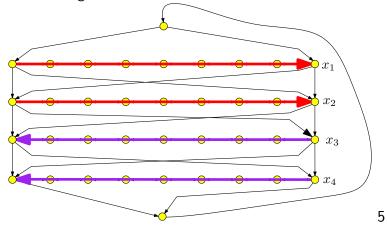
 $x_1 = 0, x_2 = 1, x_3 = 0, x_4 = 0$

5

Converting φ to a graph

5

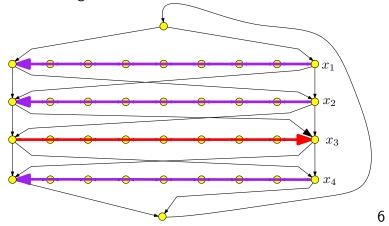
Given a formula with n variables, we need a graph with 2^n different Hamiltonian paths, that can encode their assignments.



 $x_1 = 1, x_2 = 1, x_3 = 0, x_4 = 0$

Converting φ to a graph

Given a formula with n variables, we need a graph with 2^n different Hamiltonian paths, that can encode their assignments.

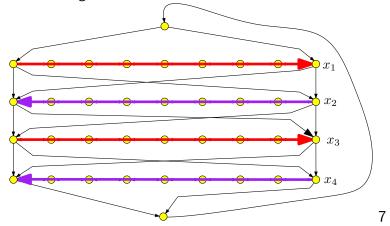


 $x_1 = 0, x_2 = 0, x_3 = 1, x_4 = 0$

5

Converting φ to a graph

Given a formula with n variables, we need a graph with 2^n different Hamiltonian paths, that can encode their assignments.

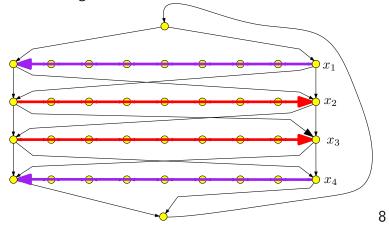


 $x_1 = 1, x_2 = 0, x_3 = 1, x_4 = 0$

5

Converting φ to a graph

Given a formula with n variables, we need a graph with 2^n different Hamiltonian paths, that can encode their assignments.



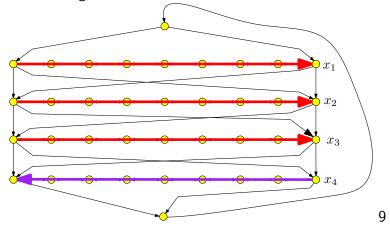
 $x_1 = 0, x_2 = 1, x_3 = 1, x_4 = 0$

5

Converting φ to a graph

5

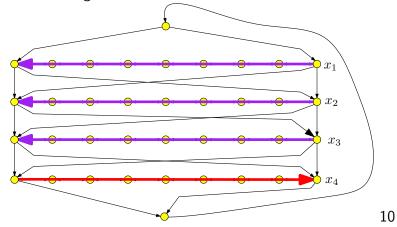
Given a formula with n variables, we need a graph with 2^n different Hamiltonian paths, that can encode their assignments.



 $x_1 = 1, x_2 = 1, x_3 = 1, x_4 = 01$

Converting φ to a graph

Given a formula with n variables, we need a graph with 2^n different Hamiltonian paths, that can encode their assignments.



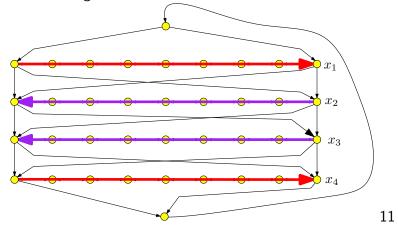
 $x_1 = 0, x_2 = 0, x_3 = 0, x_4 = 1$

5

Converting φ to a graph

5

Given a formula with n variables, we need a graph with 2^n different Hamiltonian paths, that can encode their assignments.

