Intro. Algorithms & Models of Computation

CS/ECE 374A, Fall 2024

Unweighted Bipartite Matchings

Lecture 22 Thursday, November 14, 2024

LATEXed: December 12, 2024 20:43

Intro. Algorithms & Models of Computation

CS/ECE 374A, Fall 2024

22.1 Matchings

22.1.1: Definitions

Matching, perfect, maximal

Definition 22.1.

For a graph G a set $M \subseteq E$ is a <u>matching</u> if no pair of edges of M has a common vertex.

Definition 22.2.

A matching is <u>perfect</u> if it covers all the vertices of G. For a weight function w, which assigns real weight to the edges of G, a matching M is a <u>maximal weight matching</u>, if M is a matching and $w(M) = \sum_{e \in M} w(e)$ is maximal.

Definition 22.3.

If there is no weight on the edges, we consider the weight of every edge to be one, and in this case, we are trying to compute a **maximum size matching**.

The problem

Problem 22.4.

Given a graph G and a weight function on the edges, compute the maximum weight matching in G.

22.2.2: Matchings and alternating paths

- 1. M: matching
- 2. $e \in M$ is a **matching edge**matching!matching edge.
- 3. $e' \in E(G) \setminus M$ is free.
- 4. $v \in V(G)$ matched \iff adjacent to edge in M.
- 5. unmatched vertex v' is **free**.
- 6. **alternating path**: a simple path edges alternating between matched and free edges.
- 7. alternating cycle...
- 8. **length** of a path/cycle is the number of edges in it.

- 1. M: matching.
- 2. $e \in M$ is a matching edgematching!matching edge.
- 3. $e' \in E(G) \setminus M$ is free.
- 4. $v \in V(G)$ matched \iff adjacent to edge in M.
- 5. unmatched vertex v' is free.
- 6. **alternating path**: a simple path edges alternating between matched and free edges.
- 7. alternating cycle...
- 8. **length** of a path/cycle is the number of edges in it.

- 1. M: matching.
- 2. $e \in M$ is a matching edgematching!matching edge.
- 3. $e' \in E(G) \setminus M$ is <u>free</u>.
- 4. $v \in V(G)$ matched \iff adjacent to edge in M.
- 5. unmatched vertex v' is **free**.
- 6. **alternating path**: a simple path edges alternating between matched and free edges.
- 7. alternating cycle..
- 8. **length** of a path/cycle is the number of edges in it.

- 1. M: matching.
- 2. $e \in M$ is a **matching edge**matching!matching edge.
- 3. $e' \in E(G) \setminus M$ is free.
- 4. $v \in V(G)$ matched \iff adjacent to edge in M.
- 5. unmatched vertex v' is **free**.
- 6. **alternating path**: a simple path edges alternating between matched and free edges.
- 7. alternating cycle...
- 8. **length** of a path/cycle is the number of edges in it.

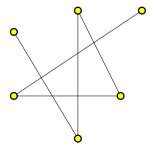
- 1. M: matching.
- 2. $e \in M$ is a **matching edge**matching!matching edge.
- 3. $e' \in E(G) \setminus M$ is <u>free</u>.
- 4. $v \in V(G)$ matched \iff adjacent to edge in M.
- 5. unmatched vertex v' is free.
- 6. **alternating path**: a simple path edges alternating between matched and free edges.
- 7. alternating cycle...
- 8. **length** of a path/cycle is the number of edges in it.

- 1. M: matching.
- 2. $e \in M$ is a **matching edge**matching!matching edge.
- 3. $e' \in E(G) \setminus M$ is <u>free</u>.
- 4. $v \in V(G)$ matched \iff adjacent to edge in M.
- 5. unmatched vertex v' is **free**.
- 6. <u>alternating path</u>: a simple path edges alternating between matched and free edges.
- 7. alternating cycle...
- 8. **length** of a path/cycle is the number of edges in it.

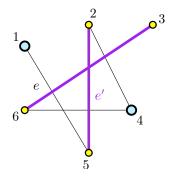
- 1. M: matching.
- 2. $e \in M$ is a **matching edge**matching!matching edge.
- 3. $e' \in E(G) \setminus M$ is <u>free</u>.
- 4. $v \in V(G)$ matched \iff adjacent to edge in M.
- 5. unmatched vertex v' is **free**.
- 6. <u>alternating path</u>: a simple path edges alternating between matched and free edges.
- 7. alternating cycle..
- 8. **length** of a path/cycle is the number of edges in it.

- 1. M: matching.
- 2. $e \in M$ is a **matching edge**matching!matching edge.
- 3. $e' \in E(G) \setminus M$ is <u>free</u>.
- 4. $v \in V(G)$ matched \iff adjacent to edge in M.
- 5. unmatched vertex v' is free.
- 6. <u>alternating path</u>: a simple path edges alternating between matched and free edges.
- 7. alternating cycle...
- 8. **length** of a path/cycle is the number of edges in it.

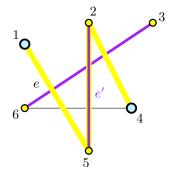
- 1. M: matching.
- 2. $e \in M$ is a **matching edge**matching!matching edge.
- 3. $e' \in E(G) \setminus M$ is <u>free</u>.
- 4. $v \in V(G)$ matched \iff adjacent to edge in M.
- 5. unmatched vertex v' is **free**.
- 6. <u>alternating path</u>: a simple path edges alternating between matched and free edges.
- 7. alternating cycle...
- 8. **length** of a path/cycle is the number of edges in it.



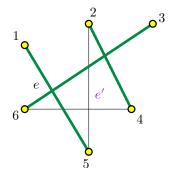
(A) The input graph.



(B) A maximal matching in G. The edge e is free, and vertices 1 and 4 are free.



(C) An alternating path.



(D) The resulting matching from applying the augmenting path.

Definition 22.1.

- 1. π is simple,
- 2. for all i, $e_i = v_i v_{i+1} \in E(G)$,
- 3. v_1 and v_{2k+2} are free vertices for M,
- 4. $e_1, e_3, \dots, e_{2k+1} \notin M$, and
- 5. $e_2, e_4, \ldots, e_{2k} \in M$.

Definition 22.1.

- 1. π is simple,
- 2. for all i, $e_i = v_i v_{i+1} \in E(G)$,
- 3. v_1 and v_{2k+2} are free vertices for M,
- 4. $e_1, e_3, \ldots, e_{2k+1} \notin M$, and
- 5. $e_2, e_4, \ldots, e_{2k} \in M$.

Definition 22.1.

- 1. π is simple,
- 2. for all i, $e_i = v_i v_{i+1} \in E(G)$,
- 3. v_1 and v_{2k+2} are free vertices for M,
- 4. $e_1, e_3, \ldots, e_{2k+1} \notin M$, and
- 5. $e_2, e_4, \ldots, e_{2k} \in M$.

Definition 22.1.

- 1. π is simple,
- 2. for all i, $e_i = v_i v_{i+1} \in E(G)$,
- 3. v_1 and v_{2k+2} are free vertices for M,
- 4. $e_1, e_3, \ldots, e_{2k+1} \notin M$, and
- 5. $e_2, e_4, \ldots, e_{2k} \in M$.

Definition 22.1.

Path $\pi = v_1 v_2, \dots, v_{2k+2}$ is **augmenting** path for matching M (for graph G):

- 1. π is simple,
- 2. for all i, $e_i = v_i v_{i+1} \in E(G)$,
- 3. v_1 and v_{2k+2} are free vertices for M,
- 4. $e_1, e_3, \ldots, e_{2k+1} \notin M$, and
- 5. $e_2, e_4, \ldots, e_{2k} \in M$.

After applying both augmenting path, we end up with maximum matching here.

Augmenting paths improve things

Lemma 22.2.

M: matching. π : augmenting path relative to M. Then

$$M' = M \oplus \pi = \{e \in E \mid e \in (M \setminus \pi) \cup (\pi \setminus M)\}$$

is a matching of size |M| + 1.

- 1. Remove π from graph.
- 2. Leftover matching: $|M| |M \cap \pi|$.
- 3. Add back π . Add free edges of π to matching.
- 4. M': New set of edges... a matching
- 5. $|M'| = |M| |M \cap \pi| + |\pi \setminus M| = |M| + 1$.

Augmenting paths improve things

Lemma 22.2.

M: matching. π : augmenting path relative to M. Then

$$M' = M \oplus \pi = \{e \in E \mid e \in (M \setminus \pi) \cup (\pi \setminus M)\}$$

is a matching of size |M| + 1.

- 1. Remove π from graph.
- 2. Leftover matching: $|M| |M \cap \pi|$.
- 3. Add back π . Add free edges of π to matching.
- 4. M': New set of edges... a matching.
- 5. $|M'| = |M| |M \cap \pi| + |\pi \setminus M| = |M| + 1$.

Augmenting paths improve things

Lemma 22.2.

M: matching. π : augmenting path relative to M. Then

$$M' = M \oplus \pi = \{e \in E \mid e \in (M \setminus \pi) \cup (\pi \setminus M)\}$$

is a matching of size |M| + 1.

- 1. Remove π from graph.
- 2. Leftover matching: $|M| |M \cap \pi|$.
- 3. Add back π . Add free edges of π to matching.
- 4. M': New set of edges... a matching.
- 5. $|M'| = |M| |M \cap \pi| + |\pi \setminus M| = |M| + 1$.

Lemma 22.3.

M: matching. T: maximum matching. k = |T| - |M|.

Then **M** has **k** vertex **disjoint** augmenting paths.

- 1. $E' = M \oplus T$. H = (V, E').
 - $2. \ \forall v \in \forall (H): \ a(v) \leq 2.$
 - 3. **H**: collection of alternating paths and cycles.
- 5. k more edges of T in $M \oplus T$ than of M.
- S. K. More edges of T. M. W. G. T. Linding of W.
- 7. For a path $\pi \in H$: $|\pi \cap M| < |\pi \cap T| < |\pi \cap M| + 1$
- 8. For augmenting path π : $|\pi \cap T| = |\pi \cap M| + 1$.
- 9. \implies Must be k augmenting paths in H.

Lemma 22.3.

M: matching. T: maximum matching. k = |T| - |M|. Then M has k vertex disjoint augmenting paths.

- 1. $E' = M \oplus T$. H = (V, E').
- 2. $\forall v \in V(H)$: $d(v) \leq 2$.
- 3. **H**: collection of alternating paths and cycles.
- 5. k more edges of T in $M \oplus T$ than of M.
- 5. Killiore edges of Till IVI 🕀 Tillall of IVI.
- 7. For a path $\pi \in H$: $|\pi \cap M| < |\pi \cap T| < |\pi \cap M| + 1$
- 8. For augmenting path π : $|\pi \cap T| = |\pi \cap M| + 1$.
- 9. \implies Must be k augmenting paths in H.

Lemma 22.3.

M: matching. T: maximum matching. k = |T| - |M|. Then M has k vertex disjoint augmenting paths.

- 1. $E' = M \oplus T$. H = (V, E').
- 2. $\forall v \in V(H)$: $d(v) \leq 2$.
- 3. **H**: collection of alternating paths and cycles.
- 4. cycles are even length.
- 5. k more edges of T in $M \oplus T$ than of M.
- 6. For any cycle $C \in H$: $|C \cap M| = |C \cap T|$.
- 7. For a path $\pi \in H$: $|\pi \cap M| \leq |\pi \cap T| \leq |\pi \cap M| + 1$.
- 8. For augmenting path π : $|\pi \cap T| = |\pi \cap M| + 1$.
- 9. \implies Must be k augmenting paths in H.

Lemma 22.3.

M: matching. T: maximum matching. k = |T| - |M|.

Then M has k vertex disjoint augmenting paths.

