
Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2024

Nondeterministic polynomial time
Lecture 22
Thursday, November 21, 2024

LATEXed: August 25, 2024 14:23

1 / 41

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2024

22.1
Review
FLNAME:22.1.0.0 ZZZ:22.1.0.0 Review

2 / 41

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2024

22.1.1
Review: Polynomial reductions
FLNAME:22.1.1.0 ZZZ:22.1.1.0 Review: Polynomial reductions

3 / 41

Polynomial-time Reduction

Definition 22.1.
X ≤P Y : polynomial time reduction from a decision problem X to a decision
problem Y is an algorithm A such that:

1. Given an instance IX of X , A produces an instance IY of Y .

2. A runs in time polynomial in |IX |. (|IY | = size of IY).
3. Answer to IX YES ⇐⇒ answer to IY is YES.

4 / 41

Polynomial-time Reduction

Definition 22.1.
X ≤P Y : polynomial time reduction from a decision problem X to a decision
problem Y is an algorithm A such that:

1. Given an instance IX of X , A produces an instance IY of Y .

2. A runs in time polynomial in |IX |. (|IY | = size of IY).
3. Answer to IX YES ⇐⇒ answer to IY is YES.

Proposition 22.2.
If X ≤P Y then a polynomial time algorithm for Y implies a polynomial time
algorithm for X .

4 / 41

Polynomial-time Reduction

Definition 22.1.
X ≤P Y : polynomial time reduction from a decision problem X to a decision
problem Y is an algorithm A such that:

1. Given an instance IX of X , A produces an instance IY of Y .

2. A runs in time polynomial in |IX |. (|IY | = size of IY).
3. Answer to IX YES ⇐⇒ answer to IY is YES.

Proposition 22.2.
If X ≤P Y then a polynomial time algorithm for Y implies a polynomial time
algorithm for X .

This is a Karp reduction.

4 / 41

Composing polynomials...
A quick reminder

1. f and g monotone increasing. Assume that:

1.1 f (n) ≤ a ∗ nb (i.e., f (n) = O(nb))
1.2 g(n) ≤ c ∗ nd (i.e., g(n) = O(nd))

a, b, c, d : constants.

2. g
(
f (n)

)
≤ g

(
a ∗ nb

)
≤ c ∗

(
a ∗ nb

)d ≤ c · ad ∗ nbd

3. =⇒ g(f (n)) = O
(
nbd

)
is a polynomial.

4. Conclusion: Composition of two polynomials, is a polynomial.

5 / 41

Composing polynomials...
A quick reminder

1. f and g monotone increasing. Assume that:

1.1 f (n) ≤ a ∗ nb (i.e., f (n) = O(nb))
1.2 g(n) ≤ c ∗ nd (i.e., g(n) = O(nd))

a, b, c, d : constants.

2. g
(
f (n)

)
≤ g

(
a ∗ nb

)
≤ c ∗

(
a ∗ nb

)d ≤ c · ad ∗ nbd

3. =⇒ g(f (n)) = O
(
nbd

)
is a polynomial.

4. Conclusion: Composition of two polynomials, is a polynomial.

5 / 41

Composing polynomials...
A quick reminder

1. f and g monotone increasing. Assume that:

1.1 f (n) ≤ a ∗ nb (i.e., f (n) = O(nb))
1.2 g(n) ≤ c ∗ nd (i.e., g(n) = O(nd))

a, b, c, d : constants.

2. g
(
f (n)

)
≤ g

(
a ∗ nb

)
≤ c ∗

(
a ∗ nb

)d ≤ c · ad ∗ nbd

3. =⇒ g(f (n)) = O
(
nbd

)
is a polynomial.

4. Conclusion: Composition of two polynomials, is a polynomial.

5 / 41

Composing polynomials...
A quick reminder

1. f and g monotone increasing. Assume that:

1.1 f (n) ≤ a ∗ nb (i.e., f (n) = O(nb))
1.2 g(n) ≤ c ∗ nd (i.e., g(n) = O(nd))

a, b, c, d : constants.

2. g
(
f (n)

)
≤ g

(
a ∗ nb

)
≤ c ∗

(
a ∗ nb

)d ≤ c · ad ∗ nbd

3. =⇒ g(f (n)) = O
(
nbd

)
is a polynomial.