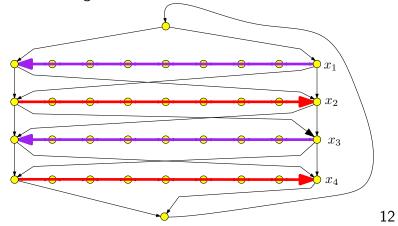


 $x_1 = 1, x_2 = 0, x_3 = 0, x_4 = 1$

Converting φ to a graph

5

Given a formula with n variables, we need a graph with 2^n different Hamiltonian paths, that can encode their assignments.

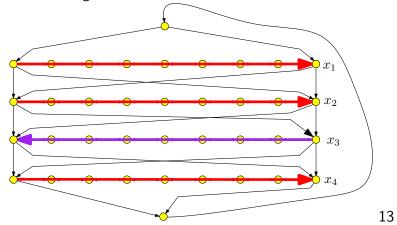


 $x_1 = 0, x_2 = 1, x_3 = 0, x_4 = 1$

Converting φ to a graph

5

Given a formula with n variables, we need a graph with 2^n different Hamiltonian paths, that can encode their assignments.

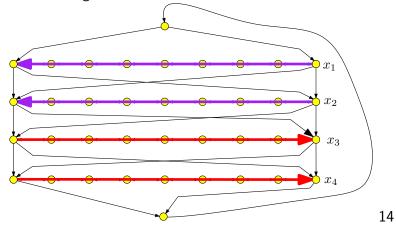


 $x_1 = 1, x_2 = 1, x_3 = 0, x_4 = 1$

Converting φ to a graph

5

Given a formula with n variables, we need a graph with 2^n different Hamiltonian paths, that can encode their assignments.

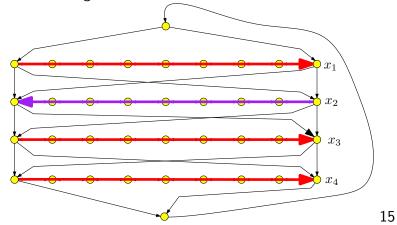


 $x_1 = 0, x_2 = 0, x_3 = 1, x_4 = 1$

Converting φ to a graph

5

Given a formula with n variables, we need a graph with 2^n different Hamiltonian paths, that can encode their assignments.

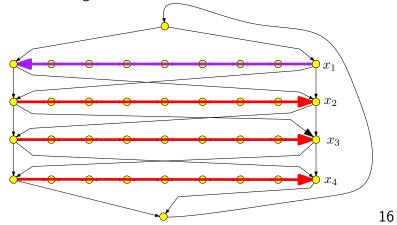


 $x_1 = 1, x_2 = 0, x_3 = 1, x_4 = 1$

Converting φ to a graph

5

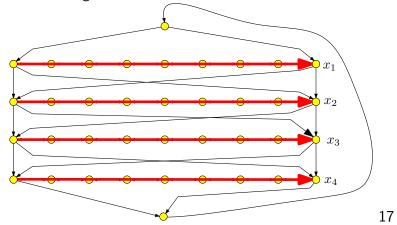
Given a formula with n variables, we need a graph with 2^n different Hamiltonian paths, that can encode their assignments.



 $x_1 = 0, x_2 = 1, x_3 = 1, x_4 = 1$

Converting φ to a graph

Given a formula with n variables, we need a graph with 2^n different Hamiltonian paths, that can encode their assignments.

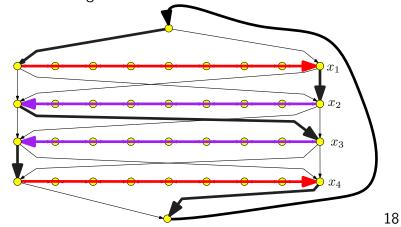


 $x_1 = 1, x_2 = 1, x_3 = 1, x_4 = 1$

Encoding assignments

Converting $\boldsymbol{\varphi}$ to a graph

Given a formula with n variables, we need a graph with 2^n different Hamiltonian paths, that can encode their assignments.