- 1. $E' = M \oplus T$. H = (V, E').
- 2. **H**: collection of alternating paths and cycles.
- 3. cycles are even length
- 4. k more edges of T in $M \oplus T$ than of M.
- 5. For any cycle $C \in H$: $|C \cap M| = |C \cap T|$.
- 6. For a path $\pi \in H$: $|\pi \cap M| < |\pi \cap T| < |\pi \cap M| + 1$.
- 7. For augmenting path π : $|\pi \cap T| = |\pi \cap M| + 1$
- 8. \implies Must be k augmenting paths in H.

Lemma 22.3.

M: matching. T: maximum matching. k = |T| - |M|.

Then M has k vertex disjoint augmenting paths.

- 1. $E' = M \oplus T$. H = (V, E').
- 2. **H**: collection of alternating paths and cycles.
- 3. cycles are even length.
- 4. k more edges of T in $M \oplus T$ than of M.
- 5. For any cycle $C \in H$: $|C \cap M| = |C \cap T|$.
- 6. For a path $\pi \in H$: $|\pi \cap M| \leq |\pi \cap T| \leq |\pi \cap M| + 1$.
- 7. For augmenting path π : $|\pi \cap T| = |\pi \cap M| + 1$.
- 8. \implies Must be k augmenting paths in H.

Lemma 22.3.

M: matching. T: maximum matching. k = |T| - |M|. Then M has k vertex disjoint augmenting paths.

- 1. $E' = M \oplus T$. H = (V, E').
- 2. H: collection of alternating paths and cycles.
- 3. cycles are even length.
- 4. k more edges of T in $M \oplus T$ than of M.
- 5. For any cycle $C \in H$: $|C \cap M| = |C \cap T|$.
- 6. For a path $\pi \in H$: $|\pi \cap M| \leq |\pi \cap T| \leq |\pi \cap M| + 1$.
- 7. For augmenting path π : $|\pi \cap T| = |\pi \cap M| + 1$.
- 8. \implies Must be k augmenting paths in H.

Lemma 22.3.

M: matching. T: maximum matching. k = |T| - |M|. Then M has k vertex disjoint augmenting paths.

- 1. $E' = M \oplus T$. H = (V, E').
- 2. **H**: collection of alternating paths and cycles.
- 3. cycles are even length.
- 4. k more edges of T in $M \oplus T$ than of M.
- 5. For any cycle $C \in H$: $|C \cap M| = |C \cap T|$.
- 6. For a path $\pi \in H$: $|\pi \cap M| \leq |\pi \cap T| \leq |\pi \cap M| + 1$.
- 7. For augmenting path π : $|\pi \cap T| = |\pi \cap M| + 1$.
- 8. \implies Must be k augmenting paths in H.

Lemma 22.3.

M: matching. T: maximum matching. k = |T| - |M|.

Then M has k vertex disjoint augmenting paths.

- 1. $E' = M \oplus T$. H = (V, E').
- 2. **H**: collection of alternating paths and cycles.
- 3. k more edges of T in $M \oplus T$ than of M.
- 4. For any cycle $C \in H$: $|C \cap M| = |C \cap T|$.
- 5. For a path $\pi \in H$: $|\pi \cap M| \leq |\pi \cap T| \leq |\pi \cap M| + 1$.
- 6. For augmenting path π : $|\pi \cap T| = |\pi \cap M| + 1$
- 7. \implies Must be k augmenting paths in H.

Lemma 22.3.

M: matching. T: maximum matching. k = |T| - |M|.

Then M has k vertex disjoint augmenting paths.

- 1. $E' = M \oplus T$. H = (V, E').
- 2. **H**: collection of alternating paths and cycles.
- 3. k more edges of T in $M \oplus T$ than of M.
- 4. For any cycle $C \in H$: $|C \cap M| = |C \cap T|$.
- 5. For a path $\pi \in H$: $|\pi \cap M| \leq |\pi \cap T| \leq |\pi \cap M| + 1$.
- 6. For augmenting path π : $|\pi \cap T| = |\pi \cap M| + 1$.
- 7. \Longrightarrow Must be k augmenting paths in H.

Lemma 22.3.

M: matching. T: maximum matching. k = |T| - |M|.

Then M has k vertex disjoint augmenting paths.

- 1. $E' = M \oplus T$. H = (V, E').
- 2. **H**: collection of alternating paths and cycles.
- 3. k more edges of T in $M \oplus T$ than of M.
- 4. For any cycle $C \in H$: $|C \cap M| = |C \cap T|$.
- 5. For a path $\pi \in H$: $|\pi \cap M| \leq |\pi \cap T| \leq |\pi \cap M| + 1$.
- 6. For augmenting path π : $|\pi \cap T| = |\pi \cap M| + 1$.
- 7. \Longrightarrow Must be k augmenting paths in H.

Lemma 22.4.

M: matching. T: maximum matching. k = |T| - |M|.

At least one augmenting path for M of length $\leq u/k-1$, where u=2(|T|+|M|).

- 1. $E' = M \oplus T$. H = (V, E').
- 2. $u = |V(H)| \le 2(|T| + |M|)$.
- 3. By previous lemma: There are k augmenting paths in H.
- 4. If all augmenting paths were of length $\geq u/k$
- 5. \implies total number of vertices in $H \ge (u/k + 1)u > u$
- 6. ... since a path of length ℓ has $\ell + 1$ vertices. A contradiction.

Lemma 22.4.

M: matching. T: maximum matching. k = |T| - |M|.

At least one augmenting path for M of length $\leq u/k-1$, where u=2(|T|+|M|).

- 1. $E' = M \oplus T$. H = (V, E').
- 2. $u = |V(H)| \le 2(|T| + |M|)$.
- 3. By previous lemma: There are k augmenting paths in H.
- 4. If all augmenting paths were of length $\geq u/k$
- 5. \implies total number of vertices in $H \ge (u/k + 1)u > u$
- 6. ... since a path of length ℓ has $\ell + 1$ vertices. A contradiction

Lemma 22.4.

M: matching. T: maximum matching. k = |T| - |M|.

At least one augmenting path for M of length $\leq u/k-1$, where u=2(|T|+|M|).

- 1. $E' = M \oplus T$. H = (V, E').
- 2. $u = |V(H)| \le 2(|T| + |M|)$.
- 3. By previous lemma: There are k augmenting paths in H.
- 4. If all augmenting paths were of length $\geq u/k$
- 5. \implies total number of vertices in $H \ge (u/k + 1)u > u$
- 6. ... since a path of length ℓ has $\ell + 1$ vertices. A contradiction

Lemma 22.4.

M: matching. T: maximum matching. k = |T| - |M|.

At least one augmenting path for M of length $\leq u/k-1$, where u=2(|T|+|M|).

- 1. $E' = M \oplus T$. H = (V, E').
- 2. $u = |V(H)| \le 2(|T| + |M|)$.
- 3. By previous lemma: There are k augmenting paths in H.
- 4. If all augmenting paths were of length $\geq u/k$
- 5. \implies total number of vertices in $H \ge (u/k + 1)u > u$
- 6. ... since a path of length ℓ has $\ell+1$ vertices. A contradiction

Lemma 22.4.

M: matching. T: maximum matching. k = |T| - |M|.

At least one augmenting path for M of length $\leq u/k-1$, where u=2(|T|+|M|).

- 1. $E' = M \oplus T$. H = (V, E').
- 2. $u = |V(H)| \le 2(|T| + |M|)$.
- 3. By previous lemma: There are k augmenting paths in H.
- 4. If all augmenting paths were of length $\geq u/k$
- 5. \implies total number of vertices in $H \ge (u/k + 1)u > u$
- 6. ... since a path of length ℓ has $\ell+1$ vertices. A contradiction

Lemma 22.4.

M: matching. T: maximum matching. k = |T| - |M|.

At least one augmenting path for M of length $\leq u/k-1$, where u=2(|T|+|M|).

- 1. $E' = M \oplus T$. H = (V, E').
- 2. $u = |V(H)| \le 2(|T| + |M|)$.
- 3. By previous lemma: There are k augmenting paths in H.
- 4. If all augmenting paths were of length $\geq u/k$
- 5. \implies total number of vertices in $H \ge (u/k + 1)u > u$
- 6. ... since a path of length ℓ has $\ell+1$ vertices. A contradiction.

No augmenting path, no cry

Or: Having a maximum matching.

Corollary 22.5.

A matching M is maximum \iff there is no augmenting path for M.

22.3: Unweighted matching in bipartite graph

$22.3.1: \ \, \mathsf{The} \, \mathsf{slow} \, \mathsf{algorithm}$

- 1. $G = (L \cup R, E)$: bipartite graph.
- 2. Task: Compute maximum size matching in G.
- 3. $M_0 = \emptyset$ empty matching.
- 4. In *i*th iteration of algSlowMatch:
 - 4.1 $L_i \subseteq L$ and $R_i \subseteq R$: set of free vertices for matching M_{i-1} .
 - 4.2 Graph J_i : Orient all edges of $E \setminus M_{i-1}$ from left to the right.
 - 4.3 $\forall lr \in M_{i-1}$ oriented from the right to left, as the new directed edge $(r \to l)$.
 - 4.4 **BFS**: compute shortest path π_i from a vertex of L_i to a vertex of R_i .
 - 4.5 If no such path \implies no augmenting path \implies stop
 - 4.6 $M_i = M_{i-1} \oplus \pi_i$.

- 1. $G = (L \cup R, E)$: bipartite graph.
- 2. Task: Compute maximum size matching in G.
- 3. $M_0 = \emptyset$ empty matching.
- 4. In *i*th iteration of algSlowMatch:
 - 4.1 $L_i \subseteq L$ and $R_i \subseteq R$: set of free vertices for matching M_{i-1} .
 - 4.2 Graph J_i : Orient all edges of $E \setminus M_{i-1}$ from left to the right
 - 4.3 $\forall lr \in M_{i-1}$ oriented from the right to left, as the new directed edge $(r \to l)$.
 - 4.4 **BFS**: compute shortest path π_i from a vertex of L_i to a vertex of R_i .
 - 4.5 If no such path \implies no augmenting path \implies stop
 - $4.6 M_i = M_{i-1} \oplus \pi_i.$

- 1. $G = (L \cup R, E)$: bipartite graph.
- 2. Task: Compute maximum size matching in G.
- 3. $M_0 = \emptyset$ empty matching.
- 4. In *i*th iteration of algSlowMatch:
 - 4.1 $L_i \subseteq L$ and $R_i \subseteq R$: set of free vertices for matching M_{i-1} .
 - 4.2 Graph J_i : Orient all edges of $E \setminus M_{i-1}$ from left to the right.
 - 4.3 $\forall lr \in M_{i-1}$ oriented from the right to left, as the new directed edge $(r \to l)$.
 - 4.4 **BFS**: compute shortest path π_i from a vertex of L_i to a vertex of R_i .
 - 4.5 If no such path \implies no augmenting path \implies stop
 - 4.6 $M_i = M_{i-1} \oplus \pi_i$.

- 1. $G = (L \cup R, E)$: bipartite graph.
- 2. Task: Compute maximum size matching in G.
- 3. $M_0 = \emptyset$ empty matching.
- 4. In *i*th iteration of algSlowMatch:
 - 4.1 $L_i \subseteq L$ and $R_i \subseteq R$: set of free vertices for matching M_{i-1} .
 - 4.2 Graph J_i : Orient all edges of $E \setminus M_{i-1}$ from left to the right.
 - 4.3 $\forall lr \in M_{i-1}$ oriented from the right to left, as the new directed edge $(r \to l)$.
 - 4.4 BFS: compute shortest path π_i from a vertex of L_i to a vertex of R_i .
 - 4.5 If no such path \implies no augmenting path \implies stop.
 - 4.6 $M_i = M_{i-1} \oplus \pi_i$.

