
Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2024

Polynomial Time Reductions
Lecture 24
Tuesday, November 19, 2024

LATEXed: August 25, 2024 14:23

1 / 70

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2024

24.1
A quick review: Polynomials
FLNAME:24.1.0.0 ZZZ:24.1.0.0 A quick review: Polynomials

2 / 70

What is a polynomial

A polynomial is a function of the form:

f (x) =
t∑

i=0

aix i .

For our purposes, we can assume that ai ≥ 0, for all i .
A term akx t is a monomial.
The degree of f (x) is t.
We have f (n) = O(nt).

3 / 70

What is a polynomial

A polynomial is a function of the form:

f (x) =
t∑

i=0

aix i .

For our purposes, we can assume that ai ≥ 0, for all i .
A term akx t is a monomial.
The degree of f (x) is t.
We have f (n) = O(nt).

3 / 70

What is a polynomial

A polynomial is a function of the form:

f (x) =
t∑

i=0

aix i .

For our purposes, we can assume that ai ≥ 0, for all i .
A term akx t is a monomial.
The degree of f (x) is t.
We have f (n) = O(nt).

3 / 70

The degree of he polynomial matter...

 0

 200

 400

 600

 800

 1000

 0 5 10 15 20

x
x2

x3

x4

exp(x)

4 / 70

Polynomial time good, exponential time bad

 1

 100000

 1x1010

 1x1015

 1x1020

 50 100 150 200 250 300 350 400

x
x2

x3

x4

exp(x)
exp(x0.5)

5 / 70

Combining polynomials

Lemma 24.1.

If f (x) =
∑d

i=0 αix i is a polynomial of degree d , and g(y) =
∑d ′

i=0 βiy i is a
polynomial of degree d ′, then g(f (x)) is a polynomial of degree d ′d .

Proof.

Observe that (f (x))2 =
∑d

i=0

∑d
j=0 αiαjx i+j is a polynomial of degree 2d , Arguing

similarly, we have that (f (x))i is a polynomial of degree i · d . Thus

g(f (x)) =
d ′∑
i=0

βi
(
f (x)

)i

is a sum of polynomials of degree 0, d , 2d , . . . , d · d ′, which is a polynomial of degree
d · d ′ by collecting monomials of the same degree into a single monomial.

6 / 70

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2024

24.2
(Polynomial Time) Reductions: Overview
FLNAME:24.2.0.0 ZZZ:24.2.0.0 (Polynomial Time) Reductions: Overview

7 / 70

Reductions

A reduction from Problem X to Problem Y means (informally) that if we have an
algorithm for Problem Y , we can use it to find an algorithm for Problem X .

Using Reductions
1. We use reductions to find algorithms to solve problems.

8 / 70

Reductions

A reduction from Problem X to Problem Y means (informally) that if we have an
algorithm for Problem Y , we can use it to find an algorithm for Problem X .

Using Reductions
1. We use reductions to find algorithms to solve problems.

8 / 70

Reductions

A reduction from Problem X to Problem Y means (informally) that if we have an
algorithm for Problem Y , we can use it to find an algorithm for Problem X .

Using Reductions
1. We use reductions to find algorithms to solve problems.

2. We also use reductions to show that we can’t find algorithms for some problems.
(We say that these problems are hard.)

8 / 70

Reductions for decision problems/languages

For languages LX , LY , a reduction from LX to LY is:

1. An algorithm . . .

2. Input: w ∈ Σ∗

3. Output: w ′ ∈ Σ∗

4. Such that:
w ∈ LX ⇐⇒ w ′ ∈ LY

(Actually, this is only one type of reduction, but this is the one we’ll use most often.)

There are other kinds of reductions.

9 / 70

Reductions for decision problems/languages

For languages LX , LY , a reduction from LX to LY is:

1. An algorithm . . .

2. Input: w ∈ Σ∗

3. Output: w ′ ∈ Σ∗

4. Such that:
w ∈ LX ⇐⇒ w ′ ∈ LY

(Actually, this is only one type of reduction, but this is the one we’ll use most often.)

There are other kinds of reductions.

9 / 70

Reductions for decision problems/languages

For decision problems X ,Y , a reduction from X to Y is:

1. An algorithm . . .

2. Input: IX , an instance of X .

3. Output: IY an instance of Y .

4. Such that:
IY is YES instance of Y ⇐⇒ IX is YES instance of X

10 / 70

Using reductions to solve problems

1. R: Reduction X → Y
2. AY : algorithm for Y :

3. =⇒ New algorithm for X :
AX (IX):

// IX: instance of X.

IY ⇐ R(IX)
return AY (IY)

If R and AY polynomial-time =⇒ AX polynomial-time.

11 / 70

Using reductions to solve problems

1. R: Reduction X → Y
2. AY : algorithm for Y :

3. =⇒ New algorithm for X :
AX (IX):

// IX: instance of X.

IY ⇐ R(IX)
return AY (IY)

If R and AY polynomial-time =⇒ AX polynomial-time.

11 / 70

Using reductions to solve problems

1. R: Reduction X → Y
2. AY : algorithm for Y :

3. =⇒ New algorithm for X :
AX (IX):

// IX: instance of X.

IY ⇐ R(IX)
return AY (IY)

AY

IY
YES

NO

IX
R

AX

If R and AY polynomial-time =⇒ AX polynomial-time.

11 / 70

Comparing Problems

1. “Problem X is no harder to solve than Problem Y ”.

2. If Problem X reduces to Problem Y (we write X ≤ Y), then X cannot be harder
to solve than Y .

3. X ≤ Y :

3.1 X is no harder than Y , or
3.2 Y is at least as hard as X .

12 / 70

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2024

24.3
Examples of Reductions
FLNAME:24.3.0.0 ZZZ:24.3.0.0 Examples of Reductions

13 / 70

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2024

24.3.1
Independent Set and Clique
FLNAME:24.3.1.0 ZZZ:24.3.1.0 Independent Set and Clique

14 / 70

Independent Sets and Cliques

Given a graph G , a set of vertices V ′ is:

1. independent set: no two vertices of V ′ connected by an edge.

15 / 70

Independent Sets and Cliques

Given a graph G , a set of vertices V ′ is:

1. independent set: no two vertices of V ′ connected by an edge.

15 / 70

Independent Sets and Cliques

Given a graph G , a set of vertices V ′ is:

1. independent set: no two vertices of V ′ connected by an edge.

2. clique: every pair of vertices in V ′ is connected by an edge of G .

15 / 70

Independent Sets and Cliques

Given a graph G , a set of vertices V ′ is:

1. independent set: no two vertices of V ′ connected by an edge.

2. clique: every pair of vertices in V ′ is connected by an edge of G .

15 / 70

Independent Sets and Cliques

Given a graph G , a set of vertices V ′ is:

1. independent set: no two vertices of V ′ connected by an edge.

2. clique: every pair of vertices in V ′ is connected by an edge of G .

15 / 70

Independent Sets and Cliques

Given a graph G , a set of vertices V ′ is:

1. independent set: no two vertices of V ′ connected by an edge.

2. clique: every pair of vertices in V ′ is connected by an edge of G .

15 / 70

The Independent Set and Clique Problems

Problem: Independent Set

Instance: A graph G and an integer k .
Question: Does G has an independent set of size ≥ k?

Problem: Clique

Instance: A graph G and an integer k .
Question: Does G has a clique of size ≥ k?

16 / 70

The Independent Set and Clique Problems

Problem: Independent Set

Instance: A graph G and an integer k .
Question: Does G has an independent set of size ≥ k?

Problem: Clique

Instance: A graph G and an integer k .
Question: Does G has a clique of size ≥ k?

16 / 70

Recall

For decision problems X ,Y , a reduction from X to Y is:

1. An algorithm . . .

2. that takes IX , an instance of X as input . . .

3. and returns IY , an instance of Y as output . . .

4. such that the solution (YES/NO) to IY is the same as the solution to IX .

17 / 70

Reducing Independent Set to Clique

An instance of Independent Set is a graph G and an integer k .

18 / 70

Reducing Independent Set to Clique

An instance of Independent Set is a graph G and an integer k .