Intro. Algorithms & Models of Computation CS/ECE 374A, Fall 2024

23.3.2 The reduction: Encoding the formula constraints

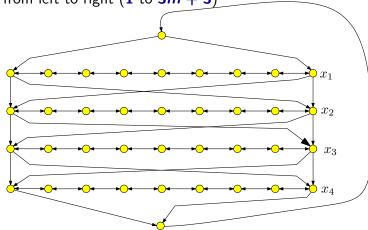
3SAT \leq_P Directed Hamiltonian Cycle

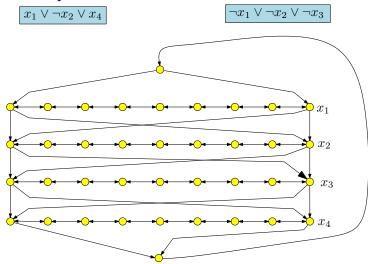
Input: φ formula. Output: Graph G_{φ} .

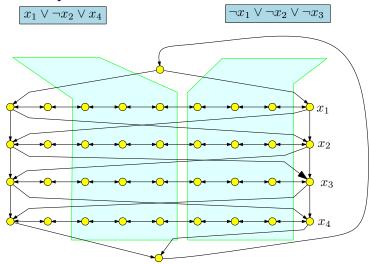
Saw: How to encode assignments... Now need to encode constraints of φ .

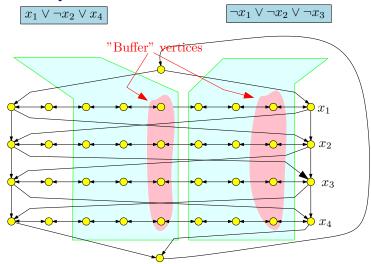
Converting φ to a graph

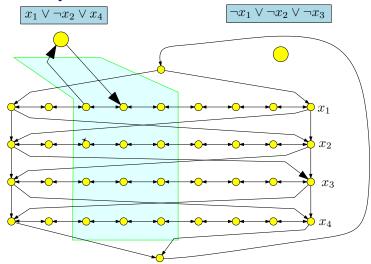
- ▶ Traverse path *i* from left to right iff *x_i* is set to true
- Each path has 3(m + 1) nodes where *m* is number of clauses in φ ; nodes numbered from left to right (1 to 3m + 3)

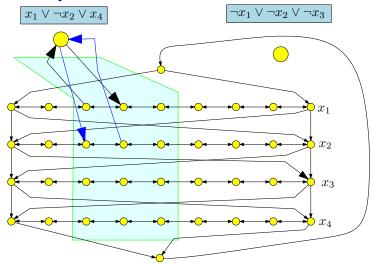


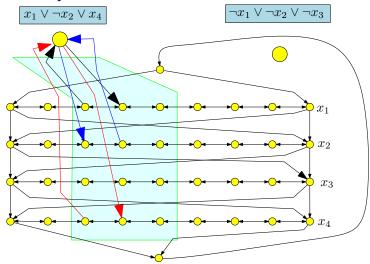


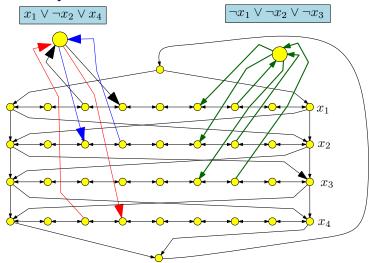






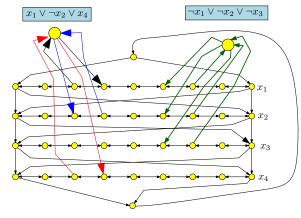






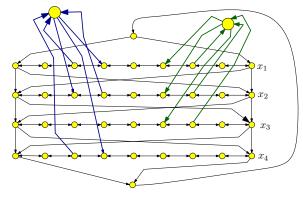
Intro. Algorithms & Models of Computation CS/ECE 374A, Fall 2024