4. Conclusion: Composition of two polynomials, is a polynomial.

5 / 41

Composing polynomials...
A quick reminder

1. f and g monotone increasing. Assume that:

1.1 f (n) ≤ a ∗ nb (i.e., f (n) = O(nb))
1.2 g(n) ≤ c ∗ nd (i.e., g(n) = O(nd))

a, b, c, d : constants.

2. g
(
f (n)

)
≤ g

(
a ∗ nb

)
≤ c ∗

(
a ∗ nb

)d ≤ c · ad ∗ nbd

3. =⇒ g(f (n)) = O
(
nbd

)
is a polynomial.

4. Conclusion: Composition of two polynomials, is a polynomial.

5 / 41

Composing polynomials...
A quick reminder

1. f and g monotone increasing. Assume that:

1.1 f (n) ≤ a ∗ nb (i.e., f (n) = O(nb))
1.2 g(n) ≤ c ∗ nd (i.e., g(n) = O(nd))

a, b, c, d : constants.

2. g
(
f (n)

)
≤ g

(
a ∗ nb

)
≤ c ∗

(
a ∗ nb

)d ≤ c · ad ∗ nbd

3. =⇒ g(f (n)) = O
(
nbd

)
is a polynomial.

4. Conclusion: Composition of two polynomials, is a polynomial.

5 / 41

Composing polynomials...
A quick reminder

1. f and g monotone increasing. Assume that:

1.1 f (n) ≤ a ∗ nb (i.e., f (n) = O(nb))
1.2 g(n) ≤ c ∗ nd (i.e., g(n) = O(nd))

a, b, c, d : constants.

2. g
(
f (n)

)
≤ g

(
a ∗ nb

)
≤ c ∗

(
a ∗ nb

)d ≤ c · ad ∗ nbd

3. =⇒ g(f (n)) = O
(
nbd

)
is a polynomial.

4. Conclusion: Composition of two polynomials, is a polynomial.

5 / 41

Transitivity of Reductions

Proposition 22.3.
X ≤P Y and Y ≤P Z implies that X ≤P Z .

1. Note: X ≤P Y does not imply that Y ≤P X and hence it is very important to
know the FROM and TO in a reduction.

2. To prove X ≤P Y you need to show a reduction FROM X TO Y
3. ...show that an algorithm for Y implies an algorithm for X .

6 / 41

Transitivity of Reductions

Proposition 22.3.
X ≤P Y and Y ≤P Z implies that X ≤P Z .

1. Note: X ≤P Y does not imply that Y ≤P X and hence it is very important to
know the FROM and TO in a reduction.

2. To prove X ≤P Y you need to show a reduction FROM X TO Y
3. ...show that an algorithm for Y implies an algorithm for X .

6 / 41

Transitivity of Reductions

Proposition 22.3.
X ≤P Y and Y ≤P Z implies that X ≤P Z .

1. Note: X ≤P Y does not imply that Y ≤P X and hence it is very important to
know the FROM and TO in a reduction.

2. To prove X ≤P Y you need to show a reduction FROM X TO Y
3. ...show that an algorithm for Y implies an algorithm for X .

6 / 41

Polynomial time reduction...
Proving Correctness of Reductions

To prove that X ≤P Y you need to give an algorithm A that:

1. Transforms an instance IX of X into an instance IY of Y .

2. Satisfies the property that answer to IX is YES iff IY is YES.

2.1 typical easy direction to prove: answer to IY is YES if answer to IX is YES
2.2 typical difficult direction to prove: answer to IX is YES if answer to IY is YES

(equivalently answer to IX is NO if answer to IY is NO).

3. Runs in polynomial time.

7 / 41

Polynomial time reduction...
Proving Correctness of Reductions

To prove that X ≤P Y you need to give an algorithm A that:

1. Transforms an instance IX of X into an instance IY of Y .

2. Satisfies the property that answer to IX is YES iff IY is YES.

2.1 typical easy direction to prove: answer to IY is YES if answer to IX is YES
2.2 typical difficult direction to prove: answer to IX is YES if answer to IY is YES

(equivalently answer to IX is NO if answer to IY is NO).

3. Runs inpolynomial time.

7 / 41

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2024

22.1.2
A quick pre-review of complexity classes
FLNAME:22.1.2.0 ZZZ:22.1.2.0 A quick pre-review of complexity classes

8 / 41

In the beginning...

9 / 41

In the beginning...

Undecidable

9 / 41

In the beginning...

Undecidable

EXP

9 / 41

In the beginning...

Undecidable

EXP
PSPACE

9 / 41

In the beginning...

