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18.1
Shortest Paths with Negative Length Edges
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18.1.1
Why Dijkstra’s algorithm fails with negative
edges
FLNAME:18.1.1.0 ZZZ:18.1.1.0 Why Dijkstra’s algorithm fails with negative edges
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Single-Source Shortest Paths with Negative Edge Lengths

Single-Source Shortest Path
Problems
Input: A directed graph G = (V ,E)
with arbitrary (including negative) edge
lengths. For edge e = (u, v),
ℓ(e) = ℓ(u, v) is its length.

1. Given nodes s, t find shortest path
from s to t.

2. Given node s find shortest path
from s to all other nodes.
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What are the distances computed by Dijkstra’s algorithm?
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The distance as computed by Dijk-
stra algorithm starting from s:
(A) s = 0, x = 5, y = 1,

z = 0.

(B) s = 0, x = 1, y = 2,
z = 5.

(C) s = 0, x = 5, y = 1,
z = 2.

(D) IDK.

5 / 73



Dijkstra’s Algorithm and Negative Lengths

With negative length edges, Dijkstra’s algorithm can fail
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Dijkstra’s Algorithm and Negative Lengths
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False assumption: Dijkstra’s algorithm is based on the assumption that if
s = v0 → v1 → v2 . . .→ vk is a shortest path from s to vk then
dist(s, vi) ≤ dist(s, vi+1) for 0 ≤ i < k . Holds true only for non-negative edge
lengths.
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18.1.2
But wait! Things get worse: Negative cycles
FLNAME:18.1.2.0 ZZZ:18.1.2.0 But wait! Things get worse: Negative cycles
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Negative Length Cycles

Definition 18.1.
A cycle C is a negative length cycle if the sum of the edge lengths of C is negative.
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What is the shortest path distance between s and t?
Reminder: Paths have to be simple...
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Shortest Paths and Negative Cycles

Given G = (V ,E) with edge lengths and s, t. Suppose
1. G has a negative length cycle C , and

2. s can reach C and C can reach t.
Question: What is the shortest distance from s to t?
Possible answers: Define shortest distance to be:

1. undefined, that is −∞, OR

2. the length of a shortest simple path from s to t.
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Really bad new about negative edges, and shortest path...

Lemma 18.2.
If there is an efficient algorithm to find a shortest simple s → t path in a graph with
negative edge lengths, then there is an efficient algorithm to find the longest simple
s → t path in a graph with positive edge lengths.

Finding the s → t longest path is difficult. NP-Hard!

10 / 73



Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2024

18.1.3
Restating problem of Shortest path with
negative edges
FLNAME:18.1.3.0 ZZZ:18.1.3.0 Restating problem of Shortest path with negative edges
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Alternatively: Finding Shortest Walks

Given a graph G = (V ,E):

1. A path is a sequence of distinct vertices v1, v2, . . . , vk such that (vi , vi+1) ∈ E
for 1 ≤ i ≤ k − 1.

2. A walk is a sequence of vertices v1, v2, . . . , vk such that (vi , vi+1) ∈ E for
1 ≤ i ≤ k − 1. Vertices are allowed to repeat.

Define dist(u, v) to be the length of a shortest walk from u to v .
1. If there is a walk from u to v that contains negative length cycle then

dist(u, v) = −∞
2. Else there is a path with at most n − 1 edges whose length is equal to the length

of a shortest walk and dist(u, v) is finite

Helpful to think about walks
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Shortest Paths with Negative Edge Lengths
Problems

Algorithmic Problems

Input: A directed graph G = (V ,E) with edge lengths (could be negative). For edge
e = (u, v), ℓ(e) = ℓ(u, v) is its length.

Questions:

1. Given nodes s, t, either find a negative length cycle C that s can reach or find a
shortest path from s to t.

2. Given node s, either find a negative length cycle C that s can reach or find
shortest path distances from s to all reachable nodes.

3. Check if G has a negative length cycle or not.
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Shortest Paths with Negative Edge Lengths
In Undirected Graphs

Note: With negative lengths, shortest path problems and negative cycle detection in
undirected graphs cannot be reduced to directed graphs by bi-directing each undirected
edge. Why?