- 1. $G = (L \cup R, E)$: bipartite graph.
- 2. Task: Compute maximum size matching in G.
- 3. $M_0 = \emptyset$ empty matching.
- 4. In *i*th iteration of algSlowMatch:
 - 4.1 $L_i \subseteq L$ and $R_i \subseteq R$: set of free vertices for matching M_{i-1} .
 - 4.2 Graph J_i : Orient all edges of $E \setminus M_{i-1}$ from left to the right.
 - 4.3 $\forall lr \in M_{i-1}$ oriented from the right to left, as the new directed edge $(r \to l)$.
 - 4.4 BFS: compute shortest path π_i from a vertex of L_i to a vertex of R_i .
 - 4.5 If no such path \implies no augmenting path \implies stop
 - 4.6 $M_i = M_{i-1} \oplus \pi_i$.

- 1. $G = (L \cup R, E)$: bipartite graph.
- 2. Task: Compute maximum size matching in G.
- 3. $M_0 = \emptyset$ empty matching.
- 4. In *i*th iteration of algSlowMatch:
 - 4.1 $L_i \subseteq L$ and $R_i \subseteq R$: set of free vertices for matching M_{i-1} .
 - 4.2 Graph J_i : Orient all edges of $E \setminus M_{i-1}$ from left to the right.
 - 4.3 $\forall lr \in M_{i-1}$ oriented from the right to left, as the new directed edge $(r \to l)$.
 - 4.4 BFS: compute shortest path π_i from a vertex of L_i to a vertex of R_i .
 - 4.5 If no such path \implies no augmenting path \implies stop.
 - $4.6 M_i = M_{i-1} \oplus \pi_i.$

- 1. $G = (L \cup R, E)$: bipartite graph.
- 2. Task: Compute maximum size matching in G.
- 3. $M_0 = \emptyset$ empty matching.
- 4. In *i*th iteration of algSlowMatch:
 - 4.1 $L_i \subseteq L$ and $R_i \subseteq R$: set of free vertices for matching M_{i-1} .
 - 4.2 Graph J_i : Orient all edges of $E \setminus M_{i-1}$ from left to the right.
 - 4.3 $\forall lr \in M_{i-1}$ oriented from the right to left, as the new directed edge $(r \to l)$.
 - 4.4 BFS: compute shortest path π_i from a vertex of L_i to a vertex of R_i .
 - 4.5 If no such path \implies no augmenting path \implies stop.
 - 4.6 $M_i = M_{i-1} \oplus \pi_i$.

- 1. augmenting path has an odd number of edges.
- 2. starts free vertex on left side: ends in free vertex on right side.
- 3. augmenting path: path between vertex L_i to vertex of R_i in J_i .
- 4. By corollary: algorithm matching not maximum matching yet...,
- 5. \Longrightarrow \exists augmenting path.
- 6. Using augmenting path: increases size of matching by one.
- 7. any shortest path found in J_i between L_i and R_i is an augmenting path
- 8. \exists augmenting path for $M_{i-1} \implies$ path from vertex of L_i to vertex of R_i in J_i .
- 9. algorithm computes shortest such path.

- 1. augmenting path has an odd number of edges.
- 2. starts free vertex on left side: ends in free vertex on right side.
- 3. augmenting path: path between vertex L_i to vertex of R_i in J_i .
- 4. By corollary: algorithm matching not maximum matching yet...,
- 5. $\Longrightarrow \exists$ augmenting path.
- 6. Using augmenting path: increases size of matching by one.
- 7. any shortest path found in J_i between L_i and R_i is an augmenting path
- 8. \exists augmenting path for $M_{i-1} \implies$ path from vertex of L_i to vertex of R_i in J_i .
- 9. algorithm computes shortest such path.

- 1. augmenting path has an odd number of edges.
- 2. starts free vertex on left side: ends in free vertex on right side.
- 3. augmenting path: path between vertex L_i to vertex of R_i in J_i .
- 4. By corollary: algorithm matching not maximum matching yet...,
- 5. $\implies \exists$ augmenting path.
- 6. Using augmenting path: increases size of matching by one.
- 7. any shortest path found in J_i between L_i and R_i is an augmenting path.
- 8. \exists augmenting path for $M_{i-1} \implies$ path from vertex of L_i to vertex of R_i in J_i .
- 9. algorithm computes shortest such path.

- 1. augmenting path has an odd number of edges.
- 2. starts free vertex on left side: ends in free vertex on right side.
- 3. augmenting path: path between vertex L_i to vertex of R_i in J_i .
- 4. By corollary: algorithm matching not maximum matching yet...,
- 5. $\implies \exists$ augmenting path.
- 6. Using augmenting path: increases size of matching by one.
- 7. any shortest path found in J_i between L_i and R_i is an augmenting path.
- 8. \exists augmenting path for $M_{i-1} \implies$ path from vertex of L_i to vertex of R_i in J_i .
- 9. algorithm computes shortest such path.

- 1. augmenting path has an odd number of edges.
- 2. starts free vertex on left side: ends in free vertex on right side.
- 3. augmenting path: path between vertex L_i to vertex of R_i in J_i .
- 4. By corollary: algorithm matching not maximum matching yet...,
- 5. $\implies \exists$ augmenting path.
- 6. Using augmenting path: increases size of matching by one.
- 7. any shortest path found in J_i between L_i and R_i is an augmenting path.
- 8. \exists augmenting path for $M_{i-1} \implies$ path from vertex of L_i to vertex of R_i in J_i .
- 9. algorithm computes shortest such path.

- 1. augmenting path has an odd number of edges.
- 2. starts free vertex on left side: ends in free vertex on right side.
- 3. augmenting path: path between vertex L_i to vertex of R_i in J_i .
- 4. By corollary: algorithm matching not maximum matching yet...,
- 5. $\implies \exists$ augmenting path.
- 6. Using augmenting path: increases size of matching by one.
- 7. any shortest path found in J_i between L_i and R_i is an augmenting path.
- 8. \exists augmenting path for $M_{i-1} \implies$ path from vertex of L_i to vertex of R_i in J_i .
- 9. algorithm computes shortest such path.

- 1. augmenting path has an odd number of edges.
- 2. starts free vertex on left side: ends in free vertex on right side.
- 3. augmenting path: path between vertex L_i to vertex of R_i in J_i .
- 4. By corollary: algorithm matching not maximum matching yet...,
- 5. $\implies \exists$ augmenting path.
- 6. Using augmenting path: increases size of matching by one.
- 7. any shortest path found in J_i between L_i and R_i is an augmenting path.
- 8. \exists augmenting path for $M_{i-1} \implies$ path from vertex of L_i to vertex of R_i in J_i .
- 9. algorithm computes shortest such path.

- 1. After at most *n* iterations...
- 2. algorithm would be done.
- 3. Iteration of algorithm can be implemented in linear time O(m)
- 4. We have

Lemma 22.1.

- 1. After at most *n* iterations...
- 2. algorithm would be done.
- 3. Iteration of algorithm can be implemented in linear time O(m)
- 4. We have

Lemma 22.1.

- 1. After at most *n* iterations...
- 2. algorithm would be done.
- 3. Iteration of algorithm can be implemented in linear time O(m).
- 4. We have

Lemma 22.1.

- 1. After at most *n* iterations...
- 2. algorithm would be done.
- 3. Iteration of algorithm can be implemented in linear time O(m).
- 4. We have:

Lemma 22.1.

22.3.2: The Hopcroft-Karp algorithm

22.3.2.1: Some more structural observations

- 1. If we augmenting along a shortest path, then the next augmenting path must be longer (or at least not shorter).
- 2. If always augment along shortest paths, then the augmenting paths get longer as the algorithm progress.
- 3. All the augmenting paths of the same length used by the algorithm are vertex-disjoint (!).
- 4. Main idea of the faster algorithm: compute this block of vertex-disjoint paths of the same length in one go, thus getting the improved running time.

- 1. If we augmenting along a shortest path, then the next augmenting path must be longer (or at least not shorter).
- 2. If always augment along shortest paths, then the augmenting paths get longer as the algorithm progress.
- 3. All the augmenting paths of the same length used by the algorithm are vertex-disjoint (!).
- 4. Main idea of the faster algorithm: compute this block of vertex-disjoint paths of the same length in one go, thus getting the improved running time.

- 1. If we augmenting along a shortest path, then the next augmenting path must be longer (or at least not shorter).
- 2. If always augment along shortest paths, then the augmenting paths get longer as the algorithm progress.
- 3. All the augmenting paths of the same length used by the algorithm are vertex-disjoint (!).
- 4. Main idea of the faster algorithm: compute this block of vertex-disjoint paths of the same length in one go, thus getting the improved running time.

- 1. If we augmenting along a shortest path, then the next augmenting path must be longer (or at least not shorter).
- 2. If always augment along shortest paths, then the augmenting paths get longer as the algorithm progress.
- 3. All the augmenting paths of the same length used by the algorithm are vertex-disjoint (!).
- 4. Main idea of the faster algorithm: compute this block of vertex-disjoint paths of the same length in one go, thus getting the improved running time.

Shortest augmenting paths get longer...

Lemma 22.2.

Let M be a matching, and π be the shortest augmenting path for M, and let π' be any augmenting path for $M' = M \oplus \pi$. Then $|\pi'| \ge |\pi|$. Specifically, we have $|\pi'| \ge |\pi| + 2 |\pi \cap \pi'|$.

- 1. Consider the matching $N = M \oplus \pi \oplus \pi'$.
- 2. |N| = |M| + 2.
- 3. $M \oplus N$ contains two augmenting paths, say σ_1 and σ_2 (relative to M).
- 4. $M \oplus N = \pi \oplus \pi'$, and $|\pi \oplus \pi'| = |M \oplus N| \ge |\sigma_1| + |\sigma_2|$.
- 5. π : shortest augmenting path $(M) \implies |\sigma_1| \ge |\pi|$ and $|\sigma_2| \ge |\pi|$.
- 6. $\implies |\pi \oplus \pi'| \ge |\sigma_1| + |\sigma_2| \ge |\pi| + |\pi| = 2 |\pi|$.
- 7. By definition: $|\pi \oplus \pi'| = |\pi| + |\pi'| 2|\pi \cap \pi'|$.
- 8. Combining with the above, we have $|\pi| + |\pi'| 2 |\pi \cap \pi'| \ge 2 |\pi|$ $\implies |\pi'| \ge |\pi| + 2 |\pi \cap \pi'|.$

- 1. Consider the matching $N = M \oplus \pi \oplus \pi'$.
- 2. |N| = |M| + 2.
- 3. $M \oplus N$ contains two augmenting paths, say σ_1 and σ_2 (relative to M).
- 4. $M \oplus N = \pi \oplus \pi'$, and $|\pi \oplus \pi'| = |M \oplus N| \ge |\sigma_1| + |\sigma_2|$.
- 5. π : shortest augmenting path $(M) \implies |\sigma_1| \ge |\pi|$ and $|\sigma_2| \ge |\pi|$.
- 6. $\implies |\pi \oplus \pi'| \ge |\sigma_1| + |\sigma_2| \ge |\pi| + |\pi| = 2 |\pi|$.
- 7. By definition: $|\pi \oplus \pi'| = |\pi| + |\pi'| 2|\pi \cap \pi'|$.
- 8. Combining with the above, we have $|\pi| + |\pi'| 2 |\pi \cap \pi'| \ge 2 |\pi|$ $\implies |\pi'| \ge |\pi| + 2 |\pi \cap \pi'|.$