18 / 70

Reducing Independent Set to Clique

An instance of Independent Set is a graph G and an integer k .

Reduction given ⟨G , k⟩ outputs
〈
G , k

〉
where G is the complement of G . G has an

edge uv ⇐⇒ uv is not an edge of G .

18 / 70

Reducing Independent Set to Clique

An instance of Independent Set is a graph G and an integer k .

Reduction given ⟨G , k⟩ outputs
〈
G , k

〉
where G is the complement of G . G has an

edge uv ⇐⇒ uv is not an edge of G .

A independent set of size k in G ⇐⇒ A clique of size k in G
18 / 70

Correctness of reduction

Lemma 24.1.

G has an independent set of size k ⇐⇒ G has a clique of size k .

Proof.
Need to prove two facts:
G has independent set of size at least k implies that G has a clique of size at least k .
G has a clique of size at least k implies that G has an independent set of size at least k .
Since S ⊆ V is an independent set in G ⇐⇒ S is a clique in G .

19 / 70

Independent Set and Clique

1. Independent Set ≤ Clique.
What does this mean?

2. If have an algorithm for Clique, then we have an algorithm for Independent Set.

3. Clique is at least as hard as Independent Set.

4. Also... Clique ≤ Independent Set. Why? Thus Clique and Independent Set
are polnomial-time equivalent.

20 / 70

Independent Set and Clique

1. Independent Set ≤ Clique.
What does this mean?

2. If have an algorithm for Clique, then we have an algorithm for Independent Set.

3. Clique is at least as hard as Independent Set.

4. Also... Clique ≤ Independent Set. Why? Thus Clique and Independent Set
are polnomial-time equivalent.

20 / 70

Independent Set and Clique

1. Independent Set ≤ Clique.
What does this mean?

2. If have an algorithm for Clique, then we have an algorithm for Independent Set.

3. Clique is at least as hard as Independent Set.

4. Also... Clique ≤ Independent Set. Why? Thus Clique and Independent Set
are polnomial-time equivalent.

20 / 70

Independent Set and Clique

1. Independent Set ≤ Clique.
What does this mean?

2. If have an algorithm for Clique, then we have an algorithm for Independent Set.

3. Clique is at least as hard as Independent Set.

4. Also... Clique ≤ Independent Set. Why? Thus Clique and Independent Set
are polnomial-time equivalent.

20 / 70

Review: Independent Set and Clique

Assume you can solve the Clique problem in T (n) time. Then you can solve the
Independent Set problem in

(A) O(T (n)) time.

(B) O(n log n + T (n)) time.

(C) O(n2T (n2)) time.

(D) O(n4T (n4)) time.

(E) O(n2 + T (n2)) time.

(F) Does not matter - all these are polynomial if T (n) is polynomial, which is good
enough for our purposes.

21 / 70

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2024

24.3.2
NFAs/DFAs and Universality
FLNAME:24.3.2.0 ZZZ:24.3.2.0 NFAs/DFAs and Universality

22 / 70

DFA Universality

A DFA M is universal if it accepts every string.
That is, L(M) = Σ∗, the set of all strings.

Problem 24.2 (DFA universality).

Input: A DFA M .
Goal: Is M universal?

How do we solve DFA Universality?
We check if M has any reachable non-final state.

23 / 70

DFA Universality

A DFA M is universal if it accepts every string.
That is, L(M) = Σ∗, the set of all strings.

Problem 24.2 (DFA universality).

Input: A DFA M .
Goal: Is M universal?

How do we solve DFA Universality?
We check if M has any reachable non-final state.

23 / 70

DFA Universality

A DFA M is universal if it accepts every string.
That is, L(M) = Σ∗, the set of all strings.

Problem 24.2 (DFA universality).

Input: A DFA M .
Goal: Is M universal?

How do we solve DFA Universality?
We check if M has any reachable non-final state.

23 / 70

DFA Universality

A DFA M is universal if it accepts every string.
That is, L(M) = Σ∗, the set of all strings.

Problem 24.2 (DFA universality).

Input: A DFA M .
Goal: Is M universal?

How do we solve DFA Universality?
We check if M has any reachable non-final state.

23 / 70

NFA Universality

An NFA N is said to be universal if it accepts every string. That is, L(N) = Σ∗, the
set of all strings.

Problem 24.3 (NFA universality).

Input: A NFA M .
Goal: Is M universal?

How do we solve NFA Universality?
Reduce it to DFA Universality?
Given an NFA N , convert it to an equivalent DFA M , and use the DFA Universality
Algorithm.
The reduction takes exponential time!
NFA Universality is known to be PSPACE-Complete and we do not expect a
polynomial-time algorithm.

24 / 70

NFA Universality

An NFA N is said to be universal if it accepts every string. That is, L(N) = Σ∗, the
set of all strings.

Problem 24.3 (NFA universality).

Input: A NFA M .
Goal: Is M universal?

How do we solve NFA Universality?
Reduce it to DFA Universality?
Given an NFA N , convert it to an equivalent DFA M , and use the DFA Universality
Algorithm.
The reduction takes exponential time!
NFA Universality is known to be PSPACE-Complete and we do not expect a
polynomial-time algorithm.

24 / 70

NFA Universality

An NFA N is said to be universal if it accepts every string. That is, L(N) = Σ∗, the
set of all strings.

Problem 24.3 (NFA universality).

Input: A NFA M .
Goal: Is M universal?

How do we solve NFA Universality?
Reduce it to DFA Universality?
Given an NFA N , convert it to an equivalent DFA M , and use the DFA Universality
Algorithm.
The reduction takes exponential time!
NFA Universality is known to be PSPACE-Complete and we do not expect a
polynomial-time algorithm.

24 / 70

NFA Universality

An NFA N is said to be universal if it accepts every string. That is, L(N) = Σ∗, the
set of all strings.

Problem 24.3 (NFA universality).

Input: A NFA M .
Goal: Is M universal?

How do we solve NFA Universality?
Reduce it to DFA Universality?
Given an NFA N , convert it to an equivalent DFA M , and use the DFA Universality
Algorithm.
The reduction takes exponential time!
NFA Universality is known to be PSPACE-Complete and we do not expect a
polynomial-time algorithm.

24 / 70

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2024

24.4
Polynomial time reductions
FLNAME:24.4.0.0 ZZZ:24.4.0.0 Polynomial time reductions

25 / 70

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2024

24.4.1
A quick review of polynomial time
reductions
FLNAME:24.4.1.0 ZZZ:24.4.1.0 A quick review of polynomial time reductions

26 / 70

Polynomial-time reductions

An algorithm is efficient if it runs in polynomial-time.

To find efficient algorithms for problems, we are only interested in polynomial-time
reductions. Reductions that take longer are not useful.

If we have a polynomial-time reduction from problem X to problem Y (we write
X ≤P Y), and a poly-time algorithm AY for Y , we have a polynomial-time/efficient
algorithm for X .

Ax

R AYIX IY YES

NO

27 / 70

Polynomial-time reductions

An algorithm is efficient if it runs in polynomial-time.

To find efficient algorithms for problems, we are only interested in polynomial-time
reductions. Reductions that take longer are not useful.

If we have a polynomial-time reduction from problem X to problem Y (we write
X ≤P Y), and a poly-time algorithm AY for Y , we have a polynomial-time/efficient
algorithm for X .

Ax

R AYIX IY YES

NO

27 / 70

Polynomial-time reductions

An algorithm is efficient if it runs in polynomial-time.

To find efficient algorithms for problems, we are only interested in polynomial-time
reductions. Reductions that take longer are not useful.

If we have a polynomial-time reduction from problem X to problem Y (we write
X ≤P Y), and a poly-time algorithm AY for Y , we have a polynomial-time/efficient
algorithm for X .

Ax

R AYIX IY YES

NO

27 / 70

Polynomial-time reductions

An algorithm is efficient if it runs in polynomial-time.

To find efficient algorithms for problems, we are only interested in polynomial-time
reductions. Reductions that take longer are not useful.

If we have a polynomial-time reduction from problem X to problem Y (we write
X ≤P Y), and a poly-time algorithm AY for Y , we have a polynomial-time/efficient
algorithm for X .