Undecidable

EXP
PSPACE

P

9 / 41

In the beginning...

NP

co-NP

Undecidable

EXP
PSPACE

P

9 / 41

In the beginning...

NP

co-NP

Undecidable

EXP
PSPACE

P

NP −Hard

9 / 41

In the beginning...

NP

co-NP

Undecidable

EXP
PSPACE

P

NP −Hard

9 / 41

In the beginning...

NP

co-NP

Undecidable

EXP
PSPACE

P

NP −Hard

9 / 41

In the beginning...

NP

co-NP

Undecidable

EXP
PSPACE

P

NP −Hard

NPC

9 / 41

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2024

22.1.3
Polynomial equivalent problems: What do
we know so far
FLNAME:22.1.3.0 ZZZ:22.1.3.0 Polynomial equivalent problems: What do we know so far

10 / 41

What do we know so far

1. Independent Set ≤P Clique
Clique ≤P Independent Set.
=⇒ Clique ≊P Independent Set.

2. Vertex Cover ≤P Independent Set
Independent Set ≤P Vertex Cover.
=⇒ Independent Set ≊P Vertex Cover.

3. 3SAT ≤P SAT
SAT ≤P 3SAT.
=⇒ 3SAT ≊P SAT.

4. Clique ≊P Independent Set ≊P Vertex Cover
3SAT ≊P SAT.

11 / 41

What do we know so far

1. Independent Set ≤P Clique
Clique ≤P Independent Set.
=⇒ Clique ≊P Independent Set.

2. Vertex Cover ≤P Independent Set
Independent Set ≤P Vertex Cover.
=⇒ Independent Set ≊P Vertex Cover.

3. 3SAT ≤P SAT
SAT ≤P 3SAT.
=⇒ 3SAT ≊P SAT.

4. Clique ≊P Independent Set ≊P Vertex Cover
3SAT ≊P SAT.

11 / 41

What do we know so far

1. Independent Set ≤P Clique
Clique ≤P Independent Set.
=⇒ Clique ≊P Independent Set.

2. Vertex Cover ≤P Independent Set
Independent Set ≤P Vertex Cover.
=⇒ Independent Set ≊P Vertex Cover.

3. 3SAT ≤P SAT
SAT ≤P 3SAT.
=⇒ 3SAT ≊P SAT.

4. Clique ≊P Independent Set ≊P Vertex Cover
3SAT ≊P SAT.

11 / 41

What do we know so far

1. Independent Set ≤P Clique
Clique ≤P Independent Set.
=⇒ Clique ≊P Independent Set.

2. Vertex Cover ≤P Independent Set
Independent Set ≤P Vertex Cover.
=⇒ Independent Set ≊P Vertex Cover.

3. 3SAT ≤P SAT
SAT ≤P 3SAT.
=⇒ 3SAT ≊P SAT.

4. Clique ≊P Independent Set ≊P Vertex Cover
3SAT ≊P SAT.

11 / 41

What do we know so far

1. Independent Set ≤P Clique
Clique ≤P Independent Set.
=⇒ Clique ≊P Independent Set.

2. Vertex Cover ≤P Independent Set
Independent Set ≤P Vertex Cover.
=⇒ Independent Set ≊P Vertex Cover.

3. 3SAT ≤P SAT
SAT ≤P 3SAT.
=⇒ 3SAT ≊P SAT.

4. Clique ≊P Independent Set ≊P Vertex Cover
3SAT ≊P SAT.

11 / 41

What do we know so far

1. Independent Set ≤P Clique
Clique ≤P Independent Set.
=⇒ Clique ≊P Independent Set.

2. Vertex Cover ≤P Independent Set
Independent Set ≤P Vertex Cover.
=⇒ Independent Set ≊P Vertex Cover.

3. 3SAT ≤P SAT
SAT ≤P 3SAT.
=⇒ 3SAT ≊P SAT.

4. Clique ≊P Independent Set ≊P Vertex Cover
3SAT ≊P SAT.

11 / 41

What do we know so far

1. Independent Set ≤P Clique
Clique ≤P Independent Set.
=⇒ Clique ≊P Independent Set.

2. Vertex Cover ≤P Independent Set
Independent Set ≤P Vertex Cover.
=⇒ Independent Set ≊P Vertex Cover.

3. 3SAT ≤P SAT
SAT ≤P 3SAT.
=⇒ 3SAT ≊P SAT.