- 1. Consider the matching $N = M \oplus \pi \oplus \pi'$.
- 2. |N| = |M| + 2.
- 3. $M \oplus N$ contains two augmenting paths, say σ_1 and σ_2 (relative to M).
- 4. $M \oplus N = \pi \oplus \pi'$, and $|\pi \oplus \pi'| = |M \oplus N| \ge |\sigma_1| + |\sigma_2|$.
- 5. π : shortest augmenting path $(M) \implies |\sigma_1| \geq |\pi|$ and $|\sigma_2| \geq |\pi|$.
- 6. $\implies |\pi \oplus \pi'| \ge |\sigma_1| + |\sigma_2| \ge |\pi| + |\pi| = 2 |\pi|$.
- 7. By definition: $|\pi \oplus \pi'| = |\pi| + |\pi'| 2|\pi \cap \pi'|$.
- 8. Combining with the above, we have $|\pi| + |\pi'| 2|\pi \cap \pi'| \ge 2|\pi|$ $\implies |\pi'| \ge |\pi| + 2|\pi \cap \pi'|.$

- 1. Consider the matching $N = M \oplus \pi \oplus \pi'$.
- 2. |N| = |M| + 2.
- 3. $M \oplus N$ contains two augmenting paths, say σ_1 and σ_2 (relative to M).
- 4. $M \oplus N = \pi \oplus \pi'$, and $|\pi \oplus \pi'| = |M \oplus N| \ge |\sigma_1| + |\sigma_2|$.
- 5. π : shortest augmenting path $(M) \implies |\sigma_1| \ge |\pi|$ and $|\sigma_2| \ge |\pi|$.
- 6. $\implies |\pi \oplus \pi'| \ge |\sigma_1| + |\sigma_2| \ge |\pi| + |\pi| = 2 |\pi|$.
- 7. By definition: $|\pi \oplus \pi'| = |\pi| + |\pi'| 2|\pi \cap \pi'|$.
- 8. Combining with the above, we have $|\pi| + |\pi'| 2|\pi \cap \pi'| \ge 2|\pi|$ $\implies |\pi'| \ge |\pi| + 2|\pi \cap \pi'|.$

- 1. Consider the matching $N = M \oplus \pi \oplus \pi'$.
- 2. |N| = |M| + 2.
- 3. $M \oplus N$ contains two augmenting paths, say σ_1 and σ_2 (relative to M).
- 4. $M \oplus N = \pi \oplus \pi'$, and $|\pi \oplus \pi'| = |M \oplus N| \ge |\sigma_1| + |\sigma_2|$.
- 5. π : shortest augmenting path $(M) \implies |\sigma_1| \ge |\pi|$ and $|\sigma_2| \ge |\pi|$.
- 6. $\implies |\pi \oplus \pi'| \ge |\sigma_1| + |\sigma_2| \ge |\pi| + |\pi| = 2 |\pi|$.
- 7. By definition: $|\pi \oplus \pi'| = |\pi| + |\pi'| 2|\pi \cap \pi'|$.
- 8. Combining with the above, we have $|\pi| + |\pi'| 2|\pi \cap \pi'| \ge 2|\pi|$ $\implies |\pi'| \ge |\pi| + 2|\pi \cap \pi'|.$

- 1. Consider the matching $N = M \oplus \pi \oplus \pi'$.
- 2. |N| = |M| + 2.
- 3. $M \oplus N$ contains two augmenting paths, say σ_1 and σ_2 (relative to M).
- 4. $M \oplus N = \pi \oplus \pi'$, and $|\pi \oplus \pi'| = |M \oplus N| \ge |\sigma_1| + |\sigma_2|$.
- 5. π : shortest augmenting path $(M) \implies |\sigma_1| \ge |\pi|$ and $|\sigma_2| \ge |\pi|$.
- 6. $\implies |\pi \oplus \pi'| \ge |\sigma_1| + |\sigma_2| \ge |\pi| + |\pi| = 2 |\pi|$.
- 7. By definition: $|\pi \oplus \pi'| = |\pi| + |\pi'| 2|\pi \cap \pi'|$.
 - 8. Combining with the above, we have $|\pi| + |\pi'| 2|\pi \cap \pi'| \ge 2|\pi|$ $\implies |\pi'| \ge |\pi| + 2|\pi \cap \pi'|.$

- 1. Consider the matching $N = M \oplus \pi \oplus \pi'$.
- 2. |N| = |M| + 2.
- 3. $M \oplus N$ contains two augmenting paths, say σ_1 and σ_2 (relative to M).
- 4. $M \oplus N = \pi \oplus \pi'$, and $|\pi \oplus \pi'| = |M \oplus N| \ge |\sigma_1| + |\sigma_2|$.
- 5. π : shortest augmenting path $(M) \implies |\sigma_1| \ge |\pi|$ and $|\sigma_2| \ge |\pi|$.
- 6. $\implies |\pi \oplus \pi'| \ge |\sigma_1| + |\sigma_2| \ge |\pi| + |\pi| = 2 |\pi|$.
- 7. By definition: $|\pi \oplus \pi'| = |\pi| + |\pi'| 2|\pi \cap \pi'|$.
- 3. Combining with the above, we have $|\pi| + |\pi'| 2|\pi \cap \pi'| \ge 2|\pi|$ $\implies |\pi'| \ge |\pi| + 2|\pi \cap \pi'|.$

- 1. Consider the matching $N = M \oplus \pi \oplus \pi'$.
- 2. |N| = |M| + 2.
- 3. $M \oplus N$ contains two augmenting paths, say σ_1 and σ_2 (relative to M).
- 4. $M \oplus N = \pi \oplus \pi'$, and $|\pi \oplus \pi'| = |M \oplus N| \ge |\sigma_1| + |\sigma_2|$.
- 5. π : shortest augmenting path $(M) \implies |\sigma_1| \ge |\pi|$ and $|\sigma_2| \ge |\pi|$.
- 6. $\implies |\pi \oplus \pi'| \ge |\sigma_1| + |\sigma_2| \ge |\pi| + |\pi| = 2|\pi|$.
- 7. By definition: $|\pi \oplus \pi'| = |\pi| + |\pi'| 2|\pi \cap \pi'|$.
- 8. Combining with the above, we have

$$|\pi| + |\pi'| - 2 |\pi \cap \pi'| \ge 2 |\pi| \ \Longrightarrow |\pi'| \ge |\pi| + 2 |\pi \cap \pi'|.$$

- 1. Consider the matching $N = M \oplus \pi \oplus \pi'$.
- 2. |N| = |M| + 2.
- 3. $M \oplus N$ contains two augmenting paths, say σ_1 and σ_2 (relative to M).
- 4. $M \oplus N = \pi \oplus \pi'$, and $|\pi \oplus \pi'| = |M \oplus N| \ge |\sigma_1| + |\sigma_2|$.
- 5. π : shortest augmenting path $(M) \implies |\sigma_1| \ge |\pi|$ and $|\sigma_2| \ge |\pi|$.
- 6. $\implies |\pi \oplus \pi'| \ge |\sigma_1| + |\sigma_2| \ge |\pi| + |\pi| = 2 |\pi|$.
- 7. By definition: $|\pi \oplus \pi'| = |\pi| + |\pi'| 2|\pi \cap \pi'|$.
- 8. Combining with the above, we have

$$|\pi|+|\pi'|-2\,|\pi\cap\pi'|\geq 2\,|\pi| \ \Longrightarrow |\pi'|\geq |\pi|+2\,|\pi\cap\pi'|\,.$$

Corollary

Corollary 22.3.

.For sequence of augmenting paths used algorithm (always augment the matching along the shortest augmenting path). We have: $|\pi_1| \leq |\pi_2| \leq \ldots \leq |\pi_t|$.

t: number of augmenting paths computed by the algorithm.

 $\pi_1, \pi_2, \dots, \pi_t$: sequence augmenting paths used by algorithm.

Augmenting paths of same length are disjoint

Lemma 22.4.

For all i and j, such that $|\pi_i| = \cdots = |\pi_j|$, we have that the paths π_i and π_j are vertex disjoint.

- 1. Assume for contradiction: $|\pi_i| = |\pi_j|$, i < j, π_i and π_j are not vertex disjoint j i is minimal.
- 2. $\forall k, i < k < j$: π_k is disjoint from π_i and π_j .
- 3. M_i : matching after π_i was applied.
- 4. π_j not using any of the edges of $\pi_{i+1}, \ldots, \pi_{j-1}$.
- 5. π_j is an augmenting path for M_i .
- 6. π_j and π_i share vertices.
 - 6.1 can not be the two endpoints of π_i (since they are free)
 - 6.2 must be some interval vertex of π_i .
 - 6.3 $\implies \pi_i$ and π_j must share an edge.
- 7. $|\pi_i \cap \pi_j| \geq 1$.
- 8. By lemma: $|\pi_i| \ge |\pi_i| + 2|\pi_i \cap \pi_i| > |\pi_i|$.
- 9. A contradiction.

- 1. Assume for contradiction: $|\pi_i| = |\pi_j|$, i < j, π_i and π_j are not vertex disjoint j i is minimal.
- 2. $\forall k, i < k < j$: π_k is disjoint from π_i and π_j .
- 3. M_i : matching after π_i was applied.
- 4. π_j not using any of the edges of $\pi_{i+1}, \ldots, \pi_{j-1}$
- 5. π_j is an augmenting path for M_i .
- 6. π_i and π_i share vertices.
 - 6.1 can not be the two endpoints of π_i (since they are free)
 - 6.2 must be some interval vertex of π_i .
 - 6.3 $\implies \pi_i$ and π_j must share an edge.
- 7. $|\pi_i \cap \pi_j| \geq 1$.
- 8. By lemma: $|\pi_i| \ge |\pi_i| + 2|\pi_i \cap \pi_j| > |\pi_i|$.
- 9. A contradiction.

- 1. Assume for contradiction: $|\pi_i| = |\pi_j|$, i < j, π_i and π_j are not vertex disjoint j i is minimal.
- 2. $\forall k, i < k < j$: π_k is disjoint from π_i and π_j .
- 3. M_i : matching after π_i was applied.
- 4. π_j not using any of the edges of $\pi_{i+1}, \ldots, \pi_{j-1}$
- 5. π_j is an augmenting path for M_i .
- 6. π_i and π_i share vertices.
 - 6.1 can not be the two endpoints of π_i (since they are free)
 - 6.2 must be some interval vertex of π_i .
 - 6.3 $\implies \pi_i$ and π_j must share an edge.
- 7. $|\pi_i \cap \pi_j| \geq 1$.
- 8. By lemma: $|\pi_j| \ge |\pi_i| + 2|\pi_i \cap \pi_j| > |\pi_i|$.
- 9. A contradiction.

- 1. Assume for contradiction: $|\pi_i| = |\pi_j|$, i < j, π_i and π_j are not vertex disjoint j i is minimal.
- 2. $\forall k, i < k < j$: π_k is disjoint from π_i and π_j .
- 3. M_i : matching after π_i was applied.
- 4. π_j not using any of the edges of $\pi_{i+1}, \ldots, \pi_{j-1}$.
- 5. π_j is an augmenting path for M_i .
- 6. π_i and π_i share vertices.
 - 6.1 can not be the two endpoints of π_i (since they are free)
 - 6.2 must be some interval vertex of π_j .
 - 6.3 $\implies \pi_i$ and π_j must share an edge.
- 7. $|\pi_i \cap \pi_j| \geq 1$.
- 8. By lemma: $|\pi_i| \ge |\pi_i| + 2|\pi_i \cap \pi_j| > |\pi_i|$.
- 9. A contradiction.

- 1. Assume for contradiction: $|\pi_i| = |\pi_j|$, i < j, π_i and π_j are not vertex disjoint j i is minimal.
- 2. $\forall k, i < k < j$: π_k is disjoint from π_i and π_j .
- 3. M_i : matching after π_i was applied.
- 4. π_j not using any of the edges of $\pi_{i+1}, \ldots, \pi_{j-1}$.
- 5. π_j is an augmenting path for M_i .
- 6. π_i and π_i share vertices.
 - 6.1 can not be the two endpoints of π_i (since they are free)
 - 6.2 must be some interval vertex of π_i .
 - 6.3 $\implies \pi_i$ and π_j must share an edge.
- 7. $|\pi_i \cap \pi_j| \geq 1$.
- 8. By lemma: $|\pi_j| \ge |\pi_i| + 2|\pi_i \cap \pi_j| > |\pi_i|$.
- 9. A contradiction.