Ax

R AYIX IY YES

NO

27 / 70

Polynomial-time Reduction

A polynomial time reduction from a decision problem X to a decision problem Y is an
algorithm A that has the following properties:

1. given an instance IX of X , A produces an instance IY of Y
2. A runs in time polynomial in |IX |.
3. Answer to IX YES ⇐⇒ answer to IY is YES.

Proposition 24.1.
If X ≤P Y then a polynomial time algorithm for Y implies a polynomial time
algorithm for X .

Such a reduction is a Karp reduction. Most reductions we use are Karp reductions.
Karp reductions are the same as mapping reductions when specialized to polynomial
time for the reduction step.

28 / 70

Review question: Reductions again...

Let X and Y be two decision problems, such that X can be solved in polynomial time,
and X ≤P Y . Then

(A) Y can be solved in polynomial time.

(B) Y can NOT be solved in polynomial time.

(C) If Y is hard then X is also hard.

(D) None of the above.

(E) All of the above.

29 / 70

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2024

24.4.2
Polynomial-time reductions and hardness
FLNAME:24.4.2.0 ZZZ:24.4.2.0 Polynomial-time reductions and hardness

30 / 70

Polynomial-time reductions and hardness

1. For decision problems X and Y , if X ≤P Y , and Y has an efficient algorithm, X
has an efficient algorithm.

2. If you believe that Independent Set does NOT have an efficient algorithm...

3. Showed: Independent Set ≤P Clique

4. =⇒ Clique should not be solvable in polynomial time.

5. If Clique had an efficient algorithm, so would Independent Set!

Proposition 24.2.

If X ≤P Y and X does not have an efficient algorithm, Y cannot
have an efficient algorithm.

31 / 70

Polynomial-time reductions and hardness

1. For decision problems X and Y , if X ≤P Y , and Y has an efficient algorithm, X
has an efficient algorithm.

2. If you believe that Independent Set does NOT have an efficient algorithm...

3. Showed: Independent Set ≤P Clique

4. =⇒ Clique should not be solvable in polynomial time.

5. If Clique had an efficient algorithm, so would Independent Set!

Proposition 24.2.

If X ≤P Y and X does not have an efficient algorithm, Y cannot
have an efficient algorithm.

31 / 70

Polynomial-time reductions and hardness

1. For decision problems X and Y , if X ≤P Y , and Y has an efficient algorithm, X
has an efficient algorithm.

2. If you believe that Independent Set does NOT have an efficient algorithm...

3. Showed: Independent Set ≤P Clique

4. =⇒ Clique should not be solvable in polynomial time.

5. If Clique had an efficient algorithm, so would Independent Set!

Proposition 24.2.

If X ≤P Y and X does not have an efficient algorithm, Y cannot
have an efficient algorithm.

31 / 70

Polynomial-time reductions and hardness

1. For decision problems X and Y , if X ≤P Y , and Y has an efficient algorithm, X
has an efficient algorithm.

2. If you believe that Independent Set does NOT have an efficient algorithm...

3. Showed: Independent Set ≤P Clique

4. =⇒ Clique should not be solvable in polynomial time.

5. If Clique had an efficient algorithm, so would Independent Set!

Proposition 24.2.

If X ≤P Y and X does not have an efficient algorithm, Y cannot
have an efficient algorithm.

31 / 70

Polynomial-time reductions and hardness

1. For decision problems X and Y , if X ≤P Y , and Y has an efficient algorithm, X
has an efficient algorithm.

2. If you believe that Independent Set does NOT have an efficient algorithm...

3. Showed: Independent Set ≤P Clique

4. =⇒ Clique should not be solvable in polynomial time.

5. If Clique had an efficient algorithm, so would Independent Set!

Proposition 24.2.

If X ≤P Y and X does not have an efficient algorithm, Y cannot
have an efficient algorithm.

31 / 70

Polynomial-time reductions and hardness

1. For decision problems X and Y , if X ≤P Y , and Y has an efficient algorithm, X
has an efficient algorithm.

2. If you believe that Independent Set does NOT have an efficient algorithm...

3. Showed: Independent Set ≤P Clique

4. =⇒ Clique should not be solvable in polynomial time.

5. If Clique had an efficient algorithm, so would Independent Set!

Proposition 24.2.

If X ≤P Y and X does not have an efficient algorithm, Y cannot
have an efficient algorithm.

31 / 70

Polynomial-time reductions and instance sizes

Proposition 24.3.
Let R be a polynomial-time reduction from X to Y . Then for any instance IX of X ,
the size of the instance IY of Y produced from IX by R is polynomial in the size of IX .

Proof.
R is a polynomial-time algorithm and hence on input IX of size |IX | it runs in time
p(|IX |) for some polynomial p().
IY is the output of R on input IX .
R can write at most p(|IX |) bits and hence |IY | ≤ p(|IX |).

Note: Converse is not true. A reduction need not be polynomial-time even if output of
reduction is of size polynomial in its input.

32 / 70

Polynomial-time reductions and instance sizes

Proposition 24.3.
Let R be a polynomial-time reduction from X to Y . Then for any instance IX of X ,
the size of the instance IY of Y produced from IX by R is polynomial in the size of IX .

Proof.
R is a polynomial-time algorithm and hence on input IX of size |IX | it runs in time
p(|IX |) for some polynomial p().
IY is the output of R on input IX .
R can write at most p(|IX |) bits and hence |IY | ≤ p(|IX |).

Note: Converse is not true. A reduction need not be polynomial-time even if output of
reduction is of size polynomial in its input.

32 / 70

Polynomial-time reductions and instance sizes

Proposition 24.3.
Let R be a polynomial-time reduction from X to Y . Then for any instance IX of X ,
the size of the instance IY of Y produced from IX by R is polynomial in the size of IX .

Proof.
R is a polynomial-time algorithm and hence on input IX of size |IX | it runs in time
p(|IX |) for some polynomial p().
IY is the output of R on input IX .
R can write at most p(|IX |) bits and hence |IY | ≤ p(|IX |).

Note: Converse is not true. A reduction need not be polynomial-time even if output of
reduction is of size polynomial in its input.

32 / 70

Polynomial-time Reduction

Definition 24.4.
A polynomial time reduction from a decision problem X to a decision problem Y is an
algorithm A that has the following properties:

1. Given an instance IX of X , A produces an instance IY of Y .

2. A runs in time polynomial in |IX |. This implies that |IY | (size of IY) is polynomial
in |IX |.

3. Answer to IX YES ⇐⇒ answer to IY is YES.

Proposition 24.5.
If X ≤P Y then a polynomial time algorithm for Y implies a polynomial time
algorithm for X .

33 / 70

Polynomial-time Reduction

Definition 24.4.
A polynomial time reduction from a decision problem X to a decision problem Y is an
algorithm A that has the following properties:

1. Given an instance IX of X , A produces an instance IY of Y .

2. A runs in time polynomial in |IX |. This implies that |IY | (size of IY) is polynomial
in |IX |.

3. Answer to IX YES ⇐⇒ answer to IY is YES.

Proposition 24.5.
If X ≤P Y then a polynomial time algorithm for Y implies a polynomial time
algorithm for X .

33 / 70

Transitivity of Reductions

Proposition 24.6.
X ≤P Y and Y ≤P Z implies that X ≤P Z .

Proof.
1. RX→Y : Polynomial reduction that works in polynomial time f (x).
2. w ∈ LX ⇐⇒ w ′ = RX→Y (w) ∈ LY .

3. RY→Z : Polynomial reduction that works in polynomial time g(x).
4. w ′ ∈ LY ⇐⇒ w ′′ = RY→Z(w ′) ∈ LZ .

5. w ∈ LX ⇐⇒ w ′ = RX→Y (w) ∈ LY ⇐⇒ w ′′ = RY→Z(RX→Y (w)) ∈
LZ .

6. w ∈ LX ⇐⇒ RY→Z(RX→Y (w)) ∈ LZ .