4. Clique ≊P Independent Set ≊P Vertex Cover
3SAT ≊P SAT.

11 / 41

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2024

22.2
NP: Nondeterministic polynomial time
FLNAME:22.2.0.0 ZZZ:22.2.0.0 NP: Nondeterministic polynomial time

12 / 41

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2024

22.2.1
Introduction
FLNAME:22.2.1.0 ZZZ:22.2.1.0 Introduction

13 / 41

P and NP and Turing Machines

1. P: set of decision problems that have polynomial time algorithms.

2. NP: set of decision problems that have polynomial time non-deterministic
algorithms.

▶ Many natural problems we would like to solve are in NP.

▶ Every problem in NP has an exponential time algorithm

▶ P ⊆ NP
▶ Some problems in NP are in P (example, shortest path problem)

Big Question: Does every problem in NP have an efficient algorithm? Same as asking
whether P = NP.

14 / 41

Problems with no known polynomial time algorithms

Problems
1. Independent Set

2. Vertex Cover

3. Set Cover

4. SAT

5. 3SAT

There are of course undecidable problems (no algorithm at all!) but many problems that
we want to solve are of similar flavor to the above.

Question: What is common to above problems?

15 / 41

Efficient Checkability

Above problems share the following feature:

Checkability

For any YES instance IX of X there is a proof/certificate/solution that is of length
poly(|IX |) such that given a proof one can efficiently check that IX is indeed a YES
instance.

Examples:

1. SAT formula φ: proof is a satisfying assignment.

2. Independent Set in graph G and k : a subset S of vertices.

3. Homework

16 / 41

Efficient Checkability

Above problems share the following feature:

Checkability

For any YES instance IX of X there is a proof/certificate/solution that is of length
poly(|IX |) such that given a proof one can efficiently check that IX is indeed a YES
instance.

Examples:

1. SAT formula φ: proof is a satisfying assignment.

2. Independent Set in graph G and k : a subset S of vertices.

3. Homework

16 / 41

Sudoku

Given n × n sudoku puzzle, does it have a solution?

17 / 41

Solution to the Sudoku example...
1 8 7 2 5 6 9 3 4
9 3 6 7 4 1 8 5 2
5 4 2 8 9 3 1 6 7

2 9 1 3 7 4 6 8 5
7 6 3 5 2 8 4 1 9
8 5 4 6 1 9 7 2 3

4 1 5 9 6 2 3 7 8
3 7 9 1 8 5 2 4 6
6 2 8 4 3 7 5 9 1

18 / 41

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2024

22.2.2
Certifiers/Verifiers
FLNAME:22.2.2.0 ZZZ:22.2.2.0 Certifiers/Verifiers

19 / 41

Certifiers

Definition 22.1.
An algorithm C(·, ·) is a certifier for problem X if the following two conditions hold:

▶ For every s ∈ X there is some string t such that C(s, t) = ”yes”

▶ If s ̸∈ X , C(s, t) = ”no” for every t.
The string t is called a certificate or proof for s.

20 / 41

Efficient (polynomial time) Certifiers

Definition 22.2 (Efficient Certifier.).

A certifier C is an efficient certifier for problem X if there is a polynomial p(·) such
that the following conditions hold:

▶ For every s ∈ X there is some string t such that C(s, t) = ”yes”
and |t| ≤ p(|s|) (proof is polynomially short)..

▶ If s ̸∈ X , C(s, t) = ”no” for every t.
▶ C(·, ·) runs in polynomial time in the size of s.

Since |t| = |s|O(1), and certifier runs in polynomial time in |s| + |t|, it follows that
certifier runs in polynomial time in the size of s.

Proposition 22.3.
If s ∈ X , and there exists an efficient certifier C for X , then there exists a certificate t
of polynomial length in s, such that C(s, t) returns YES, and runs in polynomial time
in |s|.

21 / 41

Example: Independent Set

1. Problem: Does G = (V ,E) have an independent set of size ≥ k?
1.1 Certificate: Set S ⊆ V .
1.2 Certifier: Check |S| ≥ k and no pair of vertices in S is connected by an edge.

22 / 41

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2024

22.2.3
Examples to problems with efficient
certifiers
FLNAME:22.2.3.0 ZZZ:22.2.3.0 Examples to problems with efficient certifiers

23 / 41

Example: Vertex Cover

1. Problem: Does G have a vertex cover of size ≤ k?
1.1 Certificate: S ⊆ V .
1.2 Certifier: Check |S| ≤ k and that for every edge at least one endpoint is in S .