Problem can be solved efficiently in undirected graphs but algorithms are different and
more involved than those for directed graphs. Beyond the scope of this class. If
interested, ask instructor for references.
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18.1.4
Applications of shortest path for negative
weights on edges
FLNAME:18.1.4.0 ZZZ:18.1.4.0 Applications of shortest path for negative weights on edges
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Why negative lengths?

Several Applications

1. Shortest path problems useful in modeling many situations — in some negative
lengths are natural

2. Negative length cycle can be used to find arbitrage opportunities in currency trading

3. Important sub-routine in algorithms for more general problem: minimum-cost flow
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Negative cycles
Application to Currency Trading

Currency Trading

Input: n currencies and for each ordered pair (a, b) the exchange rate for converting
one unit of a into one unit of b.
Questions:

1. Is there an arbitrage opportunity?

2. Given currencies s, t what is the best way to convert s to t (perhaps via other
intermediate currencies)?

Concrete example:
1. 1 Chinese Yuan = 0.1116 Euro

2. 1 Euro = 1.3617 US dollar

3. 1 US Dollar = 7.1 Chinese Yuan.

Thus, if exchanging 1 $ → Yuan
→ Euro → $, we get: 0.1116 ∗
1.3617 ∗ 7.1 = 1.07896$.

17 / 73



Reducing Currency Trading to Shortest Paths

Observation: If we convert currency i to j via intermediate currencies k1, k2, . . . , kh
then one unit of i yields exch(i , k1)× exch(k1, k2) . . .× exch(kh, j) units of j .

Create currency trading directed graph G = (V ,E):

1. For each currency i there is a node vi ∈ V
2. E = V × V : an edge for each pair of currencies

3. edge length ℓ(vi , vj) = − log(exch(i , j)) can be negative

Exercise: Verify that

1. There is an arbitrage opportunity if and only if G has a negative length cycle.

2. The best way to convert currency i to currency j is via a shortest path in G from i
to j . If d is the distance from i to j then one unit of i can be converted into 2d

units of j .
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Reducing Currency Trading to Shortest Paths
Math recall - relevant information

1. log(α1 ∗ α2 ∗ · · · ∗ αk) = logα1 + logα2 + · · ·+ logαk .

2. log x > 0 if and only if x > 1 .
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18.2
Shortest path with negative lengths: The
chaLLANGE
FLNAME:18.2.0.0 ZZZ:18.2.0.0 Shortest path with negative lengths: The chaLLANGE
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Shortest Paths with Negative Lengths

Lemma 18.1.
Let G be a directed graph with arbitrary edge lengths. If
s = v0 → v1 → v2 → . . .→ vk is a shortest path from s to vk then for 1 ≤ i < k :

1. s = v0 → v1 → v2 → . . .→ vi is a shortest path from s to vi

2. False: dist(s, vi) ≤ dist(s, vk) for 1 ≤ i < k . Holds true only for non-negative
edge lengths.

Cannot explore nodes in increasing order of distance! We need other strategies.
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18.3
Bellman Ford Algorithm
FLNAME:18.3.0.0 ZZZ:18.3.0.0 Bellman Ford Algorithm
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18.3.1
The scheme
FLNAME:18.3.1.0 ZZZ:18.3.1.0 The scheme
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Shortest Paths and Recursion

1. Compute the shortest path distance from s to t recursively?

2. What are the smaller sub-problems?

Lemma 18.1.
Let G be a directed graph with arbitrary edge lengths. If
s = v0 → v1 → v2 → . . .→ vk is a shortest path from s to vk then for 1 ≤ i < k :

1. s = v0 → v1 → v2 → . . .→ vi is a shortest path from s to vi

Sub-problem idea: paths of fewer hops/edges
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Hop-based Recursion: Bellman-Ford Algorithm

Single-source problem: fix source s.
Assume that all nodes can be reached by s in G
Assume G has no negative-length cycle (for now).

d(v , k): shortest walk length from s to v using at most k edges.