- 1. Assume for contradiction: $|\pi_i| = |\pi_j|$, i < j, π_i and π_j are not vertex disjoint j i is minimal.
- 2. $\forall k, i < k < j$: π_k is disjoint from π_i and π_j .
- 3. M_i : matching after π_i was applied.
- 4. π_j not using any of the edges of $\pi_{i+1}, \ldots, \pi_{j-1}$.
- 5. π_j is an augmenting path for M_i .
- 6. π_j and π_i share vertices.
 - 6.1 can not be the two endpoints of π_i (since they are free)
 - 6.2 must be some interval vertex of π_j .
 - 6.3 $\implies \pi_i$ and π_j must share an edge.
- 7. $|\pi_i \cap \pi_j| \geq 1$.
- 8. By lemma: $|\pi_i| \ge |\pi_i| + 2|\pi_i \cap \pi_j| > |\pi_i|$.
- 9. A contradiction.

- 1. Assume for contradiction: $|\pi_i| = |\pi_j|$, i < j, π_i and π_j are not vertex disjoint j i is minimal.
- 2. $\forall k, i < k < j$: π_k is disjoint from π_i and π_j .
- 3. M_i : matching after π_i was applied.
- 4. π_j not using any of the edges of $\pi_{i+1}, \ldots, \pi_{j-1}$.
- 5. π_j is an augmenting path for M_i .
- 6. π_j and π_i share vertices.
 - 6.1 can not be the two endpoints of π_i (since they are free)
 - 6.2 must be some interval vertex of π_j .
 - 6.3 $\implies \pi_i$ and π_j must share an edge.
- 7. $|\pi_i \cap \pi_j| \geq 1$.
- 8. By lemma: $|\pi_j| \ge |\pi_i| + 2|\pi_i \cap \pi_j| > |\pi_i|$.
- 9. A contradiction.

- 1. Assume for contradiction: $|\pi_i| = |\pi_j|$, i < j, π_i and π_j are not vertex disjoint j i is minimal.
- 2. $\forall k, i < k < j$: π_k is disjoint from π_i and π_j .
- 3. M_i : matching after π_i was applied.
- 4. π_j not using any of the edges of $\pi_{i+1}, \ldots, \pi_{j-1}$.
- 5. π_j is an augmenting path for M_i .
- 6. π_j and π_i share vertices.
 - 6.1 can not be the two endpoints of π_i (since they are free)
 - 6.2 must be some interval vertex of π_i .
 - 6.3 $\implies \pi_i$ and π_j must share an edge.
- 7. $|\pi_i \cap \pi_j| \geq 1$.
- 8. By lemma: $|\pi_j| \ge |\pi_i| + 2|\pi_i \cap \pi_j| > |\pi_i|$.
- 9. A contradiction.

- 1. Assume for contradiction: $|\pi_i| = |\pi_j|$, i < j, π_i and π_j are not vertex disjoint j i is minimal.
- 2. $\forall k, i < k < j$: π_k is disjoint from π_i and π_j .
- 3. M_i : matching after π_i was applied.
- 4. π_j not using any of the edges of $\pi_{i+1}, \ldots, \pi_{j-1}$.
- 5. π_j is an augmenting path for M_i .
- 6. π_j and π_i share vertices.
 - 6.1 can not be the two endpoints of π_i (since they are free)
 - 6.2 must be some interval vertex of π_j .
 - 6.3 $\implies \pi_i$ and π_j must share an edge.
- 7. $|\pi_i \cap \pi_j| \geq 1$.
- 8. By lemma: $|\pi_j| \ge |\pi_i| + 2|\pi_i \cap \pi_j| > |\pi_i|$.
- 9. A contradiction.

- 1. Assume for contradiction: $|\pi_i| = |\pi_j|$, i < j, π_i and π_j are not vertex disjoint j i is minimal.
- 2. $\forall k, i < k < j$: π_k is disjoint from π_i and π_j .
- 3. M_i : matching after π_i was applied.
- 4. π_j not using any of the edges of $\pi_{i+1}, \ldots, \pi_{j-1}$.
- 5. π_j is an augmenting path for M_i .
- 6. π_j and π_i share vertices.
 - 6.1 can not be the two endpoints of π_i (since they are free)
 - 6.2 must be some interval vertex of π_j .
 - 6.3 $\implies \pi_i$ and π_i must share an edge.
- 7. $|\pi_i \cap \pi_j| \geq 1$.
- 8. By lemma: $|\pi_j| \ge |\pi_i| + 2|\pi_i \cap \pi_j| > |\pi_i|$.
- 9. A contradiction.

- 1. Assume for contradiction: $|\pi_i| = |\pi_j|$, i < j, π_i and π_j are not vertex disjoint j i is minimal.
- 2. $\forall k, i < k < j$: π_k is disjoint from π_i and π_j .
- 3. M_i : matching after π_i was applied.
- 4. π_j not using any of the edges of $\pi_{i+1}, \ldots, \pi_{j-1}$.
- 5. π_j is an augmenting path for M_i .
- 6. π_j and π_i share vertices.
 - 6.1 can not be the two endpoints of π_i (since they are free)
 - 6.2 must be some interval vertex of π_i .
 - 6.3 $\implies \pi_i$ and π_j must share an edge.
- 7. $|\pi_i \cap \pi_j| \geq 1$.
- 8. By lemma: $|\pi_j| \ge |\pi_i| + 2|\pi_i \cap \pi_j| > |\pi_i|$.
- 9. A contradiction.

- 1. Assume for contradiction: $|\pi_i| = |\pi_j|$, i < j, π_i and π_j are not vertex disjoint j i is minimal.
- 2. $\forall k, i < k < j$: π_k is disjoint from π_i and π_j .
- 3. M_i : matching after π_i was applied.
- 4. π_j not using any of the edges of $\pi_{i+1}, \ldots, \pi_{j-1}$.
- 5. π_j is an augmenting path for M_i .
- 6. π_j and π_i share vertices.
 - 6.1 can not be the two endpoints of π_i (since they are free)
 - 6.2 must be some interval vertex of π_i .
 - 6.3 $\implies \pi_i$ and π_j must share an edge.
- 7. $|\pi_i \cap \pi_j| \geq 1$.
- 8. By lemma: $|\pi_j| \ge |\pi_i| + 2|\pi_i \cap \pi_j| > |\pi_i|$.
- A contradiction.

22.3.2.2:Improved algorithm for bipartite maximum size matching

- 1. extract all possible augmenting shortest paths of a certain length in one iteration.
- 2. Assume: given a matching can exact all augmenting paths of length k for M in G in O(m) time, for $k = 1, 3, 5, \ldots$
- 3. Apply this extraction algorithm, till $k = 1 + 2\lceil \sqrt{n} \rceil$.
- 4. Take $O(km) = O(\sqrt{nm})$ time.
- 5. T: maximum matching.
- 6. By the end of this process, matching is of size $|T| \Omega(\sqrt{n})$. (See below why.)
- 7. Resume regular algorithm that augments one augmenting path at a time.
- 8. After $O(\sqrt{n})$ regular iterations we would be done.

- 1. extract all possible augmenting shortest paths of a certain length in one iteration.
- 2. Assume: given a matching can exact all augmenting paths of length k for M in G in O(m) time, for $k = 1, 3, 5, \ldots$
- 3. Apply this extraction algorithm, till $k = 1 + 2\lceil \sqrt{n} \rceil$.
- 4. Take $O(km) = O(\sqrt{nm})$ time.
- 5. T: maximum matching.
- 6. By the end of this process, matching is of size $|T| \Omega(\sqrt{n})$. (See below why.)
- 7. Resume regular algorithm that augments one augmenting path at a time.
- 8. After $O(\sqrt{n})$ regular iterations we would be done.

- 1. extract all possible augmenting shortest paths of a certain length in one iteration.
- 2. Assume: given a matching can exact all augmenting paths of length k for M in G in O(m) time, for $k = 1, 3, 5, \ldots$
- 3. Apply this extraction algorithm, till $k = 1 + 2\lceil \sqrt{n} \rceil$.
- 4. Take $O(km) = O(\sqrt{nm})$ time.
- 5. T: maximum matching.
- 6. By the end of this process, matching is of size $|T| \Omega(\sqrt{n})$. (See below why.)
- 7. Resume regular algorithm that augments one augmenting path at a time.
- 8. After $O(\sqrt{n})$ regular iterations we would be done.

- 1. extract all possible augmenting shortest paths of a certain length in one iteration.
- 2. Assume: given a matching can exact all augmenting paths of length k for M in G in O(m) time, for $k = 1, 3, 5, \ldots$
- 3. Apply this extraction algorithm, till $k = 1 + 2\lceil \sqrt{n} \rceil$.
- 4. Take $O(km) = O(\sqrt{nm})$ time.
- 5. T: maximum matching
- 6. By the end of this process, matching is of size $|T| \Omega(\sqrt{n})$. (See below why.)
- 7. Resume regular algorithm that augments one augmenting path at a time.
- 8. After $O(\sqrt{n})$ regular iterations we would be done.

- 1. extract all possible augmenting shortest paths of a certain length in one iteration.
- 2. Assume: given a matching can exact all augmenting paths of length k for M in G in O(m) time, for $k = 1, 3, 5, \ldots$
- 3. Apply this extraction algorithm, till $k = 1 + 2\lceil \sqrt{n} \rceil$.
- 4. Take $O(km) = O(\sqrt{nm})$ time.
- 5. **T**: maximum matching.
- 6. By the end of this process, matching is of size $|T| \Omega(\sqrt{n})$. (See below why.)
- 7. Resume regular algorithm that augments one augmenting path at a time.
- 8. After $O(\sqrt{n})$ regular iterations we would be done.

- 1. extract all possible augmenting shortest paths of a certain length in one iteration.
- 2. Assume: given a matching can exact all augmenting paths of length k for M in G in O(m) time, for $k=1,3,5,\ldots$
- 3. Apply this extraction algorithm, till $k = 1 + 2\lceil \sqrt{n} \rceil$.
- 4. Take $O(km) = O(\sqrt{nm})$ time.
- 5. T: maximum matching.
- 6. By the end of this process, matching is of size $|T| \Omega(\sqrt{n})$. (See below why.)
- 7. Resume regular algorithm that augments one augmenting path at a time.
- 8. After $O(\sqrt{n})$ regular iterations we would be done.

- 1. extract all possible augmenting shortest paths of a certain length in one iteration.
- 2. Assume: given a matching can exact all augmenting paths of length k for M in G in O(m) time, for $k = 1, 3, 5, \ldots$
- 3. Apply this extraction algorithm, till $k = 1 + 2\lceil \sqrt{n} \rceil$.
- 4. Take $O(km) = O(\sqrt{nm})$ time.
- 5. **T**: maximum matching.
- 6. By the end of this process, matching is of size $|T| \Omega(\sqrt{n})$. (See below why.)
- 7. Resume regular algorithm that augments one augmenting path at a time.
- 8. After $O(\sqrt{n})$ regular iterations we would be done.

- 1. extract all possible augmenting shortest paths of a certain length in one iteration.
- 2. Assume: given a matching can exact all augmenting paths of length k for M in G in O(m) time, for $k = 1, 3, 5, \ldots$
- 3. Apply this extraction algorithm, till $k = 1 + 2\lceil \sqrt{n} \rceil$.
- 4. Take $O(km) = O(\sqrt{nm})$ time.
- 5. **T**: maximum matching.
- 6. By the end of this process, matching is of size $|T| \Omega(\sqrt{n})$. (See below why.)
- 7. Resume regular algorithm that augments one augmenting path at a time.
- 8. After $O(\sqrt{n})$ regular iterations we would be done.