23.3.3 If there is a satisfying assignment, then there is a Hamiltonian cycle



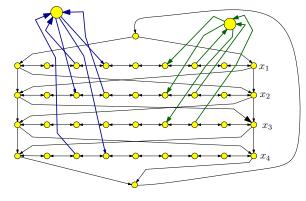
3SAT formula φ :

$$\varphi = \left(x_1 \lor \neg x_2 \lor x_4\right)$$
$$\land \left(\neg x_1 \lor \neg x_2 \lor \neg x_3\right)$$



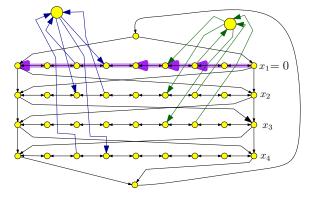
3SAT formula φ :

$$\varphi = \left(x_1 \lor \neg x_2 \lor x_4\right)$$
$$\land \left(\neg x_1 \lor \neg x_2 \lor \neg x_3\right)$$



3SAT formula φ :

$$\varphi = \left(x_1 \lor \neg x_2 \lor x_4\right)$$
$$\land \left(\neg x_1 \lor \neg x_2 \lor \neg x_3\right)$$



3SAT formula φ :

$$\varphi = \begin{pmatrix} x_1 \lor \neg x_2 \lor x_4 \end{pmatrix}$$
$$\land \begin{pmatrix} \neg x_1 \lor \neg x_2 \lor \neg x_3 \end{pmatrix}$$

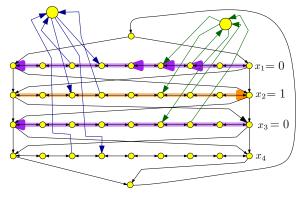
3SAT formula φ :

$$\varphi = \left(x_1 \lor \neg x_2 \lor x_4\right)$$
$$\land \left(\neg x_1 \lor \neg x_2 \lor \neg x_3\right)$$

 $x_1 = 0$

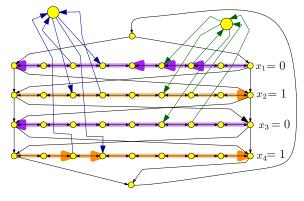
3SAT formula φ :

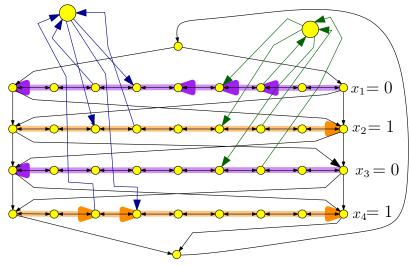
$$\varphi = \left(x_1 \lor \neg x_2 \lor x_4\right)$$
$$\land \left(\neg x_1 \lor \neg x_2 \lor \neg x_3\right)$$

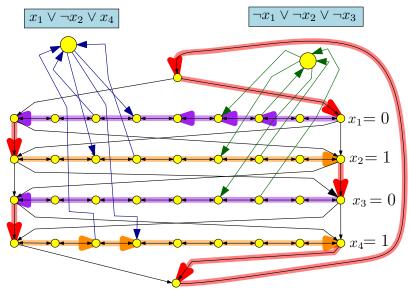


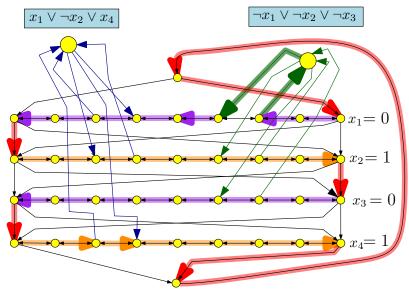
3SAT formula φ :

