Intro. Algorithms & Models of Computation CS/ECE 374A, Fall 2024

DAGs, DFS, topological sorting, linear time algorithm for SCC

Lecture 17 Thursday, October 24, 2024

LATEXed: August 25, 2024 14:23

Intro. Algorithms & Models of Computation CS/ECE 374A, Fall 2024

17.1 Overview: Depth First Search and SCC

Overview

Topics:

- Structure of directed graphs
- ► DAGs: Directed acyclic graphs.
- Topological ordering.
- **DFS** pre/post number, and its properties.
- ► Linear time algorithm for SCCs.

Intro. Algorithms & Models of Computation CS/ECE 374A, Fall 2024

17.2 Directed Acyclic Graphs

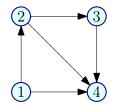
Intro. Algorithms & Models of Computation CS/ECE 374A, Fall 2024

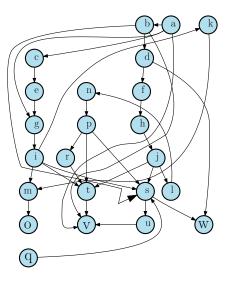
17.2.1 DAGs definition and basic properties

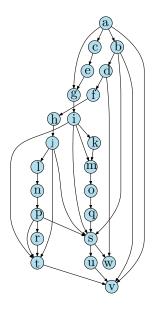
Directed Acyclic Graphs

Definition 17.1.

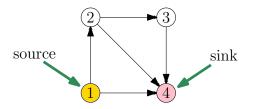
A directed graph G is a **directed** acyclic graph (DAG) if there is no directed cycle in G.





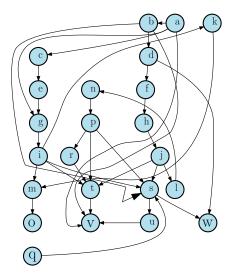


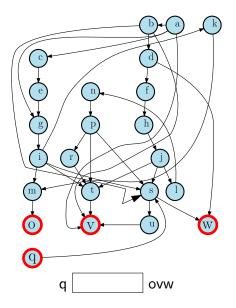
Sources and Sinks

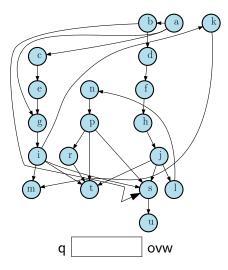


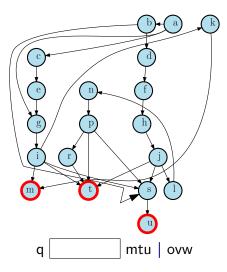
Definition 17.2.

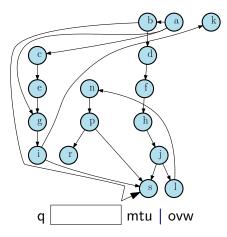
- 1. A vertex *u* is a **source** if it has no in-coming edges.
- 2. A vertex *u* is a **sink** if it has no out-going edges.

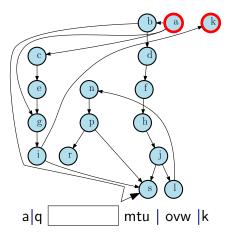


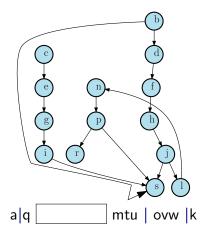


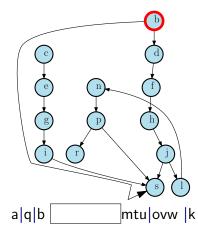


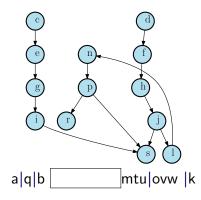


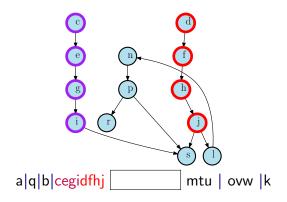


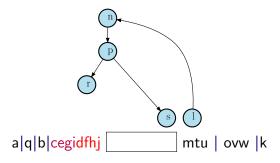


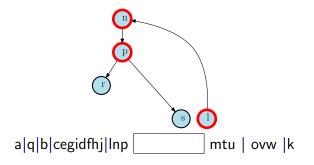




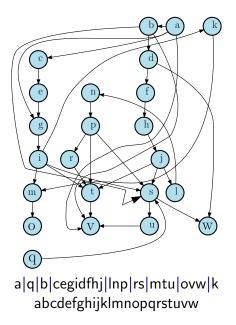








r s a|q|b|cegidfhj|Inp|rs|mtu|ovw|k



Simple DAG Properties

Proposition 17.3.

Every DAG G has at least one source and at least one sink.

Proof.

Let $P = v_1, v_2, \ldots, v_k$ be a longest path in G. Claim that v_1 is a source and v_k is a sink. Suppose not. Then v_1 has an incoming edge which either creates a cycle or a longer path both of which are contradictions. Similarly if v_k has an outgoing edge.