Note: dist(s, v) = d(v , n − 1). Recursion for d(v , k):

d(v , k) = min

{
minu∈V (d(u, k − 1) + ℓ(u, v)).
d(v , k − 1)

Base case: d(s, 0) = 0 and d(v , 0) =∞ for all v ̸= s.
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18.3.2
The Bellman-Ford Algorithm
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Bellman-Ford Algorithm

for each u ∈ V do
d(u, 0)←∞

d(s, 0)← 0

for k = 1 to n − 1 do
for each v ∈ V do

d(v , k)← d(v , k − 1)
for each edge (u, v) ∈ i n(v) do

d(v , k) = min{d(v , k), d(u, k − 1) + ℓ(u, v)}

for each v ∈ V do
dist(s, v)← d(v , n − 1)

Running time: O(mn) Space: O(m + n2)
Space can be reduced to O(m + n).
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Bellman-Ford Algorithm: Cleaner version

for each u ∈ V do
d(u)←∞

d(s)← 0

for k = 1 to n − 1 do
for each v ∈ V do

for each edge (u, v) ∈ i n(v) do
d(v) = min{d(v), d(u) + ℓ(u, v)}

for each v ∈ V do
dist(s, v)← d(v)

Running time: O(mn) Space: O(m + n)
Exercise: Argue that this achieves same results as algorithm on previous slide.
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18.3.2.1
Correctness of the Bellman-Ford Algorithm
FLNAME:18.3.2.1 ZZZ:18.3.2.1 Correctness of the Bellman-Ford Algorithm
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Bellman-Ford Algorithm: Modified for analysis

for each u ∈ V do
d(u)←∞

d(s)← 0

for k = 1 to n do
for each v ∈ V do

for each edge (u, v) ∈ i n(v) do
d(v) = min{d(v), d(u) + ℓ(u, v)}

for each v ∈ V do
dist(s, v)← d(v)
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Walks computed correctly

Lemma 18.2.
For each v , d(v , k) is the length of a shortest walk from s to v with at most k hops.

Proof.
Standard induction (left as exercise).
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Bellman-Ford computes the shortest paths correctly

Lemma 18.3.
If G does not has a negative length cycle reachable from s =⇒ ∀v :
d(v , n) = d(v , n − 1).

Also, d(v , n − 1) is the length of the shortest path between s and v .

Proof.
Shortest walk from s to reachable vertex is a path [not repeated vertex]
(otherwise ∃ neg cycle).
A path has at most n − 1 edges.
=⇒ Len shortest walk from s to v with at most n − 1 edges
= Len shortest walk from s to v
= Len shortest path from s to v .
By Lemma 18.2 : d(v , n) = d(v , n − 1) = dist(s, v), for all v .
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18.3.3
Bellman-Ford: Detecting negative cycles
FLNAME:18.3.3.0 ZZZ:18.3.3.0 Bellman-Ford: Detecting negative cycles
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Correctness: detecting negative length cycle

Lemma 18.4.
Suppose G has a negative cycle C reachable from s. Then there is some node v ∈ C
such that d(v , n) < d(v , n − 1).

Proof.
Suppose not. Let C = v1 → v2 → . . .→ vh → v1 be negative length cycle
reachable from s. d(vi , n − 1) is finite for 1 ≤ i ≤ h since C is reachable from s. By
assumption d(v , n) ≥ d(v , n − 1) for all v ∈ C ; implies no change in nth iteration;
d(vi , n − 1) = d(vi , n) for 1 ≤ i ≤ h. This means
d(vi , n − 1) ≤ d(vi−1, n − 1) + ℓ(vi−1, vi) for 2 ≤ i ≤ h and
d(v1, n − 1) ≤ d(vn, n − 1) + ℓ(vn, v1). Adding up all these inequalities results in
the inequality 0 ≤ ℓ(C) which contradicts the assumption that ℓ(C) < 0.

35 / 73



Correctness: detecting negative length cycle

Lemma 18.4.
Suppose G has a negative cycle C reachable from s. Then there is some node v ∈ C
such that d(v , n) < d(v , n − 1).

Proof.
Suppose not. Let C = v1 → v2 → . . .→ vh → v1 be negative length cycle
reachable from s. d(vi , n − 1) is finite for 1 ≤ i ≤ h since C is reachable from s. By
assumption d(v , n) ≥ d(v , n − 1) for all v ∈ C ; implies no change in nth iteration;
d(vi , n − 1) = d(vi , n) for 1 ≤ i ≤ h. This means
d(vi , n − 1) ≤ d(vi−1, n − 1) + ℓ(vi−1, vi) for 2 ≤ i ≤ h and
d(v1, n − 1) ≤ d(vn, n − 1) + ℓ(vn, v1). Adding up all these inequalities results in
the inequality 0 ≤ ℓ(C) which contradicts the assumption that ℓ(C) < 0.