Analysis...

Lemma 22.5.

Consider the iterative algorithm that applies shortest path augmenting path to the current matching, and let M be the first matching such that the shortest path augmenting path for it is of length $\geq \sqrt{n}$, where n is the number of vertices in the input graph G. Let T be the maximum matching. Then $|T| \leq |M| + O(\sqrt{n})$.

Proof.

- 1. Shortest augmenting path for the current matching M is of length at $\geq \sqrt{n}$.
- 2. T: the maximum matching.
- 3. We proved: \exists augmenting path of length $\leq 2n/(|T|-|M|)+1$.
- 4. Together:

$$\sqrt{n} \leq \frac{2n}{|T| - |M|} + 1,$$

5. $\Longrightarrow |T| - |M| \le 3\sqrt{n}$, for $n \ge 4$.

Proof.

- 1. Shortest augmenting path for the current matching M is of length at $\geq \sqrt{n}$.
- 2. T: the maximum matching.
- 3. We proved: \exists augmenting path of length $\leq 2n/(|T|-|M|)+1$.
- 4. Together:

$$\sqrt{n} \leq \frac{2n}{|T| - |M|} + 1,$$

5. $\implies |T| - |M| \le 3\sqrt{n}$, for $n \ge 4$.

Proof.

- 1. Shortest augmenting path for the current matching M is of length at $\geq \sqrt{n}$.
- 2. T: the maximum matching.
- 3. We proved: \exists augmenting path of length $\leq 2n/(|T|-|M|)+1$.
- 4. Together:

$$\sqrt{n} \leq \frac{2n}{|T| - |M|} + 1,$$

5. $\implies |T| - |M| \le 3\sqrt{n}$, for $n \ge 4$.

- 1. Shortest augmenting path for the current matching M is of length at $\geq \sqrt{n}$.
- 2. **T**: the maximum matching.
- 3. We proved: \exists augmenting path of length $\leq 2n/(|T|-|M|)+1$.
- 4. Together:

$$\sqrt{n} \leq \frac{2n}{|T| - |M|} + 1,$$

5.
$$\implies |T| - |M| \le 3\sqrt{n}$$
, for $n \ge 4$.

Proof...

Proof.

- 1. Shortest augmenting path for the current matching M is of length at $\geq \sqrt{n}$.
- 2. **T**: the maximum matching.
- 3. We proved: \exists augmenting path of length $\leq 2n/(|T|-|M|)+1$.
- 4. Together:

$$\sqrt{n} \leq \frac{2n}{|T|-|M|}+1,$$

5.
$$\implies |T| - |M| \le 3\sqrt{n}$$
, for $n \ge 4$.

Proof...

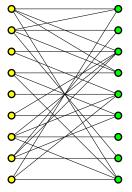
Proof.

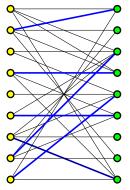
- 1. Shortest augmenting path for the current matching M is of length at $\geq \sqrt{n}$.
- 2. T: the maximum matching.
- 3. We proved: \exists augmenting path of length $\leq 2n/(|T|-|M|)+1$.
- 4. Together:

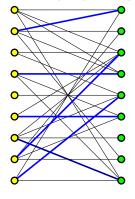
$$\sqrt{n} \leq \frac{2n}{|T| - |M|} + 1,$$

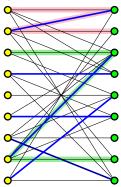
5.
$$\implies |T| - |M| \le 3\sqrt{n}$$
, for $n \ge 4$.

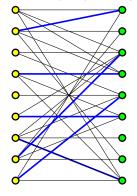
22.3.2.3: Extracting many augmenting paths

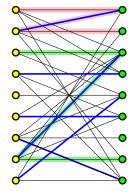


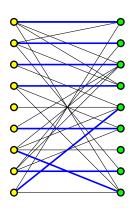


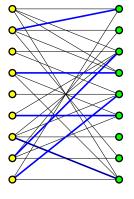


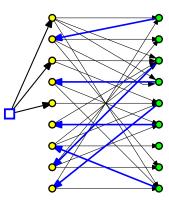


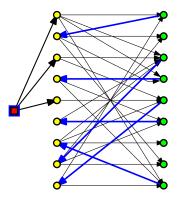


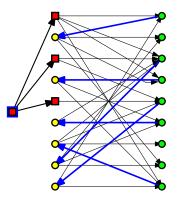


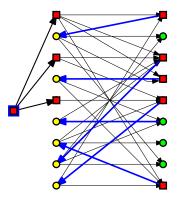


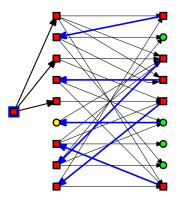


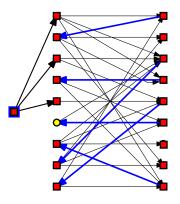


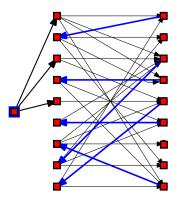


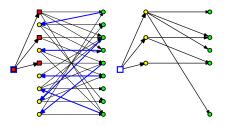


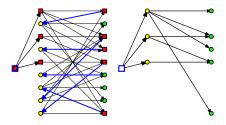


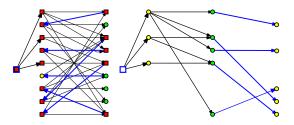


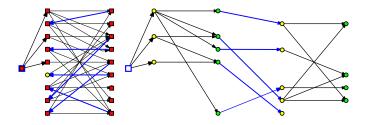


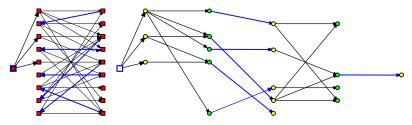


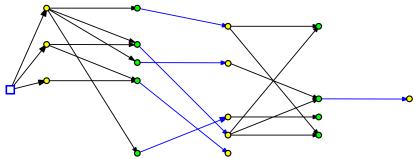


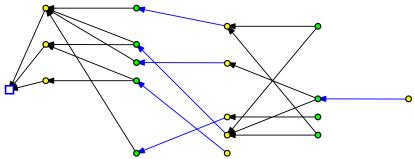


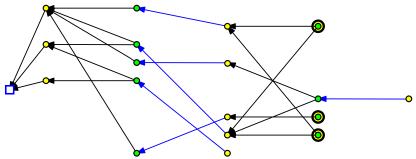


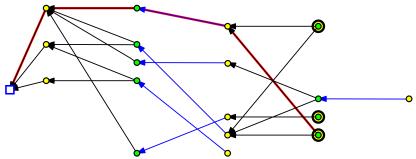


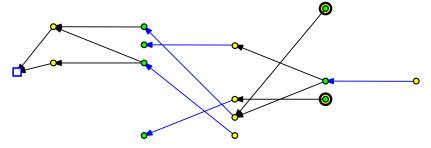


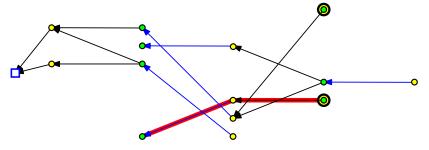


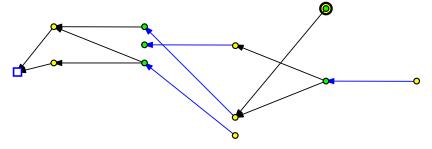


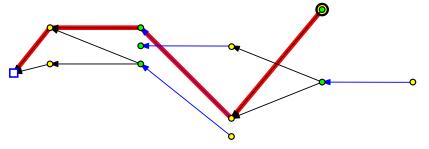


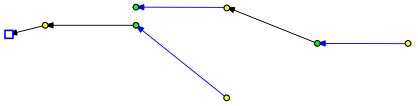


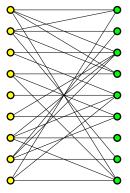


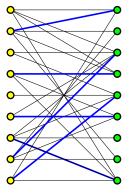


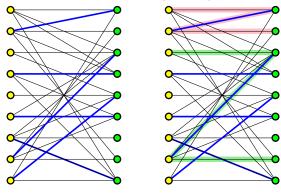


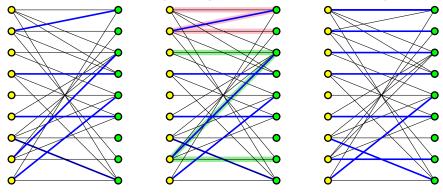












- 1. Idea: build data-structure that is similar to BFS tree.
- 2. Input: G, a matching M, and a parameter k, where k odd integer.
- 3. Assumption: Length shortest augmenting path for M is k.
- 4. Task: Extract as many augmenting paths as possible. Vertex disjoint. Of length k
- 5. F: set of free vertices in G.
- 6. Build directed graph
 - 6.1 s: source vertex connected to all vertices of $L_1 = L \cap F$.
 - 6.2 direct edges of G from left to right, and matching edges from right to left.
 - 6.3 J: resulting graph.
- 7. Compute **BFS** on the graph J starting at s, and let T be the resulting tree.
- 8. L_1 , R_1 , L_2 , R_2 , L_3 , ... be the layers of the **BFS**.

- 1. Idea: build data-structure that is similar to BFS tree.
- 2. Input: G, a matching M, and a parameter k, where k odd integer.
- 3. Assumption: Length shortest augmenting path for M is k.
- 4. Task: Extract as many augmenting paths as possible. Vertex disjoint. Of length k
- 5. F: set of free vertices in G.
- 6. Build directed graph
 - 6.1 s: source vertex connected to all vertices of $L_1 = L \cap F$.
 - 6.2 direct edges of G from left to right, and matching edges from right to left.
 - 6.3 J: resulting graph.
- 7. Compute **BFS** on the graph J starting at s, and let T be the resulting tree.
- 8. L_1 , R_1 , L_2 , R_2 , L_3 , ... be the layers of the **BFS**.

- 1. Idea: build data-structure that is similar to BFS tree.
- 2. Input: G, a matching M, and a parameter k, where k odd integer.
- 3. Assumption: Length shortest augmenting path for M is k.
- 4. Task: Extract as many augmenting paths as possible. Vertex disjoint. Of length k
- 5. F: set of free vertices in G.
- 6. Build directed graph:
 - 6.1 s: source vertex connected to all vertices of $L_1 = L \cap F$.
 - 6.2 direct edges of G from left to right, and matching edges from right to left.
 - 6.3 J: resulting graph.
- 7. Compute **BFS** on the graph J starting at s, and let T be the resulting tree.
- 8. $L_1, R_1, L_2, R_2, L_3, \ldots$ be the layers of the **BFS**.

- 1. Idea: build data-structure that is similar to BFS tree.
- 2. Input: G, a matching M, and a parameter k, where k odd integer.
- 3. Assumption: Length shortest augmenting path for M is k.
- 4. Task: Extract as many augmenting paths as possible. Vertex disjoint. Of length k
- 5. **F**: set of free vertices in **G**.
- 6. Build directed graph
 - 6.1 s: source vertex connected to all vertices of $L_1 = L \cap F$.
 - 6.2 direct edges of G from left to right, and matching edges from right to left.
 - 6.3 J: resulting graph.
- 7. Compute **BFS** on the graph J starting at s, and let T be the resulting tree.
- 8. L_1 , R_1 , L_2 , R_2 , L_3 , ... be the layers of the **BFS**.

- 1. Idea: build data-structure that is similar to BFS tree.
- 2. Input: G, a matching M, and a parameter k, where k odd integer.
- 3. Assumption: Length shortest augmenting path for M is k.
- 4. Task: Extract as many augmenting paths as possible. Vertex disjoint. Of length k
- 5. F: set of free vertices in G.
- 6. Build directed graph:
 - 6.1 s: source vertex connected to all vertices of $L_1 = L \cap F$.
 - 6.2 direct edges of G from left to right, and matching edges from right to left.
 - 6.3 J: resulting graph.
- 7. Compute **BFS** on the graph J starting at s, and let T be the resulting tree.
- 8. L_1 , R_1 , L_2 , R_2 , L_3 , ... be the layers of the BFS.