Simple DAG Properties

Proposition 17.3.

Every DAG G has at least one source and at least one sink.

Proof.

Let $P = v_1, v_2, \ldots, v_k$ be a longest path in G. Claim that v_1 is a source and v_k is a sink. Suppose not. Then v_1 has an incoming edge which either creates a cycle or a longer path both of which are contradictions. Similarly if v_k has an outgoing edge.

DAG properties

1. G is a DAG if and only if G^{rev} is a DAG.

2. G is a DAG if and only each node is in its own strong connected component. Formal proofs: exercise. Intro. Algorithms & Models of Computation CS/ECE 374A, Fall 2024

17.2.2 Topological ordering

Total recall: Order on a set

Order or strict total order on a set X is a binary relation \prec on X, such that

1. Transitivity: $\forall x.y, z \in X$ $x \prec y$ and $y \prec z \implies x \prec z$.

2. For any $x, y \in X$, exactly one of the following holds: $x \prec y, y \prec x$ or x = y.

Cannot have $x_1, \ldots, x_m \in X$, such that $x_1 \prec X_2, \ldots, x_{m-1} \prec x_m, x_m \prec x_1$, because...

Order on a (finite) set X: listing the elements of X from smallest to largest.

Total recall: Order on a set

Order or strict total order on a set X is a binary relation \prec on X, such that

- 1. Transitivity: $\forall x.y, z \in X$ $x \prec y$ and $y \prec z \implies x \prec z$.
- 2. For any $x, y \in X$, exactly one of the following holds: $x \prec y, y \prec x$ or x = y.

Cannot have $x_1, \ldots, x_m \in X$, such that $x_1 \prec X_2, \ldots, x_{m-1} \prec x_m, x_m \prec x_1$, because...

Order on a (finite) set X: listing the elements of X from smallest to largest.

Total recall: Order on a set

Order or strict total order on a set X is a binary relation \prec on X, such that

- 1. Transitivity: $\forall x.y, z \in X$ $x \prec y$ and $y \prec z \implies x \prec z$.
- 2. For any $x, y \in X$, exactly one of the following holds: $x \prec y, y \prec x$ or x = y.

Cannot have $x_1, \ldots, x_m \in X$, such that $x_1 \prec X_2, \ldots, x_{m-1} \prec x_m, x_m \prec x_1$, because...

Order on a (finite) set X: listing the elements of X from smallest to largest.

Convention about writing edges

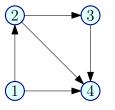
1. Undirected graph edges:

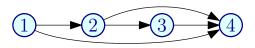
 $uv = \{u, v\} = vu \in E$

2. Directed graph edges:

$$u \rightarrow v \equiv (u, v) \equiv (u \rightarrow v)$$

Topological Ordering/Sorting





Topological Ordering of G

Graph G

Definition 17.4.

A topological ordering/topological sorting of G = (V, E) is an ordering \prec on V such that if $(u \rightarrow v) \in E$ then $u \prec v$.

Informal equivalent definition:

One can order the vertices of the graph along a line (say the x-axis) such that all edges are from left to right.

$\ensuremath{\mathrm{DAGs}}$ and Topological Sort

Lemma 17.5.

A directed graph G can be topologically ordered \iff G is a DAG.

Need to show both directions.

DAGs and Topological Sort

Lemma 17.6.

A directed graph G is a DAG \implies G can be topologically ordered.

Proof.

Consider the following algorithm:

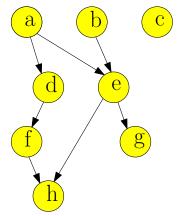
- 1. Pick a source **u**, output it.
- 2. Remove \boldsymbol{u} and all edges out of \boldsymbol{u} .
- 3. Repeat until graph is empty.

Exercise: prove this gives topological sort.

Topological ordering in linear time

Exercise: show algorithm can be implemented in O(m + n) time.

Topological Sort: Example



$\ensuremath{\mathrm{DAGs}}$ and Topological Sort

Lemma 17.7.

A directed graph G can be topologically ordered \implies G is a DAG.

Proof.

Proof by contradiction. Suppose G is not a $\rm DAG$ and has a topological ordering $\prec.$ G has a cycle

$$C = u_1 \rightarrow u_2 \rightarrow \cdots \rightarrow u_k \rightarrow u_1.$$

```
Then u_1 \prec u_2 \prec \ldots \prec u_k \prec u_1
\implies u_1 \prec u_1.
A contradiction (to \prec being an order). Not possible to topologically order the vertices.
```

$\ensuremath{\mathrm{DAGs}}$ and Topological Sort

Lemma 17.7.

A directed graph G can be topologically ordered \implies G is a DAG.

Proof.