24 / 41

Example: SAT

1. Problem: Does formula φ have a satisfying truth assignment?

1.1 Certificate: Assignment a of 0/1 values to each variable.
1.2 Certifier: Check each clause under a and say “yes” if all clauses are true.

25 / 41

Example: Composites

Problem: Composite

Instance: A number s.
Question: Is the number s a composite?

1. Problem: Composite.

1.1 Certificate: A factor t ≤ s such that t ̸= 1 and t ̸= s.
1.2 Certifier: Check that t divides s.

26 / 41

Example: NFA Universality

Problem: NFA Universality

Instance: Description of a NFA M .
Question: Is L(M) = Σ∗, that is, does M accept all strings?

1. Problem: NFA Universality.

1.1 Certificate: A DFA M ′ equivalent to M
1.2 Certifier: Check that L(M ′) = Σ∗

Certifier is efficient but certificate is not necessarily short! We do not know if the
problem is in NP.

27 / 41

Example: NFA Universality

Problem: NFA Universality

Instance: Description of a NFA M .
Question: Is L(M) = Σ∗, that is, does M accept all strings?

1. Problem: NFA Universality.

1.1 Certificate: A DFA M ′ equivalent to M
1.2 Certifier: Check that L(M ′) = Σ∗

Certifier is efficient but certificate is not necessarily short! We do not know if the
problem is in NP.

27 / 41

Example: A String Problem

Problem: PCP

Instance: Two sets of binary strings α1, . . . , αn and β1, . . . , βn
Question: Are there indices i1, i2, . . . , ik such that αi1αi2 . . . αik =
βi1βi2 . . . βik

1. Problem: PCP

1.1 Certificate: A sequence of indices i1, i2, . . . , ik
1.2 Certifier: Check that αi1αi2 . . . αik = βi1βi2 . . . βik

PCP = Posts Correspondence Problem and it is undecidable!
Implies no finite bound on length of certificate!

28 / 41

Example: A String Problem

Problem: PCP

Instance: Two sets of binary strings α1, . . . , αn and β1, . . . , βn
Question: Are there indices i1, i2, . . . , ik such that αi1αi2 . . . αik =
βi1βi2 . . . βik

1. Problem: PCP

1.1 Certificate: A sequence of indices i1, i2, . . . , ik
1.2 Certifier: Check that αi1αi2 . . . αik = βi1βi2 . . . βik

PCP = Posts Correspondence Problem and it is undecidable!
Implies no finite bound on length of certificate!

28 / 41

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2024

22.2.4
NP: Definition
FLNAME:22.2.4.0 ZZZ:22.2.4.0 NP: Definition

29 / 41

Nondeterministic Polynomial Time

Definition 22.4.
Nondeterministic Polynomial Time (denoted by NP) is the class of all problems that
have efficient certifiers.

30 / 41

Nondeterministic Polynomial Time

Definition 22.4.
Nondeterministic Polynomial Time (denoted by NP) is the class of all problems that
have efficient certifiers.

Example 22.5.
Independent Set, Vertex Cover, Set Cover, SAT, 3SAT, and Composite are all
examples of problems in NP.

30 / 41

Why is it called...
Nondeterministic Polynomial Time

A certifier is an algorithm C(I , c) with two inputs:

1. I : instance.
2. c : proof/certificate that the instance is indeed a YES instance of the given

problem.

One can think about C as an algorithm for the original problem, if:

1. Given I , the algorithm guesses (non-deterministically, and who knows how) a
certificate c .

2. The algorithm now verifies the certificate c for the instance I .
NP can be equivalently described using Turing machines.

31 / 41

Asymmetry in Definition of NP

Note that only YES instances have a short proof/certificate. NO instances need not
have a short certificate.

Example 22.6.
SAT formula φ. No easy way to prove that φ is NOT satisfiable!

More on this and co-NP later on.

32 / 41

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2024

22.2.5
Intractability
FLNAME:22.2.5.0 ZZZ:22.2.5.0 Intractability

33 / 41

P versus NP

Proposition 22.7.
P ⊆ NP.

For a problem in P no need for a certificate!

Proof.
Consider problem X ∈ P with algorithm A. Need to demonstrate that X has an
efficient certifier:

1. Certifier C on input s, t, runs A(s) and returns the answer.

2. C runs in polynomial time.

3. If s ∈ X , then for every t, C(s, t) = ”yes”.

4. If s ̸∈ X , then for every t, C(s, t) = ”no”.

34 / 41

P versus NP

Proposition 22.7.
P ⊆ NP.