7. R′(x) = RY→Z(RX→Y (x)) is a reduction from X to Z .

8. Running time of R′(x) is h(x) = g(f (x)), which is a polynomial.

34 / 70

Transitivity of Reductions

Proposition 24.6.
X ≤P Y and Y ≤P Z implies that X ≤P Z .

Proof.
1. RX→Y : Polynomial reduction that works in polynomial time f (x).
2. w ∈ LX ⇐⇒ w ′ = RX→Y (w) ∈ LY .

3. RY→Z : Polynomial reduction that works in polynomial time g(x).
4. w ′ ∈ LY ⇐⇒ w ′′ = RY→Z(w ′) ∈ LZ .

5. w ∈ LX ⇐⇒ w ′ = RX→Y (w) ∈ LY ⇐⇒ w ′′ = RY→Z(RX→Y (w)) ∈
LZ .

6. w ∈ LX ⇐⇒ RY→Z(RX→Y (w)) ∈ LZ .

7. R′(x) = RY→Z(RX→Y (x)) is a reduction from X to Z .

8. Running time of R′(x) is h(x) = g(f (x)), which is a polynomial.

34 / 70

Transitivity of Reductions

Proposition 24.6.
X ≤P Y and Y ≤P Z implies that X ≤P Z .

Proof.
1. RX→Y : Polynomial reduction that works in polynomial time f (x).
2. w ∈ LX ⇐⇒ w ′ = RX→Y (w) ∈ LY .

3. RY→Z : Polynomial reduction that works in polynomial time g(x).
4. w ′ ∈ LY ⇐⇒ w ′′ = RY→Z(w ′) ∈ LZ .

5. w ∈ LX ⇐⇒ w ′ = RX→Y (w) ∈ LY ⇐⇒ w ′′ = RY→Z(RX→Y (w)) ∈
LZ .

6. w ∈ LX ⇐⇒ RY→Z(RX→Y (w)) ∈ LZ .

7. R′(x) = RY→Z(RX→Y (x)) is a reduction from X to Z .

8. Running time of R′(x) is h(x) = g(f (x)), which is a polynomial.

34 / 70

Transitivity of Reductions

Proposition 24.6.
X ≤P Y and Y ≤P Z implies that X ≤P Z .

Proof.
1. RX→Y : Polynomial reduction that works in polynomial time f (x).
2. w ∈ LX ⇐⇒ w ′ = RX→Y (w) ∈ LY .

3. RY→Z : Polynomial reduction that works in polynomial time g(x).
4. w ′ ∈ LY ⇐⇒ w ′′ = RY→Z(w ′) ∈ LZ .

5. w ∈ LX ⇐⇒ w ′ = RX→Y (w) ∈ LY ⇐⇒ w ′′ = RY→Z(RX→Y (w)) ∈
LZ .

6. w ∈ LX ⇐⇒ RY→Z(RX→Y (w)) ∈ LZ .

7. R′(x) = RY→Z(RX→Y (x)) is a reduction from X to Z .

8. Running time of R′(x) is h(x) = g(f (x)), which is a polynomial.

34 / 70

Transitivity of Reductions

Proposition 24.6.
X ≤P Y and Y ≤P Z implies that X ≤P Z .

Proof.
1. RX→Y : Polynomial reduction that works in polynomial time f (x).
2. w ∈ LX ⇐⇒ w ′ = RX→Y (w) ∈ LY .

3. RY→Z : Polynomial reduction that works in polynomial time g(x).
4. w ′ ∈ LY ⇐⇒ w ′′ = RY→Z(w ′) ∈ LZ .

5. w ∈ LX ⇐⇒ w ′ = RX→Y (w) ∈ LY ⇐⇒ w ′′ = RY→Z(RX→Y (w)) ∈
LZ .

6. w ∈ LX ⇐⇒ RY→Z(RX→Y (w)) ∈ LZ .

7. R′(x) = RY→Z(RX→Y (x)) is a reduction from X to Z .

8. Running time of R′(x) is h(x) = g(f (x)), which is a polynomial.

34 / 70

Transitivity of Reductions

Proposition 24.6.
X ≤P Y and Y ≤P Z implies that X ≤P Z .

Proof.
1. RX→Y : Polynomial reduction that works in polynomial time f (x).
2. w ∈ LX ⇐⇒ w ′ = RX→Y (w) ∈ LY .

3. RY→Z : Polynomial reduction that works in polynomial time g(x).
4. w ′ ∈ LY ⇐⇒ w ′′ = RY→Z(w ′) ∈ LZ .

5. w ∈ LX ⇐⇒ w ′ = RX→Y (w) ∈ LY ⇐⇒ w ′′ = RY→Z(RX→Y (w)) ∈
LZ .

6. w ∈ LX ⇐⇒ RY→Z(RX→Y (w)) ∈ LZ .

7. R′(x) = RY→Z(RX→Y (x)) is a reduction from X to Z .

8. Running time of R′(x) is h(x) = g(f (x)), which is a polynomial.

34 / 70

Transitivity of Reductions

Proposition 24.6.
X ≤P Y and Y ≤P Z implies that X ≤P Z .

Proof.
1. RX→Y : Polynomial reduction that works in polynomial time f (x).
2. w ∈ LX ⇐⇒ w ′ = RX→Y (w) ∈ LY .

3. RY→Z : Polynomial reduction that works in polynomial time g(x).
4. w ′ ∈ LY ⇐⇒ w ′′ = RY→Z(w ′) ∈ LZ .

5. w ∈ LX ⇐⇒ w ′ = RX→Y (w) ∈ LY ⇐⇒ w ′′ = RY→Z(RX→Y (w)) ∈
LZ .

6. w ∈ LX ⇐⇒ RY→Z(RX→Y (w)) ∈ LZ .

7. R′(x) = RY→Z(RX→Y (x)) is a reduction from X to Z .

8. Running time of R′(x) is h(x) = g(f (x)), which is a polynomial.

34 / 70

Transitivity of Reductions

Proposition 24.6.
X ≤P Y and Y ≤P Z implies that X ≤P Z .

Proof.
1. RX→Y : Polynomial reduction that works in polynomial time f (x).
2. w ∈ LX ⇐⇒ w ′ = RX→Y (w) ∈ LY .

3. RY→Z : Polynomial reduction that works in polynomial time g(x).
4. w ′ ∈ LY ⇐⇒ w ′′ = RY→Z(w ′) ∈ LZ .

5. w ∈ LX ⇐⇒ w ′ = RX→Y (w) ∈ LY ⇐⇒ w ′′ = RY→Z(RX→Y (w)) ∈
LZ .

6. w ∈ LX ⇐⇒ RY→Z(RX→Y (w)) ∈ LZ .

7. R′(x) = RY→Z(RX→Y (x)) is a reduction from X to Z .

8. Running time of R′(x) is h(x) = g(f (x)), which is a polynomial.

34 / 70

Transitivity of Reductions

Proposition 24.6.
X ≤P Y and Y ≤P Z implies that X ≤P Z .

Proof.
1. RX→Y : Polynomial reduction that works in polynomial time f (x).
2. w ∈ LX ⇐⇒ w ′ = RX→Y (w) ∈ LY .

3. RY→Z : Polynomial reduction that works in polynomial time g(x).
4. w ′ ∈ LY ⇐⇒ w ′′ = RY→Z(w ′) ∈ LZ .

5. w ∈ LX ⇐⇒ w ′ = RX→Y (w) ∈ LY ⇐⇒ w ′′ = RY→Z(RX→Y (w)) ∈
LZ .

6. w ∈ LX ⇐⇒ RY→Z(RX→Y (w)) ∈ LZ .

7. R′(x) = RY→Z(RX→Y (x)) is a reduction from X to Z .

8. Running time of R′(x) is h(x) = g(f (x)), which is a polynomial.

34 / 70

Transitivity of Reductions

Proposition 24.6.
X ≤P Y and Y ≤P Z implies that X ≤P Z .

Proof.
1. RX→Y : Polynomial reduction that works in polynomial time f (x).
2. w ∈ LX ⇐⇒ w ′ = RX→Y (w) ∈ LY .