35 / 73



Proof of Lemma 18.4 in more detail...

s

v0

v1 v2

v3

v4v5

C

d(s, v1) ≤ d(s, v0) + ℓ(v0, v1)

d(s, v2) ≤ d(s, v1) + ℓ(v1, v2)

. . .

d(s, vi) ≤ d(s, vi−1) + ℓ(vi−1, vi)

. . .

d(s, vk) ≤ d(s, vk−1) + ℓ(vk−1, vk)

d(s, v0) ≤ d(s, vk) + ℓ(vk , v0)

k∑
i=0

d(s, vi) ≤
k∑

i=0

d(s, vi) +
k∑

i=1

ℓ(vi−1, vi) + ℓ(vk , v0)
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d(s, vi) ≤
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0 ≤
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i=1

ℓ(vi−1, vi) + ℓ(vk , v0).
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i=0
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i=1

ℓ(vi−1, vi) + ℓ(vk , v0)

0 ≤
k∑

i=1

ℓ(vi−1, vi) + ℓ(vk , v0) = len(C) .

C is a not a negative cycle. Contradiction.
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Negative cycles can not hide

Lemma 18.3 restated
If G does not has a negative length cycle reachable from s =⇒ ∀v :
d(v , n) = d(v , n − 1).

Also, d(v , n − 1) is the length of the shortest path between s and v .

Lemma 18.3 and Lemma 18.4 put together are the following:

Lemma 18.5.
G has a negative length cycle reachable from s ⇐⇒ there is some node v such that
d(v , n) < d(v , n − 1).
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Bellman-Ford: Negative Cycle Detection
The official final version

for each u ∈ V do
d(u)←∞

d(s)← 0

for k = 1 to n − 1 do
for each v ∈ V do

for each edge (u, v) ∈ i n(v) do
d(v) = min{d(v), d(u) + ℓ(u, v)}

(* One more iteration to check if distances change *)

for each v ∈ V do
for each edge (u, v) ∈ i n(v) do

if (d(v) > d(u) + ℓ(u, v))
Output ‘‘Negative Cycle’’

for each v ∈ V do
dist(s, v)← d(v)
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18.3.4
Variants on Bellman-Ford
FLNAME:18.3.4.0 ZZZ:18.3.4.0 Variants on Bellman-Ford
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Finding the Paths and a Shortest Path Tree

How do we find a shortest path tree in addition to distances?

▶ For each v the d(v) can only get smaller as algorithm proceeds.

▶ If d(v) becomes smaller it is because we found a vertex u such that
d(v) > d(u) + ℓ(u, v) and we update d(v) = d(u) + ℓ(u, v). That is, we
found a shorter path to v through u.

▶ For each v have a prev(v) pointer and update it to point to u if v finds a shorter
path via u.

▶ At end of algorithm prev(v) pointers give a shortest path tree oriented towards
the source s.

40 / 73



Negative Cycle Detection

Negative Cycle Detection
Given directed graph G with arbitrary edge lengths, does it have a negative length cycle?

1. Bellman-Ford checks whether there is a negative cycle C that is reachable from a
specific vertex s. There may negative cycles not reachable from s.

2. Run Bellman-Ford |V | times, once from each node u?
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Negative Cycle Detection

1. Add a new node s ′ and connect it to all nodes of G with zero length edges.
Bellman-Ford from s ′ will fill find a negative length cycle if there is one. Exercise:
why does this work?

2. Negative cycle detection can be done with one Bellman-Ford invocation.
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18.4
Shortest Paths in DAGs
FLNAME:18.4.0.0 ZZZ:18.4.0.0 Shortest Paths in DAGs
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Shortest Paths in a DAG

Single-Source Shortest Path Problems

Input A directed acyclic graph G = (V ,E) with arbitrary (including negative)
edge lengths. For edge e = (u, v), ℓ(e) = ℓ(u, v) is its length.