- 1. Idea: build data-structure that is similar to BFS tree.
- 2. Input: G, a matching M, and a parameter k, where k odd integer.
- 3. Assumption: Length shortest augmenting path for M is k.
- 4. Task: Extract as many augmenting paths as possible. Vertex disjoint. Of length k
- 5. F: set of free vertices in G.
- 6. Build directed graph:
 - 6.1 s: source vertex connected to all vertices of $L_1 = L \cap F$.
 - 6.2 direct edges of G from left to right, and matching edges from right to left.
 - 6.3 J: resulting graph.
- 7. Compute BFS on the graph J starting at s, and let T be the resulting tree.
- 8. L_1 , R_1 , L_2 , R_2 , L_3 , ... be the layers of the BFS.

- 1. Idea: build data-structure that is similar to BFS tree.
- 2. Input: G, a matching M, and a parameter k, where k odd integer.
- 3. Assumption: Length shortest augmenting path for M is k.
- 4. Task: Extract as many augmenting paths as possible. Vertex disjoint. Of length k
- 5. F: set of free vertices in G.
- 6. Build directed graph:
 - 6.1 s: source vertex connected to all vertices of $L_1 = L \cap F$.
 - 6.2 direct edges of G from left to right, and matching edges from right to left.
 - 6.3 J: resulting graph.
- 7. Compute BFS on the graph J starting at s, and let T be the resulting tree.
- 8. $L_1, R_1, L_2, R_2, L_3, \ldots$ be the layers of the BFS.

- 1. By assumption: first free vertex below L_1 encountered is at level R_{τ} , where $\tau = \lceil k/2 \rceil$.
- 2. Scan edges of J.
- 3. Add forward edges to tree.
- 4. ... edge between two vertices that belong to two consecutive levels of the **BFS** tree T.
- 5. H be the resulting graph.
- 6. H is a DAG (which is an enrichment of the original tree T)
- 7. Compute also the reverse graph H^{rev} (where, we just reverse the edges).

- 1. By assumption: first free vertex below L_1 encountered is at level R_{τ} , where $\tau = \lceil k/2 \rceil$.
- 2. Scan edges of J.
- 3. Add forward edges to tree
- 4. ... edge between two vertices that belong to two consecutive levels of the **BFS** tree T.
- 5. H be the resulting graph.
- 6. H is a DAG (which is an enrichment of the original tree T)
- 7. Compute also the reverse graph $\mathsf{H}^{\mathsf{rev}}$ (where, we just reverse the edges).

- 1. By assumption: first free vertex below L_1 encountered is at level R_{τ} , where $\tau = \lceil k/2 \rceil$.
- 2. Scan edges of J.
- 3. Add forward edges to tree
- 4. ... edge between two vertices that belong to two consecutive levels of the **BFS** tree T.
- 5. H be the resulting graph.
- 6. H is a DAG (which is an enrichment of the original tree T)
- 7. Compute also the reverse graph H^{rev} (where, we just reverse the edges).

- 1. By assumption: first free vertex below L_1 encountered is at level R_{τ} , where $\tau = \lceil k/2 \rceil$.
- 2. Scan edges of J.
- 3. Add forward edges to tree.
- 4. ... edge between two vertices that belong to two consecutive levels of the **BFS** tree T.
- 5. H be the resulting graph.
- 6. H is a DAG (which is an enrichment of the original tree T)
- 7. Compute also the reverse graph H^{rev} (where, we just reverse the edges).

- 1. By assumption: first free vertex below L_1 encountered is at level R_{τ} , where $\tau = \lceil k/2 \rceil$.
- 2. Scan edges of J.
- 3. Add forward edges to tree.
- 4. ... edge between two vertices that belong to two consecutive levels of the **BFS** tree T.
- 5. H be the resulting graph.
- 6. H is a DAG (which is an enrichment of the original tree T)
- 7. Compute also the reverse graph H^{rev} (where, we just reverse the edges)

- 1. By assumption: first free vertex below L_1 encountered is at level R_{τ} , where $\tau = \lceil k/2 \rceil$.
- 2. Scan edges of J.
- 3. Add forward edges to tree.
- 4. ... edge between two vertices that belong to two consecutive levels of the **BFS** tree T.
- 5. H be the resulting graph.
- 6. H is a DAG (which is an enrichment of the original tree T).
- 7. Compute also the reverse graph H^{rev} (where, we just reverse the edges)

- 1. By assumption: first free vertex below L_1 encountered is at level R_{τ} , where $\tau = \lceil k/2 \rceil$.
- 2. Scan edges of J.
- 3. Add forward edges to tree.
- 4. ... edge between two vertices that belong to two consecutive levels of the **BFS** tree T.
- 5. H be the resulting graph.
- 6. H is a DAG (which is an enrichment of the original tree T).
- 7. Compute also the reverse graph H^{rev} (where, we just reverse the edges)

- 1. By assumption: first free vertex below L_1 encountered is at level R_{τ} , where $\tau = \lceil k/2 \rceil$.
- 2. Scan edges of J.
- 3. Add forward edges to tree.
- 4. ... edge between two vertices that belong to two consecutive levels of the **BFS** tree T.
- 5. H be the resulting graph.
- 6. H is a DAG (which is an enrichment of the original tree T).
- 7. Compute also the reverse graph H^{rev} (where, we just reverse the edges).

- 1. $F_{\tau} = R_{\tau} \cap F$: free vertices of distance k from free vertices of L_1 .
- 2. $\forall v \in F_{\tau}$ do a **DFS** in H^{rev} till the **DFS** reaches a vertex of L_1 .
- 3. Mark all the vertices visited by the **DFS** as "used" thus not allowing any future **DFS** to use these vertices (i.e., the **DFS** ignore edges leading to used vertices).
- 4. If the **DFS** succeeds, extract shortest path found, and add it to the collection of augmenting paths.
- 5. Otherwise, move on to the next vertex in F_{τ} , till visit all such vertices.
- 6. Results: collection of augmenting paths $P_{ au}$,
 - 6.1 vertex disjoint.
 - 6.2 All of length k.

- 1. $F_{\tau} = R_{\tau} \cap F$: free vertices of distance k from free vertices of L_1 .
- 2. $\forall v \in F_{\tau}$ do a **DFS** in H^{rev} till the **DFS** reaches a vertex of L_1 .
- 3. Mark all the vertices visited by the **DFS** as "used" thus not allowing any future **DFS** to use these vertices (i.e., the **DFS** ignore edges leading to used vertices).
- 4. If the **DFS** succeeds, extract shortest path found, and add it to the collection of augmenting paths.
- 5. Otherwise, move on to the next vertex in F_{τ} , till visit all such vertices.
- 6. Results: collection of augmenting paths P_{τ} ,
 - 6.1 vertex disjoint.
 - 6.2 All of length k.

- 1. $F_{\tau} = R_{\tau} \cap F$: free vertices of distance k from free vertices of L_1 .
- 2. $\forall v \in F_{\tau}$ do a **DFS** in H^{rev} till the **DFS** reaches a vertex of L_1 .
- 3. Mark all the vertices visited by the **DFS** as "used" thus not allowing any future **DFS** to use these vertices (i.e., the **DFS** ignore edges leading to used vertices).
- 4. If the **DFS** succeeds, extract shortest path found, and add it to the collection of augmenting paths.
- 5. Otherwise, move on to the next vertex in F_{τ} , till visit all such vertices.
- 6. Results: collection of augmenting paths P_{τ} ,
 - 6.1 vertex disjoint.
 - 6.2 All of length k.

- 1. $F_{\tau} = R_{\tau} \cap F$: free vertices of distance k from free vertices of L_1 .
- 2. $\forall v \in F_{\tau}$ do a **DFS** in H^{rev} till the **DFS** reaches a vertex of L_1 .
- 3. Mark all the vertices visited by the **DFS** as "used" thus not allowing any future **DFS** to use these vertices (i.e., the **DFS** ignore edges leading to used vertices).
- 4. If the **DFS** succeeds, extract shortest path found, and add it to the collection of augmenting paths.
- 5. Otherwise, move on to the next vertex in F_{τ} , till visit all such vertices.
- 6. Results: collection of augmenting paths P_{τ} ,
 - 6.1 vertex disjoint
 - 6.2 All of length k.

- 1. $F_{\tau} = R_{\tau} \cap F$: free vertices of distance k from free vertices of L_1 .
- 2. $\forall v \in F_{\tau}$ do a **DFS** in H^{rev} till the **DFS** reaches a vertex of L_1 .
- 3. Mark all the vertices visited by the **DFS** as "used" thus not allowing any future **DFS** to use these vertices (i.e., the **DFS** ignore edges leading to used vertices).
- 4. If the **DFS** succeeds, extract shortest path found, and add it to the collection of augmenting paths.
- 5. Otherwise, move on to the next vertex in F_{τ} , till visit all such vertices.
- 6. Results: collection of augmenting paths P_{τ} ,
 - 6.1 vertex disjoint
 - 6.2 All of length k.

- 1. $F_{\tau} = R_{\tau} \cap F$: free vertices of distance k from free vertices of L_1 .
- 2. $\forall v \in F_{\tau}$ do a **DFS** in H^{rev} till the **DFS** reaches a vertex of L_1 .
- 3. Mark all the vertices visited by the **DFS** as "used" thus not allowing any future **DFS** to use these vertices (i.e., the **DFS** ignore edges leading to used vertices).
- 4. If the **DFS** succeeds, extract shortest path found, and add it to the collection of augmenting paths.
- 5. Otherwise, move on to the next vertex in F_{τ} , till visit all such vertices.
- 6. Results: collection of augmenting paths P_{τ} ,
 - 6.1 vertex disjoint
 - 6.2 All of length k.

- 1. $F_{\tau} = R_{\tau} \cap F$: free vertices of distance k from free vertices of L_1 .
- 2. $\forall v \in F_{\tau}$ do a **DFS** in H^{rev} till the **DFS** reaches a vertex of L_1 .
- 3. Mark all the vertices visited by the **DFS** as "used" thus not allowing any future **DFS** to use these vertices (i.e., the **DFS** ignore edges leading to used vertices).
- 4. If the **DFS** succeeds, extract shortest path found, and add it to the collection of augmenting paths.
- 5. Otherwise, move on to the next vertex in F_{τ} , till visit all such vertices.
- 6. Results: collection of augmenting paths P_{τ} ,
 - 6.1 vertex disjoint.
 - 6.2 All of length k.

- 1. $F_{\tau} = R_{\tau} \cap F$: free vertices of distance k from free vertices of L_1 .
- 2. $\forall v \in F_{\tau}$ do a **DFS** in H^{rev} till the **DFS** reaches a vertex of L_1 .
- 3. Mark all the vertices visited by the **DFS** as "used" thus not allowing any future **DFS** to use these vertices (i.e., the **DFS** ignore edges leading to used vertices).
- 4. If the **DFS** succeeds, extract shortest path found, and add it to the collection of augmenting paths.
- 5. Otherwise, move on to the next vertex in F_{τ} , till visit all such vertices.
- 6. Results: collection of augmenting paths P_{τ} ,
 - 6.1 vertex disjoint.
 - 6.2 All of length k.

- 1. Building initial graphs H and H^{rev} takes O(m) time.
- 2. Charge running time of the second stage to the edges and vertices visited.
- 3. Any vertex visited by any **DFS** is never going to be visited again...
- 4. \implies edge of H^{rev} is going to be considered only once by algorithm
- 5. \implies running time of the algorithm is O(n + m).