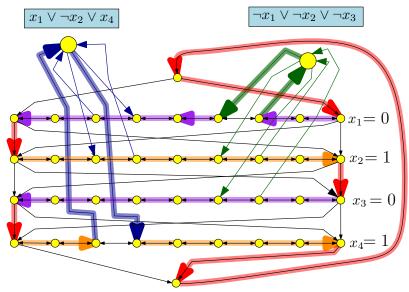
$$\varphi = \left(x_1 \lor \neg x_2 \lor x_4\right)$$
$$\land \left(\neg x_1 \lor \neg x_2 \lor \neg x_3\right)$$

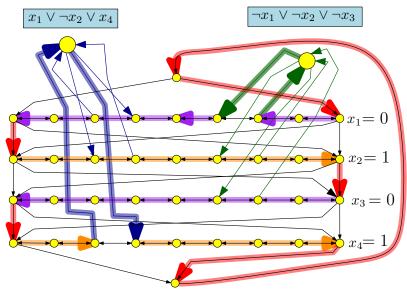












Satisfying assignment: $x_1 = 0$, $x_2 = 1$, $x_3 = 0$, $x_4 = 1$ **Conclude:** If φ has a satisfying assignment then there is an Hamiltonian cycle in G_{φ} .

Correctness Proof

Lemma 23.1.

 φ has a satisfying assignment $\alpha \implies G_{\varphi}$ has a Hamiltonian cycle.

Proof.

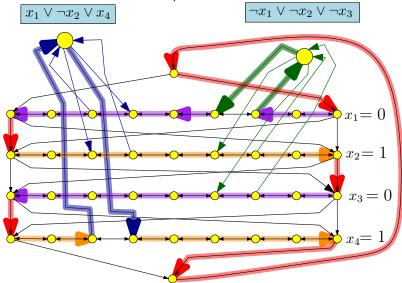
Let a be the satisfying assignment for φ . Define Hamiltonian cycle as follows

- If $\alpha(x_i) = 1$ then traverse path *i* from left to right
- If $\alpha(x_i) = 0$ then traverse path *i* from right to left
- For each clause, path of at least one variable is in the "right" direction to splice in the node corresponding to clause
- Clearly, resulting cycle is Hamiltonian.

Intro. Algorithms & Models of Computation CS/ECE 374A, Fall 2024

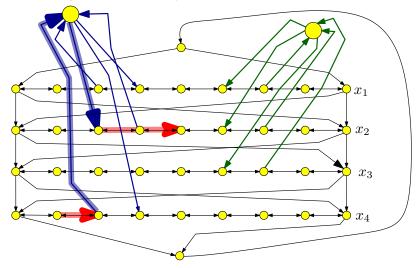
23.3.4 If there is a Hamiltonian cycle ⇒ ∃satisfying assignment

We are given a Hamiltonian cycle in G_{φ} :

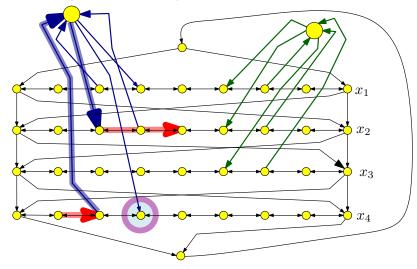


Want to extract satisfying assignment...