1. Given nodes s, t find shortest path from s to t.
2. Given node s find shortest path from s to all other nodes.

Simplification of algorithms for DAGs

1. No cycles and hence no negative length cycles! Hence can find shortest paths even
for negative length edges

2. Can order nodes using topological sort
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Algorithm for DAGs

1. Want to find shortest paths from s. Ignore nodes not reachable from s.
2. Let s = v1, v2, vi+1, . . . , vn be a topological sort of G

Observation:

1. shortest path from s to vi cannot use any node from vi+1, . . . , vn

2. can find shortest paths in topological sort order.
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Algorithm for DAGs

for i = 1 to n do
d(s, vi ) =∞

d(s, s) = 0

for i = 1 to n − 1 do
for each edge (vi , vj ) in Adj(vi ) do

d(s, vj ) = min{d(s, vj ), d(s, vi ) + ℓ(vi , vj )}

return d(s, ·) values computed

Correctness: induction on i and observation in previous slide.
Running time: O(m + n) time algorithm! Works for negative edge lengths and hence
can find longest paths in a DAG.
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Bellman-Ford and DAGs

Bellman-Ford is based on the following principles:

▶ The shortest walk length from s to v with at most k hops can be computed via
dynamic programming

▶ G has a negative length cycle reachable from s iff there is a node v such that
shortest walk length reduces after n hops.

We can find hop-constrained shortest paths via graph reduction.
Given G = (V ,E) with edge lengths ℓ(e) and integer k construction new layered
graph G ′ = (V ′,E ′) as follows.

▶ V ′ = V × {0, 1, 2, . . . , k}.
▶ E ′ = {((u, i), (v , i + 1) | (u, v) ∈ E , 0 ≤ i < k},

ℓ((u, i), (v , i + 1)) = ℓ(u, v)

Lemma 18.1.
Shortest path distance from (u, 0) to (v , k) in G ′ is equal to the shortest walk from u
to v in G with exactly k edges.
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Layered DAG: Figure
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18.5
All Pairs Shortest Paths
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Shortest Path Problems

Shortest Path Problems
Input A (undirected or directed) graph G = (V ,E) with edge lengths (or

costs). For edge e = (u, v), ℓ(e) = ℓ(u, v) is its length.

1. Given nodes s, t find shortest path from s to t.
2. Given node s find shortest path from s to all other nodes.

3. Find shortest paths for all pairs of nodes.
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Single-Source Shortest Paths

Single-Source Shortest Path Problems

Input A (undirected or directed) graph G = (V ,E) with edge lengths. For edge
e = (u, v), ℓ(e) = ℓ(u, v) is its length.

1. Given nodes s, t find shortest path from s to t.
2. Given node s find shortest path from s to all other nodes.

Dijkstra’s algorithm for non-negative edge lengths. Running time: O((m + n) log n)
with heaps and O(m + n log n) with advanced priority queues.

Bellman-Ford algorithm for arbitrary edge lengths. Running time: O(nm).
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All-Pairs Shortest Paths

All-Pairs Shortest Path Problem
Input A (undirected or directed) graph G = (V ,E) with edge lengths. For edge

e = (u, v), ℓ(e) = ℓ(u, v) is its length.

1. Find shortest paths for all pairs of nodes.

Apply single-source algorithms n times, once for each vertex.

1. Non-negative lengths. O(nm log n) with heaps and O(nm + n2 log n) using
advanced priority queues.

2. Arbitrary edge lengths: O(n2m).
Θ
(
n4

)
if m = Ω

(
n2

)
.

Can we do better?
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All-Pairs: Recursion on index of intermediate nodes

1. Number vertices arbitrarily as v1, v2, . . . , vn

2. dist(i , j , k): length of shortest walk from vi to vj among all walks in which the
largest index of an intermediate node is at most k (could be −∞ if there is a
negative length cycle).

i

4

1

100

1

10
2 j

3

5

1
1

2

dist(i , j , 0) = 100

dist(i , j , 1) = 9

dist(i , j , 2) = 8

dist(i , j , 3) = 5
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For the following graph, dist(i, j, 2) is...

i

8

5

200

1

10

2
j

3

5

1

1

2

2

(A) 9

(B) 10

(C) 11

(D) 12

(E) 15
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All-Pairs: Recursion on index of intermediate nodes

i j

kdist(i, k, k − 1) dist(k, j, k − 1)

dist(i, j, k − 1)

dist(i , j , k) = min

{
dist(i , j , k − 1)

dist(i , k, k − 1) + dist(k, j , k − 1)

Base case: dist(i , j , 0) = ℓ(i , j) if (i , j) ∈ E , otherwise∞
Correctness: If i → j shortest walk goes through k then k occurs only once on the
path — otherwise there is a negative length cycle.
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All-Pairs: Recursion on index of intermediate nodes

If i can reach k and k can reach j and dist(k, k, k − 1) < 0 then G has a negative
length cycle containing k and dist(i , j , k) = −∞.