3. RY→Z : Polynomial reduction that works in polynomial time g(x).
4. w ′ ∈ LY ⇐⇒ w ′′ = RY→Z(w ′) ∈ LZ .

5. w ∈ LX ⇐⇒ w ′ = RX→Y (w) ∈ LY ⇐⇒ w ′′ = RY→Z(RX→Y (w)) ∈
LZ .

6. w ∈ LX ⇐⇒ RY→Z(RX→Y (w)) ∈ LZ .

7. R′(x) = RY→Z(RX→Y (x)) is a reduction from X to Z .

8. Running time of R′(x) is h(x) = g(f (x)), which is a polynomial.

34 / 70

Be careful about reduction direction

Note: X ≤P Y does not imply that Y ≤P X and hence it is very important to know
the FROM and TO in a reduction.

To prove X ≤P Y you need to show a reduction FROM X TO Y
That is, show that an algorithm for Y implies an algorithm for X .

35 / 70

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2024

24.5
Independent Set and Vertex Cover
FLNAME:24.5.0.0 ZZZ:24.5.0.0 Independent Set and Vertex Cover

36 / 70

Vertex Cover

Given a graph G = (V ,E), a set of vertices S is:

1. A vertex cover if every e ∈ E has at least one endpoint in S .

37 / 70

Vertex Cover

Given a graph G = (V ,E), a set of vertices S is:

1. A vertex cover if every e ∈ E has at least one endpoint in S .

37 / 70

Vertex Cover

Given a graph G = (V ,E), a set of vertices S is:

1. A vertex cover if every e ∈ E has at least one endpoint in S .

37 / 70

Vertex Cover

Given a graph G = (V ,E), a set of vertices S is:

1. A vertex cover if every e ∈ E has at least one endpoint in S .

37 / 70

Vertex Cover

Given a graph G = (V ,E), a set of vertices S is:

1. A vertex cover if every e ∈ E has at least one endpoint in S .

37 / 70

The Vertex Cover Problem

Problem 24.1 (Vertex Cover).

Input: A graph G and integer k .
Goal: Is there a vertex cover of size ≤ k in G?

Can we relate Independent Set and Vertex Cover?

38 / 70

The Vertex Cover Problem

Problem 24.1 (Vertex Cover).

Input: A graph G and integer k .
Goal: Is there a vertex cover of size ≤ k in G?

Can we relate Independent Set and Vertex Cover?

38 / 70

Relationship between...
Vertex Cover and Independent Set

Proposition 24.2.
Let G = (V ,E) be a graph. S is an Independent Set ⇐⇒ V \ S is a vertex cover.

Proof.
(⇒) Let S be an independent set

0.1 Consider any edge uv ∈ E .
0.2 Since S is an independent set, either u ̸∈ S or v ̸∈ S .
0.3 Thus, either u ∈ V \ S or v ∈ V \ S .
0.4 V \ S is a vertex cover.

(⇐) Let V \ S be some vertex cover:

0.1 Consider u, v ∈ S
0.2 uv is not an edge of G, as otherwise V \ S does not cover uv .
0.3 =⇒ S is thus an independent set.

39 / 70

Relationship between...
Vertex Cover and Independent Set

Proposition 24.2.
Let G = (V ,E) be a graph. S is an Independent Set ⇐⇒ V \ S is a vertex cover.

Proof.
(⇒) Let S be an independent set

0.1 Consider any edge uv ∈ E .
0.2 Since S is an independent set, either u ̸∈ S or v ̸∈ S .
0.3 Thus, either u ∈ V \ S or v ∈ V \ S .
0.4 V \ S is a vertex cover.

(⇐) Let V \ S be some vertex cover:

0.1 Consider u, v ∈ S
0.2 uv is not an edge of G, as otherwise V \ S does not cover uv .
0.3 =⇒ S is thus an independent set.

39 / 70

Relationship between...
Vertex Cover and Independent Set

Proposition 24.2.
Let G = (V ,E) be a graph. S is an Independent Set ⇐⇒ V \ S is a vertex cover.

Proof.
(⇒) Let S be an independent set

0.1 Consider any edge uv ∈ E .
0.2 Since S is an independent set, either u ̸∈ S or v ̸∈ S .
0.3 Thus, either u ∈ V \ S or v ∈ V \ S .
0.4 V \ S is a vertex cover.

(⇐) Let V \ S be some vertex cover:

0.1 Consider u, v ∈ S
0.2 uv is not an edge of G, as otherwise V \ S does not cover uv .
0.3 =⇒ S is thus an independent set.

39 / 70

Independent Set ≤P Vertex Cover

1. G : graph with n vertices, and an integer k be an instance of the Independent
Set problem.

2. G has an independent set of size ≥ k ⇐⇒ G has a vertex cover of size ≤ n− k
3. (G , k) is an instance of Independent Set, and (G , n − k) is an instance of

Vertex Cover with the same answer.

4. Therefore, Independent Set ≤P Vertex Cover. Also Vertex Cover ≤P
Independent Set.

40 / 70

Independent Set ≤P Vertex Cover

1. G : graph with n vertices, and an integer k be an instance of the Independent
Set problem.

2. G has an independent set of size ≥ k ⇐⇒ G has a vertex cover of size ≤ n− k
3. (G , k) is an instance of Independent Set, and (G , n − k) is an instance of

Vertex Cover with the same answer.

4. Therefore, Independent Set ≤P Vertex Cover. Also Vertex Cover ≤P
Independent Set.

40 / 70

Independent Set ≤P Vertex Cover

1. G : graph with n vertices, and an integer k be an instance of the Independent
Set problem.

2. G has an independent set of size ≥ k ⇐⇒ G has a vertex cover of size ≤ n− k
3. (G , k) is an instance of Independent Set, and (G , n − k) is an instance of

Vertex Cover with the same answer.

4. Therefore, Independent Set ≤P Vertex Cover. Also Vertex Cover ≤P
Independent Set.

40 / 70

Independent Set ≤P Vertex Cover

1. G : graph with n vertices, and an integer k be an instance of the Independent
Set problem.

2. G has an independent set of size ≥ k ⇐⇒ G has a vertex cover of size ≤ n− k
3. (G , k) is an instance of Independent Set, and (G , n − k) is an instance of

Vertex Cover with the same answer.

4. Therefore, Independent Set ≤P Vertex Cover. Also Vertex Cover ≤P
Independent Set.

40 / 70

Proving Correctness of Reductions

To prove that X ≤P Y you need to give an algorithm A that:

1. Transforms an instance IX of X into an instance IY of Y .

2. Satisfies the property that answer to IX is YES ⇐⇒ IY is YES.

2.1 typical easy direction to prove: answer to IY is YES if answer to IX is YES
2.2 typical difficult direction to prove: answer to IX is YES if answer to IY is YES

(equivalently answer to IX is NO if answer to IY is NO).

3. Runs in polynomial time.

41 / 70

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2024

24.6
The Satisfiability Problem (SAT)
FLNAME:24.6.0.0 ZZZ:24.6.0.0 The Satisfiability Problem (SAT)

42 / 70

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2024

24.6.1
CNF, SAT, 3CNF and 3SAT
FLNAME:24.6.1.0 ZZZ:24.6.1.0 CNF, SAT, 3CNF and 3SAT

43 / 70

Propositional Formulas

Definition 24.1.
Consider a set of boolean variables x1, x2, . . . xn.

1. A literal is either a boolean variable xi or its negation ¬xi .

2. A clause is a disjunction of literals.
For example, x1 ∨ x2 ∨ ¬x4 is a clause.

3. A formula in conjunctive normal form (CNF) is propositional formula which is
a conjunction of clauses

3.1 (x1 ∨ x2 ∨ ¬x4) ∧ (x2 ∨ ¬x3) ∧ x5 is a CNF formula.

4. A formula φ is a 3CNF:
A CNF formula such that every clause has exactly 3 literals.

4.1 (x1 ∨ x2 ∨ ¬x4) ∧ (x2 ∨ ¬x3 ∨ x1) is a 3CNF formula, but
(x1 ∨ x2 ∨ ¬x4) ∧ (x2 ∨ ¬x3) ∧ x5 is not.

44 / 70

Propositional Formulas

Definition 24.1.
Consider a set of boolean variables x1, x2, . . . xn.