For a problem in P no need for a certificate!

Proof.
Consider problem X ∈ P with algorithm A. Need to demonstrate that X has an
efficient certifier:

1. Certifier C on input s, t, runs A(s) and returns the answer.

2. C runs in polynomial time.

3. If s ∈ X , then for every t, C(s, t) = ”yes”.

4. If s ̸∈ X , then for every t, C(s, t) = ”no”.

34 / 41

Exponential Time

Definition 22.8.
Exponential Time (denoted EXP) is the collection of all problems that have an
algorithm which on input s runs in exponential time, i.e., O(2poly(|s|)).

Example: O(2n), O(2n log n), O(2n3
), ...

35 / 41

Exponential Time

Definition 22.8.
Exponential Time (denoted EXP) is the collection of all problems that have an
algorithm which on input s runs in exponential time, i.e., O(2poly(|s|)).

Example: O(2n), O(2n log n), O(2n3
), ...

35 / 41

NP versus EXP

Proposition 22.9.
NP ⊆ EXP.

Proof.
Let X ∈ NP with certifier C . Need to design an exponential time algorithm for X .

1. For every t, with |t| ≤ p(|s|) run C(s, t); answer “yes” if any one of these calls
returns “yes”.

2. The above algorithm correctly solves X (exercise).

3. Algorithm runs in O(q(|s|+ |p(s)|)2p(|s|)), where q is the running time of C .

36 / 41

Examples

1. SAT: try all possible truth assignment to variables.

2. Independent Set: try all possible subsets of vertices.

3. Vertex Cover: try all possible subsets of vertices.

37 / 41

Is NP efficiently solvable?

We know P ⊆ NP ⊆ EXP.

38 / 41

Is NP efficiently solvable?

We know P ⊆ NP ⊆ EXP.

Big Question

Is there are problem in NP that does not belong to P? Is P = NP?

38 / 41

If P = NP . . .
Or: If pigs could fly then life would be sweet.

1. Many important optimization problems can be solved efficiently.

2. The RSA cryptosystem can be broken.

3. No security on the web.

4. No e-commerce . . .

5. Creativity can be automated! Proofs for mathematical statement can be found by
computers automatically (if short ones exist).

39 / 41

If P = NP . . .
Or: If pigs could fly then life would be sweet.

1. Many important optimization problems can be solved efficiently.

2. The RSA cryptosystem can be broken.

3. No security on the web.

4. No e-commerce . . .

5. Creativity can be automated! Proofs for mathematical statement can be found by
computers automatically (if short ones exist).

39 / 41

If P = NP . . .
Or: If pigs could fly then life would be sweet.

1. Many important optimization problems can be solved efficiently.

2. The RSA cryptosystem can be broken.

3. No security on the web.

4. No e-commerce . . .

5. Creativity can be automated! Proofs for mathematical statement can be found by
computers automatically (if short ones exist).

39 / 41

If P = NP . . .
Or: If pigs could fly then life would be sweet.

1. Many important optimization problems can be solved efficiently.

2. The RSA cryptosystem can be broken.

3. No security on the web.

4. No e-commerce . . .

5. Creativity can be automated! Proofs for mathematical statement can be found by
computers automatically (if short ones exist).

39 / 41

If P = NP . . .
Or: If pigs could fly then life would be sweet.

1. Many important optimization problems can be solved efficiently.

2. The RSA cryptosystem can be broken.

3. No security on the web.

4. No e-commerce . . .

5. Creativity can be automated! Proofs for mathematical statement can be found by
computers automatically (if short ones exist).

39 / 41

P versus NP

Status
Relationship between P and NP remains one of the most important open problems in
mathematics/computer science.

Consensus: Most people feel/believe P ̸= NP.

Resolving P versus NP is a Clay Millennium Prize Problem. You can win a million
dollars in addition to a Turing award and major fame!

40 / 41

Review question: If P = NP this implies that...

(A) Vertex Cover can be solved in polynomial time.

(B) P = EXP.

(C) EXP ⊆ P.

(D) All of the above.

41 / 41

	Review
	Review: Polynomial reductions
	A quick pre-review of complexity classes
	Polynomial equivalent problems: What do we know so far

	NP: Nondeterministic polynomial time
	Introduction
	Certifiers/Verifiers
	Examples to problems with efficient certifiers
	NP: Definition
	Intractability