Recursion below is valid only if dist(k, k, k − 1) ≥ 0. We can detect this during the
algorithm or wait till the end.

dist(i , j , k) = min

{
dist(i , j , k − 1)

dist(i , k, k − 1) + dist(k, j , k − 1)
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Floyd-Warshall Algorithm
for All-Pairs Shortest Paths

for i = 1 to n do
for j = 1 to n do

dist(i , j , 0) = ℓ(i , j) (* ℓ(i , j) =∞ if (i , j) /∈ E, 0 if i = j *)

for k = 1 to n do
for i = 1 to n do

for j = 1 to n do

dist(i , j , k) = min

{
dist(i , j , k − 1),

dist(i , k, k − 1) + dist(k, j , k − 1)

for i = 1 to n do
if (dist(i , i , n) < 0) then

Output that there is a negative length cycle in G

Running Time: Θ(n3), Space: Θ(n3).
Correctness: via induction and recursive definition
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Floyd-Warshall Algorithm: Finding the Paths

Question: Can we find the paths in addition to the distances?

1. Create a n × n array Next that stores the next vertex on shortest path for each
pair of vertices

2. With array Next, for any pair of given vertices i , j can compute a shortest path in
O(n) time.
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pair of vertices

2. With array Next, for any pair of given vertices i , j can compute a shortest path in
O(n) time.
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Floyd-Warshall Algorithm
Finding the Paths

for i = 1 to n do
for j = 1 to n do

dist(i , j , 0) = ℓ(i , j)
(* ℓ(i , j) =∞ if (i , j) not edge, 0 if i = j *)

Next(i , j) = −1
for k = 1 to n do

for i = 1 to n do
for j = 1 to n do

if (dist(i , j , k − 1) > dist(i , k, k − 1) + dist(k, j , k − 1)) then
dist(i , j , k) = dist(i , k, k − 1) + dist(k, j , k − 1)
Next(i , j) = k

for i = 1 to n do
if (dist(i , i , n) < 0) then

Output that there is a negative length cycle in G

Exercise: Given Next array and any two vertices i , j describe an O(n) algorithm to
find a i -j shortest path.
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Summary of results on shortest paths
Single source
No negative edges Dijkstra O(n log n + m)
Edge lengths can be negative Bellman Ford O(nm)

All Pairs Shortest Paths

No negative edges n * Dijkstra O
(
n2 log n + nm

)
No negative cycles n * Bellman Ford O

(
n2m

)
= O

(
n4

)
No negative cycles (*) BF + n * Dijkstra O

(
nm + n2 log n

)
No negative cycles Floyd-Warshall O

(
n3

)
Unweighted Matrix multiplication O(n2.38), O(n2.58)
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Summary of results on shortest paths
More details

(*): The algorithm for the case that there are no negative cycles, and doing all shortest
paths, works by computing a potential function using Bellman-Ford and then doing
Dijkstra. It is mentioned for the sake of completeness, but it outside the scope of the
class.
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18.6
DFA to Regular Expression
FLNAME:18.6.0.0 ZZZ:18.6.0.0 DFA to Regular Expression
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Back to Regular Languages

We saw the following two theorems previously.

Theorem 18.1.
For every NFA N over a finite alphabet Σ there is DFA M such that L(M) = L(N).

Theorem 18.2.
For every regular expression r over finite alphabet Σ there is a NFA N such that
L(N) = L(r).

We claimed the following theorem which would prove equivalence of NFAs, DFAs and
regular expressions.

Theorem 18.3.
For every DFA M over a finite alphabet Σ there is a regular expression r such that
L(M) = L(r).
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DFA to Regular Expression

Given DFA M = (Q,Σ, δ, q1,F ) want to construct an equivalent regular expression
r .