1. A literal is either a boolean variable xi or its negation ¬xi .

2. A clause is a disjunction of literals.
For example, x1 ∨ x2 ∨ ¬x4 is a clause.

3. A formula in conjunctive normal form (CNF) is propositional formula which is
a conjunction of clauses

3.1 (x1 ∨ x2 ∨ ¬x4) ∧ (x2 ∨ ¬x3) ∧ x5 is a CNF formula.

4. A formula φ is a 3CNF:
A CNF formula such that every clause has exactly 3 literals.

4.1 (x1 ∨ x2 ∨ ¬x4) ∧ (x2 ∨ ¬x3 ∨ x1) is a 3CNF formula, but
(x1 ∨ x2 ∨ ¬x4) ∧ (x2 ∨ ¬x3) ∧ x5 is not.

44 / 70

CNF is universal

Every boolean formula f : {0, 1}n → {0, 1} can be written as a CNF formula.

x1 x2 x3 x4 x5 x6 f (x1, x2, . . . , x6)

0 0 0 0 0 0 f (0, . . . , 0, 0)
0 0 0 0 0 1 f (0, . . . , 0, 1)
...

...
...

...
...

...
...

1 0 1 0 0 1 ?
1 0 1 0 1 0 0
1 0 1 0 1 1 ?
...

...
...

...
...

...
...

1 1 1 1 1 1 f (1, . . . , 1)

45 / 70

CNF is universal

Every boolean formula f : {0, 1}n → {0, 1} can be written as a CNF formula.

x1 x2 x3 x4 x5 x6 f (x1, x2, . . . , x6)

0 0 0 0 0 0 f (0, . . . , 0, 0)
0 0 0 0 0 1 f (0, . . . , 0, 1)
...

...
...

...
...

...
...

1 0 1 0 0 1 ?
1 0 1 0 1 0 0
1 0 1 0 1 1 ?
...

...
...

...
...

...
...

1 1 1 1 1 1 f (1, . . . , 1)

45 / 70

CNF is universal

Every boolean formula f : {0, 1}n → {0, 1} can be written as a CNF formula.

x1 x2 x3 x4 x5 x6 f (x1, x2, . . . , x6) x1 ∨ x2 ∨ x3 ∨ x4 ∨ x5 ∨ x6

0 0 0 0 0 0 f (0, . . . , 0, 0) 1
0 0 0 0 0 1 f (0, . . . , 0, 1) 1
...

...
...

...
...

...
...

...
1 0 1 0 0 1 ? 1
1 0 1 0 1 0 0 0
1 0 1 0 1 1 ? 1
...

...
...

...
...

...
...

1 1 1 1 1 1 f (1, . . . , 1) 1

45 / 70

CNF is universal

Every boolean formula f : {0, 1}n → {0, 1} can be written as a CNF formula.

x1 x2 x3 x4 x5 x6 f (x1, x2, . . . , x6) x1 ∨ x2 ∨ x3 ∨ x4 ∨ x5 ∨ x6

0 0 0 0 0 0 f (0, . . . , 0, 0) 1
0 0 0 0 0 1 f (0, . . . , 0, 1) 1
...

...
...

...
...

...
...

...
1 0 1 0 0 1 ? 1
1 0 1 0 1 0 0 0
1 0 1 0 1 1 ? 1
...

...
...

...
...

...
...

1 1 1 1 1 1 f (1, . . . , 1) 1

For every row that f is zero compute corresponding CNF clause.

45 / 70

CNF is universal

Every boolean formula f : {0, 1}n → {0, 1} can be written as a CNF formula.

x1 x2 x3 x4 x5 x6 f (x1, x2, . . . , x6) x1 ∨ x2 ∨ x3 ∨ x4 ∨ x5 ∨ x6

0 0 0 0 0 0 f (0, . . . , 0, 0) 1
0 0 0 0 0 1 f (0, . . . , 0, 1) 1
...

...
...

...
...

...
...

...
1 0 1 0 0 1 ? 1
1 0 1 0 1 0 0 0
1 0 1 0 1 1 ? 1
...

...
...

...
...

...
...

1 1 1 1 1 1 f (1, . . . , 1) 1

For every row that f is zero compute corresponding CNF clause.
Take the and (

∧
) of all the CNF clauses computed

45 / 70

CNF is universal

Every boolean formula f : {0, 1}n → {0, 1} can be written as a CNF formula.

x1 x2 x3 x4 x5 x6 f (x1, x2, . . . , x6) x1 ∨ x2 ∨ x3 ∨ x4 ∨ x5 ∨ x6

0 0 0 0 0 0 f (0, . . . , 0, 0) 1
0 0 0 0 0 1 f (0, . . . , 0, 1) 1
...

...
...

...
...

...
...

...
1 0 1 0 0 1 ? 1
1 0 1 0 1 0 0 0
1 0 1 0 1 1 ? 1
...

...
...

...
...

...
...

1 1 1 1 1 1 f (1, . . . , 1) 1

For every row that f is zero compute corresponding CNF clause.
Take the and (

∧
) of all the CNF clauses computed

Resulting CNF formula equivalent to f .
45 / 70

Satisfiability

Problem: SAT

Instance: A CNF formula φ.
Question: Is there a truth assignment to the variable of φ such that
φ evaluates to true?

Problem: 3SAT

Instance: A 3CNF formula φ.
Question: Is there a truth assignment to the variable of φ such that
φ evaluates to true?

46 / 70

Satisfiability

SAT
Given a CNF formula φ, is there a truth assignment to variables such that φ evaluates
to true?

Example 24.2.
1. (x1 ∨ x2 ∨ ¬x4) ∧ (x2 ∨ ¬x3) ∧ x5 is satisfiable; take x1, x2, . . . x5 to be all true

2. (x1 ∨ ¬x2) ∧ (¬x1 ∨ x2) ∧ (¬x1 ∨ ¬x2) ∧ (x1 ∨ x2) is not satisfiable.

3SAT
Given a 3CNF formula φ, is there a truth assignment to variables such that φ
evaluates to true?

(More on 2SAT in a bit...)

47 / 70

Importance of SAT and 3SAT

1. SAT and 3SAT are basic constraint satisfaction problems.

2. Many different problems can reduced to them because of the simple yet powerful
expressively of logical constraints.

3. Arise naturally in many applications involving hardware and software verification
and correctness.

4. As we will see, it is a fundamental problem in theory of NP-Completeness.

48 / 70

z = x

Given two bits x, z which of the following SAT formulas is equivalent to the formula
z = x :
(A) (z ∨ x) ∧ (z ∨ x).
(B) (z ∨ x) ∧ (z ∨ x).
(C) (z ∨ x) ∧ (z ∨ x) ∧ (z ∨ x).
(D) z ⊕ x .
(E) (z ∨ x) ∧ (z ∨ x) ∧ (z ∨ x) ∧ (z ∨ x).

49 / 70

z = x ∧ y

Given three bits x, y , z which of the following SAT formulas is equivalent to the
formula z = x ∧ y :
(A) (z ∨ x ∨ y) ∧ (z ∨ x ∨ y).
(B) (z ∨ x ∨ y) ∧ (z ∨ x ∨ y) ∧ (z ∨ x ∨ y).
(C) (z ∨ x ∨ y) ∧ (z ∨ x ∨ y) ∧ (z ∨ x ∨ y) ∧ (z ∨ x ∨ y).
(D) (z ∨ x ∨ y) ∧ (z ∨ x ∨ y) ∧ (z ∨ x ∨ y) ∧ (z ∨ x ∨ y).
(E) (z ∨ x ∨ y) ∧ (z ∨ x ∨ y) ∧ (z ∨ x ∨ y) ∧ (z ∨ x ∨ y) ∧ (z ∨ x ∨ y) ∧

(z ∨ x ∨ y) ∧ (z ∨ x ∨ y) ∧ (z ∨ x ∨ y).