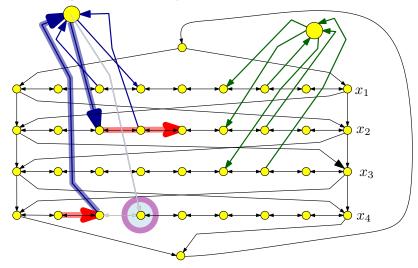
No shenanigan: Hamiltonian cycle can not leave a row in the middle



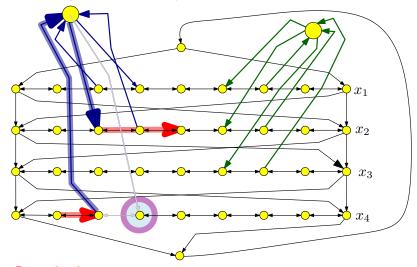
No shenanigan: Hamiltonian cycle can not leave a row in the middle



No shenanigan: Hamiltonian cycle can not leave a row in the middle



No shenanigan: Hamiltonian cycle can not leave a row in the middle



Conclude: Hamiltonian cycle must go through each row completely from left to right, or right to left. As such, can be interpreted as a valid assignment.

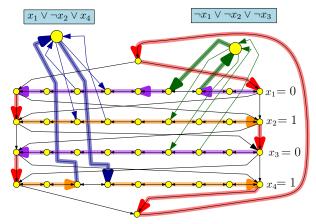
Hamiltonian Cycle \Rightarrow Satisfying assignment

Suppose Π is a Hamiltonian cycle in G_{φ}

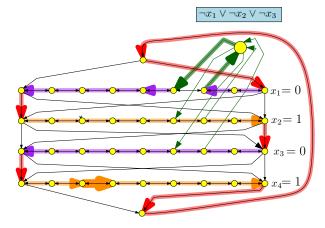
- If Π enters c_j (vertex for clause C_j) from vertex 3j on path i then it must leave the clause vertex on edge to 3j + 1 on the same path i
 - If not, then only unvisited neighbor of 3j + 1 on path *i* is 3j + 2
 - Thus, we don't have two unvisited neighbors (one to enter from, and the other to leave) to have a Hamiltonian Cycle
- Similarly, if Π enters c_j from vertex 3j + 1 on path i then it must leave the clause vertex c_j on edge to 3j on path i

- > Thus, vertices visited immediately before and after C_i are connected by an edge
- We can remove c_j from cycle, and get Hamiltonian cycle in $G c_j$
- Consider Hamiltonian cycle in G {c₁,...c_m}; it traverses each path in only one direction, which determines the truth assignment

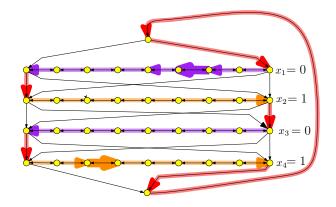
- Thus, vertices visited immediately before and after *C_i* are connected by an edge
- We can remove c_j from cycle, and get Hamiltonian cycle in G - c_j
- Consider Hamiltonian cycle in G - {c₁,...c_m}; it traverses each path in only one direction, which determines the truth assignment



- Thus, vertices visited immediately before and after *C_i* are connected by an edge
- We can remove c_j from cycle, and get Hamiltonian cycle in G - c_j
- Consider Hamiltonian cycle in G - {c₁,...c_m}; it traverses each path in only one direction, which determines the truth assignment



- Thus, vertices visited immediately before and after *C_i* are connected by an edge
- We can remove c_j from cycle, and get Hamiltonian cycle in G - c_j
- Consider Hamiltonian cycle in G - {c₁,...c_m}; it traverses each path in only one direction, which determines the truth assignment



Correctness Proof

We just proved:

Lemma 23.2. G_{φ} has a Hamiltonian cycle $\implies \varphi$ has a satisfying assignment α .

Lemma 23.3.

arphi has a satisfying assignment iff ${m G}_arphi$ has a Hamiltonian cycle

Proof. Follows from Lemma 23.1 and Lemma 23.2.

Correctness Proof

We just proved:

Lemma 23.2. G_{φ} has a Hamiltonian cycle $\implies \varphi$ has a satisfying assignment α .

Lemma 23.3.

 φ has a satisfying assignment iff G_{φ} has a Hamiltonian cycle.

Proof.

Follows from Lemma 23.1 and Lemma 23.2 .