Idea:

▶ Number states of DFA: Q = {q1, . . . , qn} where |Q| = n.
▶ Define Li ,j = {w | δ(qi ,w) = qj}. Note Li ,j is regular. Why?

▶ L(M) = ∪qi∈FL1,i .

▶ Obtain regular expression ri ,j for Li ,j .

▶ Then r =
∑

qi∈F r1,i is regular expression for L(M) – here the summation is the
or operator.

Note: Using q1 for start state is intentional to help in the notation for the recursion.
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A recursive expression for Li,j

Define Lk
i ,j be set of strings w in Li ,j such that the highest index state visited by M on

walk from qi to qj (not counting end points i and j) on input w is at most k .

From definition
Li ,j = Ln

i ,j

Claim:

L0
i ,j =

{
{a ∈ Σ | δ(qi , a) = qj} if i ̸= j
{a ∈ Σ | δ(qi , a) = qj} ∪ {ϵ} if i = j

Lk
i ,j = Lk−1

i ,j ∪
(
Lk−1

i ,k · (L
k−1
k,k )∗ · Lk−1

k,j

)
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A recursive expression for Li,j

Claim:

L0
i ,j =

{
{a ∈ Σ | δ(qi , a) = qj} if i ̸= j
{a ∈ Σ | δ(qi , a) = qi} ∪ {ϵ} if i = j

Lk
i ,j = Lk−1

i ,j ∪
(
Lk−1

i ,k · (L
k−1
k,k )∗ · Lk−1

k,j

)
Proof: by picture

qi qj

qk
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A recursive expression for Li,j

Li ,j = Ln
i ,j

Claim:
L0

i ,j = {a ∈ Σ | δ(qi , a) = qj}

Lk
i ,j = Lk−1

i ,j ∪
(
Lk−1

i ,k · (L
k−1
k,k )∗ · Lk−1

k,j

)
From claim, can easily construct regular expression r k

i ,j for Lk
i ,j . This leads to a regular

expression for
L(M) = ∪qi∈FL1,i = ∪qi∈FLn

1,i

67 / 73



Example

q1 q2
a

a

b
b

L(M) = L2
1,2

r 21,2 = r 11,2 + r 11,2(r
1
2,2)

∗r 12,2
r 11,2 = r 01,2 + r 01,1(r

0
1,1)

∗r 01,2
r 12,2 = r 02,2 + r 02,1(r

0
1,1)

∗r 01,2

r 01,1 = r 02,2 = (b + ϵ)

r 01,2 = r 02,1 = a
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Correctness

Similar to that of Floyd-Warshall algorithms for shortest paths via induction.

The length of the regular expression can be exponential in the size of the original DFA.
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18.7
Dynamic Programming: Postscript
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Dynamic Programming: Postscript

Dynamic Programming = Smart Recursion + Memoization

1. How to come up with the recursion?

2. How to recognize that dynamic programming may apply?

71 / 73



Dynamic Programming: Postscript

Dynamic Programming = Smart Recursion + Memoization

1. How to come up with the recursion?

2. How to recognize that dynamic programming may apply?

71 / 73



Some Tips

1. Problems where there is a natural linear ordering: sequences, paths, intervals,
DAGs etc. Recursion based on ordering (left to right or right to left or topological
sort) usually works.

2. Problems involving trees: recursion based on subtrees.

3. More generally:

3.1 Problem admits a natural recursive divide and conquer
3.2 If optimal solution for whole problem can be simply composed from optimal solution

for each separate pieces then plain divide and conquer works directly
3.3 If optimal solution depends on all pieces then can apply dynamic programming if

interface/interaction between pieces is limited. Augment recursion to not simply
find an optimum solution but also an optimum solution for each possible way to
interact with the other pieces.
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Examples

1. Longest Increasing Subsequence: break sequence in the middle say. What is the
interaction between the two pieces in a solution?

2. Sequence Alignment: break both sequences in two pieces each. What is the
interaction between the two sets of pieces?

3. Independent Set in a Tree: break tree at root into subtrees. What is the interaction
between the subtrees?

4. Independent Set in an graph: break graph into two graphs. What is the
interaction? Very high!

5. Knapsack: Split items into two sets of half each. What is the interaction?
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