50 / 70

z = x ∨ y

Given three bits x, y , z which of the following SAT formulas is equivalent to the
formula z = x ∨ y :
(A) (z ∨ x ∨ y) ∧ (z ∨ x ∨ y) ∧ (z ∨ x ∨ y).
(B) (z ∨ x ∨ y) ∧ (z ∨ x ∨ y) ∧ (z ∨ x ∨ y) ∧ (z ∨ x ∨ y).
(C) (z ∨ x ∨ y) ∧ (z ∨ x ∨ y) ∧ (z ∨ x ∨ y) ∧ (z ∨ x ∨ y).
(D) (z ∨ x ∨ y) ∧ (z ∨ x ∨ y) ∧ (z ∨ x ∨ y) ∧ (z ∨ x ∨ y) ∧ (z ∨ x ∨ y) ∧

(z ∨ x ∨ y) ∧ (z ∨ x ∨ y) ∧ (z ∨ x ∨ y).
(E) (z ∨ x ∨ y) ∧ (z ∨ x ∨ y) ∧ (z ∨ x ∨ y) ∧ (z ∨ x ∨ y).

51 / 70

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2024

24.6.1.1
Review problems on CNF
FLNAME:24.6.1.1 ZZZ:24.6.1.1 Review problems on CNF

52 / 70

z = x: Solution
Given two bits x, z which of the following
SAT formulas is equivalent to the formula
z = x :
(A) (z ∨ x) ∧ (z ∨ x).
(B) (z ∨ x) ∧ (z ∨ x).
(C) (z ∨ x) ∧ (z ∨ x) ∧ (z ∨ x).
(D) z ⊕ x .
(E) (z ∨ x)∧(z ∨ x)∧(z ∨ x)∧(z ∨ x).

x y z = x
0 0 0
0 1 1
1 0 1
1 1 0

53 / 70

z = x ∧ y
Given three bits x, y , z which of the follow-
ing SAT formulas is equivalent to the for-
mula z = x ∧ y :
(A) (z ∨ x ∨ y) ∧ (z ∨ x ∨ y).
(B) (z ∨ x ∨ y) ∧ (z ∨ x ∨ y) ∧

(z ∨ x ∨ y).
(C) (z ∨ x ∨ y) ∧ (z ∨ x ∨ y) ∧

(z ∨ x ∨ y) ∧ (z ∨ x ∨ y).
(D) (z ∨ x ∨ y) ∧ (z ∨ x ∨ y) ∧

(z ∨ x ∨ y) ∧ (z ∨ x ∨ y).
(E) (z ∨ x ∨ y) ∧ (z ∨ x ∨ y) ∧

(z ∨ x ∨ y) ∧ (z ∨ x ∨ y) ∧
(z ∨ x ∨ y) ∧ (z ∨ x ∨ y) ∧
(z ∨ x ∨ y) ∧ (z ∨ x ∨ y).

x y z z = x ∧ y
0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1

54 / 70

z = x ∨ y
Given three bits x, y , z which of the follow-
ing SAT formulas is equivalent to the for-
mula z = x ∨ y :
(A) (z ∨ x ∨ y) ∧ (z ∨ x ∨ y) ∧

(z ∨ x ∨ y).
(B) (z ∨ x ∨ y) ∧ (z ∨ x ∨ y) ∧

(z ∨ x ∨ y) ∧ (z ∨ x ∨ y).
(C) (z ∨ x ∨ y) ∧ (z ∨ x ∨ y) ∧

(z ∨ x ∨ y) ∧ (z ∨ x ∨ y).
(D) (z ∨ x ∨ y) ∧ (z ∨ x ∨ y) ∧

(z ∨ x ∨ y) ∧ (z ∨ x ∨ y) ∧
(z ∨ x ∨ y) ∧ (z ∨ x ∨ y) ∧
(z ∨ x ∨ y) ∧ (z ∨ x ∨ y).

(E) (z ∨ x ∨ y) ∧ (z ∨ x ∨ y) ∧
(z ∨ x ∨ y) ∧ (z ∨ x ∨ y).

x y z z = x ∨ y
0 0 0 1
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1

55 / 70

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2024

24.6.2
Reducing SAT to 3SAT
FLNAME:24.6.2.0 ZZZ:24.6.2.0 Reducing SAT to 3SAT

56 / 70

SAT ≤P 3SAT

How SAT is different from 3SAT?
In SAT clauses might have arbitrary length: 1, 2, 3, . . . variables:(

x ∨ y ∨ z ∨ w ∨ u
)
∧
(
¬x ∨ ¬y ∨ ¬z ∨ w ∨ u

)
∧
(
¬x

)
In 3SAT every clause must have exactly 3 different literals.

To reduce from an instance of SAT to an instance of 3SAT, we must make all clauses
to have exactly 3 variables...

Basic idea
1. Pad short clauses so they have 3 literals.

2. Break long clauses into shorter clauses.

3. Repeat the above till we have a 3CNF.

57 / 70

SAT ≤P 3SAT

How SAT is different from 3SAT?
In SAT clauses might have arbitrary length: 1, 2, 3, . . . variables:(

x ∨ y ∨ z ∨ w ∨ u
)
∧
(
¬x ∨ ¬y ∨ ¬z ∨ w ∨ u

)
∧
(
¬x

)
In 3SAT every clause must have exactly 3 different literals.

To reduce from an instance of SAT to an instance of 3SAT, we must make all clauses
to have exactly 3 variables...

Basic idea
1. Pad short clauses so they have 3 literals.

2. Break long clauses into shorter clauses.

3. Repeat the above till we have a 3CNF.

57 / 70

3SAT ≤P SAT

1. 3SAT ≤P SAT.

2. Because...
A 3SAT instance is also an instance of SAT.

58 / 70

SAT ≤P 3SAT

Claim 24.3.
SAT ≤P 3SAT.

Given φ a SAT formula we create a 3SAT formula φ′ such that

1. φ is satisfiable ⇐⇒ φ′ is satisfiable.

2. φ′ can be constructed from φ in time polynomial in |φ|.

Idea: if a clause of φ is not of length 3, replace it with several clauses of length exactly
3.

59 / 70

SAT ≤P 3SAT

Claim 24.3.
SAT ≤P 3SAT.

Given φ a SAT formula we create a 3SAT formula φ′ such that

1. φ is satisfiable ⇐⇒ φ′ is satisfiable.

2. φ′ can be constructed from φ in time polynomial in |φ|.

Idea: if a clause of φ is not of length 3, replace it with several clauses of length exactly
3.

59 / 70

SAT ≤P 3SAT

Claim 24.3.
SAT ≤P 3SAT.

Given φ a SAT formula we create a 3SAT formula φ′ such that

1. φ is satisfiable ⇐⇒ φ′ is satisfiable.

2. φ′ can be constructed from φ in time polynomial in |φ|.

Idea: if a clause of φ is not of length 3, replace it with several clauses of length exactly
3.

59 / 70

SAT ≤P 3SAT
A clause with two literals

Reduction Ideas: clause with 2 literals
1. Case clause with 2 literals: Let c = ℓ1 ∨ ℓ2. Let u be a new variable. Consider

c ′ =
(
ℓ1 ∨ ℓ2 ∨ u

)
∧

(
ℓ1 ∨ ℓ2 ∨ ¬u

)
.

2. Suppose φ = ψ ∧ c . Then φ′ = ψ ∧ c ′ is satisfiable ⇐⇒ φ is satisfiable.

60 / 70

SAT ≤P 3SAT
A clause with a single literal

Reduction Ideas: clause with 1 literal
1. Case clause with one literal: Let c be a clause with a single literal (i.e., c = ℓ).

Let u, v be new variables. Consider

c ′ =
(
ℓ ∨ u ∨ v

)
∧
(
ℓ ∨ u ∨ ¬v

)
∧
(
ℓ ∨ ¬u ∨ v

)
∧
(
ℓ ∨ ¬u ∨ ¬v

)
.

2. Suppose φ = ψ ∧ c . Then φ′ = ψ ∧ c ′ is satisfiable ⇐⇒ φ is satisfiable.

61 / 70

SAT ≤P 3SAT
A clause with more than 3 literals

Reduction Ideas: clause with more than 3 literals
1. Case clause with five literals: Let c = ℓ1 ∨ ℓ2 ∨ ℓ3 ∨ ℓ4 ∨ ℓ5. Let u be a new

variable. Consider

c ′ =
(
ℓ1 ∨ ℓ2 ∨ ℓ3 ∨ u

)
∧

(
ℓ4 ∨ ℓ5 ∨ ¬u

)
.