Summary

What we did:

- 1. Showed that Directed Hamiltonian Cycle is in NP.
- 2. Provided a polynomial time reduction from **3SAT** to **Directed Hamiltonian Cycle**.
- 3. Proved that φ satisfiable $\iff G_{\varphi}$ is Hamiltonian.

Theorem 23.4.

The problem Hamiltonian Cycle in directed graphs is NP-Complete.

Summary

What we did:

- 1. Showed that **Directed Hamiltonian Cycle** is in **NP**.
- 2. Provided a polynomial time reduction from **3SAT** to **Directed Hamiltonian Cycle**.
- 3. Proved that φ satisfiable $\iff G_{\varphi}$ is Hamiltonian.

Theorem 23.4.

The problem Hamiltonian Cycle in directed graphs is NP-Complete.

Intro. Algorithms & Models of Computation CS/ECE 374A, Fall 2024

23.4 Hamiltonian cycle in undirected graph

Hamiltonian Cycle

Problem 23.1.

Input Given undirected graph G = (V, E)

Goal Does **G** have a Hamiltonian cycle? That is, is there a cycle that visits every vertex exactly one (except start and end vertex)?

NP-Completeness

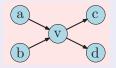
Theorem 23.2. Hamiltonian cycle problem for <u>undirected</u> graphs is NP-Complete.

Proof.

- ► The problem is in **NP**; proof left as exercise.
- Hardness proved by reducing Directed Hamiltonian Cycle to this problem

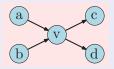
Goal: Given directed graph G, need to construct undirected graph G' such that G has Hamiltonian Path iff G' has Hamiltonian path

- ▶ Replace each vertex v by 3 vertices: v_{in}, v, and v_{out}
- A directed edge (*a*, *b*) is replaced by edge (*a*_{out}, *b*_{in})



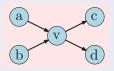
Goal: Given directed graph G, need to construct undirected graph G' such that G has Hamiltonian Path iff G' has Hamiltonian path

- Replace each vertex v by 3 vertices: v_{in}, v, and v_{out}
- A directed edge (*a*, *b*) is replaced by edge (*a*_{out}, *b*_{in})



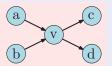
Goal: Given directed graph G, need to construct undirected graph G' such that G has Hamiltonian Path iff G' has Hamiltonian path

- Replace each vertex v by 3 vertices: v_{in}, v, and v_{out}
- ► A directed edge (*a*, *b*) is replaced by edge (*a*_{out}, *b*_{in})

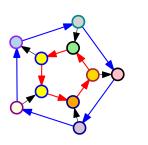


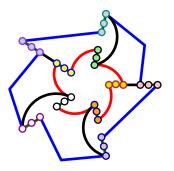
Goal: Given directed graph G, need to construct undirected graph G' such that G has Hamiltonian Path iff G' has Hamiltonian path

- Replace each vertex v by 3 vertices: v_{in}, v, and v_{out}
- ► A directed edge (*a*, *b*) is replaced by edge (*a*_{out}, *b*_{in})

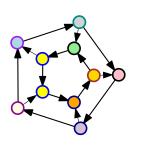


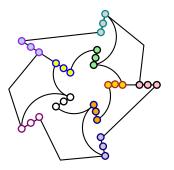
 \Rightarrow

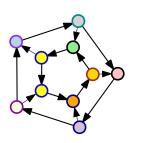


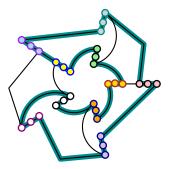


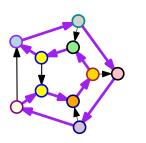
 \Rightarrow

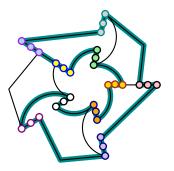












Reduction: Wrap-up

- ► The reduction is polynomial time (exercise)
- ► The reduction is correct (exercise)