- 1. Building initial graphs H and H^{rev} takes O(m) time.
- 2. Charge running time of the second stage to the edges and vertices visited.
- 3. Any vertex visited by any **DFS** is never going to be visited again...
- 4. \implies edge of H^{rev} is going to be considered only once by algorithm
- 5. \implies running time of the algorithm is O(n + m).

- 1. Building initial graphs H and H^{rev} takes O(m) time.
- 2. Charge running time of the second stage to the edges and vertices visited.
- 3. Any vertex visited by any **DFS** is never going to be visited again...
- 4. \implies edge of H^{rev} is going to be considered only once by algorithm.
- 5. \implies running time of the algorithm is O(n + m).

- 1. Building initial graphs H and H^{rev} takes O(m) time.
- 2. Charge running time of the second stage to the edges and vertices visited.
- 3. Any vertex visited by any **DFS** is never going to be visited again...
- 4. \implies edge of H^{rev} is going to be considered only once by algorithm.
- 5. \implies running time of the algorithm is O(n+m).

Maximal set of disjoint augmenting paths

Lemma 22.6.

The set P_k is a maximal set of vertex-disjoint augmenting paths of length k for M.

- 1. M' be the result of augmenting M with the paths of P_k .
- 2. Assume for sake of contradiction: P_k is not maximal
- 3. That is: \exists augmenting path σ of length k disjoint from paths of P_k .
- 4. Algorithm could traverse σ in H,
- 5. ... would go through unused vertices.
- 6. Indeed, if any vertices of σ were used by any of the back **DFS**,
- 7. \implies resulted in a path that goes to a free vertex in L_1 .
- 8. \Longrightarrow a contradiction: σ is supposedly disjoint from the paths of P_k .

- 1. M' be the result of augmenting M with the paths of P_k .
- 2. Assume for sake of contradiction: P_k is not maximal.
- 3. That is: \exists augmenting path σ of length k disjoint from paths of P_k .
- 4. Algorithm could traverse σ in H,
- 5. ... would go through unused vertices.
- 6. Indeed, if any vertices of σ were used by any of the back **DFS**,
- 7. \Longrightarrow resulted in a path that goes to a free vertex in L_1 .
- 8. \Longrightarrow a contradiction: σ is supposedly disjoint from the paths of P_k .

- 1. M' be the result of augmenting M with the paths of P_k .
- 2. Assume for sake of contradiction: P_k is not maximal.
- 3. That is: \exists augmenting path σ of length k disjoint from paths of P_k .
- 4. Algorithm could traverse σ in H,
- 5. ... would go through unused vertices.
- 6. Indeed, if any vertices of σ were used by any of the back **DFS**,
- 7. \implies resulted in a path that goes to a free vertex in L_1 .
- 8. \Longrightarrow a contradiction: σ is supposedly disjoint from the paths of P_k .

- 1. M' be the result of augmenting M with the paths of P_k .
- 2. Assume for sake of contradiction: P_k is not maximal.
- 3. That is: \exists augmenting path σ of length k disjoint from paths of P_k .
- 4. Algorithm could traverse σ in H,
- 5. ... would go through unused vertices.
- 6. Indeed, if any vertices of σ were used by any of the back **DFS**,
- 7. \Longrightarrow resulted in a path that goes to a free vertex in L_1 .
- 8. \Longrightarrow a contradiction: σ is supposedly disjoint from the paths of P_k .

- 1. M' be the result of augmenting M with the paths of P_k .
- 2. Assume for sake of contradiction: P_k is not maximal.
- 3. That is: \exists augmenting path σ of length k disjoint from paths of P_k .
- 4. Algorithm could traverse σ in H,
- 5. ... would go through unused vertices.
- 6. Indeed, if any vertices of σ were used by any of the back **DFS**,
- 7. \implies resulted in a path that goes to a free vertex in L_1 .
- 8. \implies a contradiction: σ is supposedly disjoint from the paths of P_k .

- 1. M' be the result of augmenting M with the paths of P_k .
- 2. Assume for sake of contradiction: P_k is not maximal.
- 3. That is: \exists augmenting path σ of length k disjoint from paths of P_k .
- 4. Algorithm could traverse σ in H,
- 5. ... would go through unused vertices.
- 6. Indeed, if any vertices of σ were used by any of the back **DFS**,
- 7. \Longrightarrow resulted in a path that goes to a free vertex in L_1 .
- 8. \implies a contradiction: σ is supposedly disjoint from the paths of P_k .

- 1. M' be the result of augmenting M with the paths of P_k .
- 2. Assume for sake of contradiction: P_k is not maximal.
- 3. That is: \exists augmenting path σ of length k disjoint from paths of P_k .
- 4. Algorithm could traverse σ in H,
- 5. ... would go through unused vertices.
- 6. Indeed, if any vertices of σ were used by any of the back **DFS**,
- 7. \implies resulted in a path that goes to a free vertex in L_1 .
- 8. \implies a contradiction: σ is supposedly disjoint from the paths of P_k .

- 1. M' be the result of augmenting M with the paths of P_k .
- 2. Assume for sake of contradiction: P_k is not maximal.
- 3. That is: \exists augmenting path σ of length k disjoint from paths of P_k .
- 4. Algorithm could traverse σ in H,
- 5. ... would go through unused vertices.
- 6. Indeed, if any vertices of σ were used by any of the back **DFS**,
- 7. \implies resulted in a path that goes to a free vertex in L_1 .
- 8. \implies a contradiction: σ is supposedly disjoint from the paths of P_k .

22.3.2.4:The result

The result

Theorem 22.7.

Given a bipartite unweighted graph G with n vertices and m edges, one can compute maximum matching in G in $O(\sqrt{nm})$ time.

The proof...

The **algMatching**_{HK} algorithm was described, and the running time analysis was also done.

The main challenge is the correctness.

The proof...

The **algMatching**_{HK} algorithm was described, and the running time analysis was also done.

The main challenge is the correctness.

- 1. interpret execution of algorithm as simulating the slower and simpler algorithm.
- 2. **algMatching**_{HK}: computes sequence of sets of augmenting paths P_1, P_3, P_5, \ldots
- 3. order augmenting paths in an arbitrary order inside each such set
- 4. Results: in sequence of augmenting paths that are shortest augmenting paths for the current matching.
- 5. By lemma: each P_k maximal set of vertex-disjoint augmenting paths of length k.
- 6. Other lemma: all aug. paths of len k computed: vertex disjoint.
- 7. Now by induction: argue that if $\operatorname{algMatching}_{HK}$ simulates correctly $\operatorname{algSlowMatch}$, for the augmenting paths in $P_1 \cup P_3 \cup \ldots P_i$, then it simulates it correctly for $P_1 \cup P_3 \cup \ldots P_i \cup P_{i+1}$. Done.

- 1. interpret execution of algorithm as simulating the slower and simpler algorithm.
- 2. algMatching_{HK}: computes sequence of sets of augmenting paths P_1, P_3, P_5, \ldots
- 3. order augmenting paths in an arbitrary order inside each such set
- 4. Results: in sequence of augmenting paths that are shortest augmenting paths for the current matching.
- 5. By lemma: each P_k maximal set of vertex-disjoint augmenting paths of length k.
- 6. Other lemma: all aug. paths of len k computed: vertex disjoint.
- 7. Now by induction: argue that if $\operatorname{algMatching}_{HK}$ simulates correctly $\operatorname{algSlowMatch}$, for the augmenting paths in $P_1 \cup P_3 \cup \ldots P_i$, then it simulates it correctly for $P_1 \cup P_3 \cup \ldots P_i \cup P_{i+1}$. Done.

- 1. interpret execution of algorithm as simulating the slower and simpler algorithm.
- 2. **algMatching**_{HK}: computes sequence of sets of augmenting paths P_1, P_3, P_5, \ldots
- 3. order augmenting paths in an arbitrary order inside each such set.
- 4. Results: in sequence of augmenting paths that are shortest augmenting paths for the current matching.
- 5. By lemma: each P_k maximal set of vertex-disjoint augmenting paths of length k.
- 6. Other lemma: all aug. paths of len k computed: vertex disjoint.
- 7. Now by induction: argue that if **algMatching**_{HK} simulates correctly **algSlowMatch**, for the augmenting paths in $P_1 \cup P_3 \cup \ldots P_i$, then it simulates it correctly for $P_1 \cup P_3 \cup \ldots P_i \cup P_{i+1}$. Done.

- 1. interpret execution of algorithm as simulating the slower and simpler algorithm.
- 2. **algMatching**_{HK}: computes sequence of sets of augmenting paths P_1, P_3, P_5, \ldots
- 3. order augmenting paths in an arbitrary order inside each such set.
- 4. Results: in sequence of augmenting paths that are shortest augmenting paths for the current matching.
- 5. By lemma: each P_k maximal set of vertex-disjoint augmenting paths of length k.
- 6. Other lemma: all aug. paths of len k computed: vertex disjoint.
- 7. Now by induction: argue that if **algMatching**_{HK} simulates correctly **algSlowMatch**, for the augmenting paths in $P_1 \cup P_3 \cup \ldots P_i$, then it simulates it correctly for $P_1 \cup P_3 \cup \ldots P_i \cup P_{i+1}$. Done.

- 1. interpret execution of algorithm as simulating the slower and simpler algorithm.
- 2. **algMatching**_{HK}: computes sequence of sets of augmenting paths P_1, P_3, P_5, \ldots
- 3. order augmenting paths in an arbitrary order inside each such set.
- 4. Results: in sequence of augmenting paths that are shortest augmenting paths for the current matching.
- 5. By lemma: each P_k maximal set of vertex-disjoint augmenting paths of length k.
- 6. Other lemma: all aug. paths of len k computed: vertex disjoint.
- 7. Now by induction: argue that if **algMatching**_{HK} simulates correctly **algSlowMatch**, for the augmenting paths in $P_1 \cup P_3 \cup \ldots P_i$, then it simulates it correctly for $P_1 \cup P_3 \cup \ldots P_i \cup P_{i+1}$. Done.

- 1. interpret execution of algorithm as simulating the slower and simpler algorithm.
- 2. algMatching_{HK}: computes sequence of sets of augmenting paths P_1, P_3, P_5, \ldots
- 3. order augmenting paths in an arbitrary order inside each such set.
- 4. Results: in sequence of augmenting paths that are shortest augmenting paths for the current matching.
- 5. By lemma: each P_k maximal set of vertex-disjoint augmenting paths of length k.
- 6. Other lemma: all aug. paths of len k computed: vertex disjoint.
- 7. Now by induction: argue that if $\operatorname{algMatching}_{HK}$ simulates correctly $\operatorname{algSlowMatch}$, for the augmenting paths in $P_1 \cup P_3 \cup \ldots P_i$, then it simulates it correctly for $P_1 \cup P_3 \cup \ldots P_i \cup P_{i+1}$. Done.

- 1. interpret execution of algorithm as simulating the slower and simpler algorithm.
- 2. **algMatching**_{HK}: computes sequence of sets of augmenting paths P_1, P_3, P_5, \ldots
- 3. order augmenting paths in an arbitrary order inside each such set.
- 4. Results: in sequence of augmenting paths that are shortest augmenting paths for the current matching.
- 5. By lemma: each P_k maximal set of vertex-disjoint augmenting paths of length k.
- 6. Other lemma: all aug. paths of len k computed: vertex disjoint.
- 7. Now by induction: argue that if $\operatorname{algMatching}_{HK}$ simulates correctly $\operatorname{algSlowMatch}$, for the augmenting paths in $P_1 \cup P_3 \cup \ldots P_i$, then it simulates it correctly for $P_1 \cup P_3 \cup \ldots P_i \cup P_{i+1}$. Done.

Bibliographical notes

The description here follows the original and reasonably well written paper of Hopcroft and Karp ?.

Both won the Turing award.