2. Suppose φ = ψ ∧ c . Then φ′ = ψ ∧ c ′ is satisfiable ⇐⇒ φ is satisfiable.

62 / 70

SAT ≤P 3SAT
A clause with more than 3 literals

Reduction Ideas: clause with more than 3 literals
1. Case clause with k > 3 literals: Let c = ℓ1 ∨ ℓ2 ∨ . . . ∨ ℓk . Let u be a new

variable. Consider

c ′ =
(
ℓ1 ∨ ℓ2 . . . ℓk−2 ∨ u

)
∧

(
ℓk−1 ∨ ℓk ∨ ¬u

)
.

2. Suppose φ = ψ ∧ c . Then φ′ = ψ ∧ c ′ is satisfiable ⇐⇒ φ is satisfiable.

63 / 70

Breaking a clause

Lemma 24.4.
For any boolean formulas X and Y and z a new boolean variable. Then

X ∨ Y is satisfiable

if and only if, z can be assigned a value such that(
X ∨ z

)
∧

(
Y ∨ ¬z

)
is satisfiable

(with the same assignment to the variables appearing in X and Y).

64 / 70

SAT ≤P 3SAT (contd)
Clauses with more than 3 literals

Let c = ℓ1 ∨ · · · ∨ ℓk . Let u1, . . . uk−3 be new variables. Consider

c ′ =
(
ℓ1 ∨ ℓ2 ∨ u1

)
∧

(
ℓ3 ∨ ¬u1 ∨ u2

)
∧

(
ℓ4 ∨ ¬u2 ∨ u3

)
∧

· · · ∧
(
ℓk−2 ∨ ¬uk−4 ∨ uk−3

)
∧

(
ℓk−1 ∨ ℓk ∨ ¬uk−3

)
.

Claim 24.5.
φ = ψ ∧ c is satisfiable ⇐⇒ φ′ = ψ ∧ c ′ is satisfiable.

Another way to see it — reduce size of clause by one:

c ′ =
(
ℓ1 ∨ ℓ2 . . . ∨ ℓk−2 ∨ uk−3

)
∧

(
ℓk−1 ∨ ℓk ∨ ¬uk−3

)
.

65 / 70

An Example

Example 24.6.

φ =
(
¬x1 ∨ ¬x4

)
∧

(
x1 ∨ ¬x2 ∨ ¬x3

)
∧
(
¬x2 ∨ ¬x3 ∨ x4 ∨ x1

)
∧

(
x1

)
.

Equivalent form:

ψ = (¬x1 ∨ ¬x4 ∨ z) ∧ (¬x1 ∨ ¬x4 ∨ ¬z)
∧ (x1 ∨ ¬x2 ∨ ¬x3)

∧ (¬x2 ∨ ¬x3 ∨ y1) ∧ (x4 ∨ x1 ∨ ¬y1)

∧ (x1 ∨ u ∨ v) ∧ (x1 ∨ u ∨ ¬v)
∧ (x1 ∨ ¬u ∨ v) ∧(x1 ∨ ¬u ∨ ¬v) .

66 / 70

An Example

Example 24.6.

φ =
(
¬x1 ∨ ¬x4

)
∧

(
x1 ∨ ¬x2 ∨ ¬x3

)
∧
(
¬x2 ∨ ¬x3 ∨ x4 ∨ x1

)
∧

(
x1

)
.

Equivalent form:

ψ = (¬x1 ∨ ¬x4 ∨ z) ∧ (¬x1 ∨ ¬x4 ∨ ¬z)
∧ (x1 ∨ ¬x2 ∨ ¬x3)

∧ (¬x2 ∨ ¬x3 ∨ y1) ∧ (x4 ∨ x1 ∨ ¬y1)

∧ (x1 ∨ u ∨ v) ∧ (x1 ∨ u ∨ ¬v)
∧ (x1 ∨ ¬u ∨ v) ∧(x1 ∨ ¬u ∨ ¬v) .

66 / 70

An Example

Example 24.6.

φ =
(
¬x1 ∨ ¬x4

)
∧

(
x1 ∨ ¬x2 ∨ ¬x3

)
∧
(
¬x2 ∨ ¬x3 ∨ x4 ∨ x1

)
∧

(
x1

)
.

Equivalent form:

ψ = (¬x1 ∨ ¬x4 ∨ z) ∧ (¬x1 ∨ ¬x4 ∨ ¬z)
∧ (x1 ∨ ¬x2 ∨ ¬x3)

∧ (¬x2 ∨ ¬x3 ∨ y1) ∧ (x4 ∨ x1 ∨ ¬y1)

∧ (x1 ∨ u ∨ v) ∧ (x1 ∨ u ∨ ¬v)
∧ (x1 ∨ ¬u ∨ v) ∧(x1 ∨ ¬u ∨ ¬v) .

66 / 70

An Example

Example 24.6.

φ =
(
¬x1 ∨ ¬x4

)
∧

(
x1 ∨ ¬x2 ∨ ¬x3

)
∧
(
¬x2 ∨ ¬x3 ∨ x4 ∨ x1

)
∧

(
x1

)
.

Equivalent form:

ψ = (¬x1 ∨ ¬x4 ∨ z) ∧ (¬x1 ∨ ¬x4 ∨ ¬z)
∧ (x1 ∨ ¬x2 ∨ ¬x3)

∧ (¬x2 ∨ ¬x3 ∨ y1) ∧ (x4 ∨ x1 ∨ ¬y1)

∧ (x1 ∨ u ∨ v) ∧ (x1 ∨ u ∨ ¬v)
∧ (x1 ∨ ¬u ∨ v) ∧(x1 ∨ ¬u ∨ ¬v) .

66 / 70

Overall Reduction Algorithm
Reduction from SAT to 3SAT

ReduceSATTo3SAT(φ):
// φ: CNF formula.

for each clause c of φ do
if c does not have exactly 3 literals then

construct c ′ as before

else
c ′ = c

ψ is conjunction of all c ′ constructed in loop

return Solver3SAT(ψ)

Correctness (informal)

φ is satisfiable ⇐⇒ ψ is satisfiable because for each clause c , the new 3CNF
formula c ′ is logically equivalent to c .

67 / 70

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2024

24.6.3
2SAT
FLNAME:24.6.3.0 ZZZ:24.6.3.0 2SAT

68 / 70

What about 2SAT?

2SAT can be solved in polynomial time! (specifically, linear time!)

No known polynomial time reduction from SAT (or 3SAT) to 2SAT. If there was, then
SAT and 3SAT would be solvable in polynomial time.

Why the reduction from 3SAT to 2SAT fails?

Consider a clause (x ∨ y ∨ z). We need to reduce it to a collection of 2CNF clauses.
Introduce a face variable α, and rewrite this as

(x ∨ y ∨ α) ∧ (¬α ∨ z) (bad! clause with 3 vars)

or (x ∨ α) ∧ (¬α ∨ y ∨ z) (bad! clause with 3 vars).

(In animal farm language: 2SAT good, 3SAT bad.)

69 / 70

What about 2SAT?

A challenging exercise: Given a 2SAT formula show to compute its satisfying
assignment...
(Hint: Create a graph with two vertices for each variable (for a variable x there would
be two vertices with labels x = 0 and x = 1). For ever 2CNF clause add two directed
edges in the graph. The edges are implication edges: They state that if you decide to
assign a certain value to a variable, then you must assign a certain value to some other
variable.
Now compute the strong connected components in this graph, and continue from
there...)

70 / 70

	A quick review: Polynomials
	(Polynomial Time) Reductions: Overview
	Examples of Reductions
	Independent Set and Clique
	NFAs/DFAs and Universality

	Polynomial time reductions
	A quick review of polynomial time reductions
	Polynomial-time reductions and hardness

	Independent Set and Vertex Cover
	The Satisfiability Problem (SAT)
	CNF, SAT, 3CNF and 3SAT
	Reducing SAT to 3SAT
	2SAT