Proof by contradiction. Suppose G is not a $\rm DAG$ and has a topological ordering $\prec.$ G has a cycle

$$C = u_1 \rightarrow u_2 \rightarrow \cdots \rightarrow u_k \rightarrow u_1.$$

Then $u_1 \prec u_2 \prec \ldots \prec u_k \prec u_1$ $\implies u_1 \prec u_1$. A contradiction (to \prec being an order). Not possible to topologically order the vertices. Regular sorting and DAGs

DAGs and Topological Sort

1. Note: A DAG G may have many different topological sorts.

- 2. **Exercise:** What is a DAG with the most number of distinct topological sorts for a given number *n* of vertices?
- 3. **Exercise:** What is a DAG with the least number of distinct topological sorts for a given number *n* of vertices?

Intro. Algorithms & Models of Computation CS/ECE 374A, Fall 2024

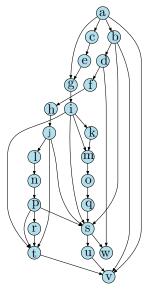
17.2.2.1 Explicit definition of what topological ordering

An explicit definition of what topological ordering of a graph is For a graph G = (V, E) a <u>topological ordering</u> of a graph is a numbering $\pi: V \to \{1, 2, ..., n\}$, such that

 $\forall (u \rightarrow v) \in E(G) \implies \pi(u) < \pi(v).$

(That is, π is one-to-one, and n = |V|)

Example...



Intro. Algorithms & Models of Computation CS/ECE 374A, Fall 2024

17.3 Depth First Search (DFS)

Intro. Algorithms & Models of Computation CS/ECE 374A, Fall 2024

17.3.1 Depth First Search (DFS) in Undirected Graphs

Depth First Search

- 1. **DFS** special case of Basic Search.
- 2. **DFS** is useful in understanding graph structure.
- 3. **DFS** used to obtain linear time (O(m + n)) algorithms for
 - 3.1 Finding cut-edges and cut-vertices of undirected graphs
 - 3.2 Finding strong connected components of directed graphs
- 4. ...many other applications as well.

DFS in Undirected Graphs

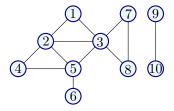
Recursive version. Easier to understand some properties.

```
DFS(G)
for all u \in V(G) do
Mark u as unvisited
Set pred(u) to null
T is set to \emptyset
while \exists unvisited u do
DFS(u)
Output T
```

```
DFS(u)
Mark u as visited
for each uv in Out(u) do
    if v is not visited then
        add edge uv to T
        set pred(v) to u
        DFS(v)
```

Implemented using a global array *Visited* for all recursive calls.

T is the search tree/forest.



Edges classified into two types: $uv \in E$ is a

- 1. tree edge: belongs to **T**
- 2. non-tree edge: does not belong to T

Properties of DFS tree

Proposition 17.1.

- 1. **T** is a forest
- 2. connected components of T are same as those of G.
- 3. If $uv \in E$ is a non-tree edge then, in T, either:
 - 3.1 \boldsymbol{u} is an ancestor of \boldsymbol{v} , or
 - 3.2 \mathbf{v} is an ancestor of \mathbf{u} .

Question: Why are there no cross-edges?

Exercise

Prove that **DFS** of a graph G with *n* vertices and *m* edges takes O(n + m) time.

Intro. Algorithms & Models of Computation CS/ECE 374A, Fall 2024

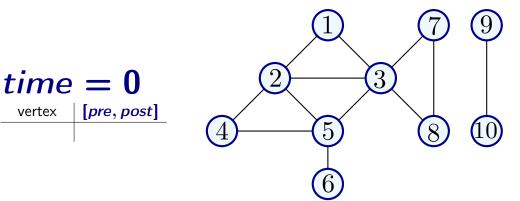
$17.3.2 \ \rm DFS$ with pre-post numbering

$\ensuremath{\mathrm{DFS}}$ with Visit Times

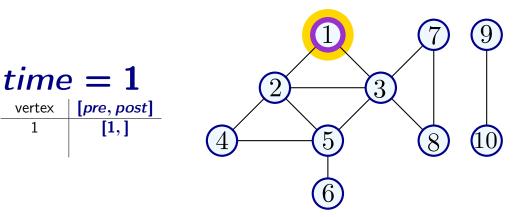
Keep track of when nodes are visited.

```
DFS(G)
for all u \in V(G) do
Mark u as unvisited
T is set to \emptyset
time = 0
while \exists unvisited u do
DFS(u)
Output T
```

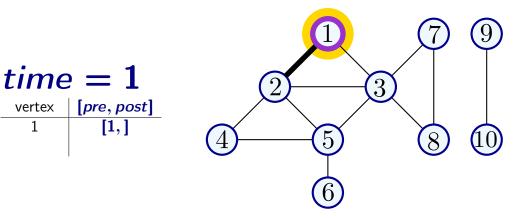
```
DFS(u)
Mark u as visited
pre(u) = ++time
for each uv in Out(u) do
    if v is not marked then
        add edge uv to T
        DFS(v)
post(u) = ++time
```



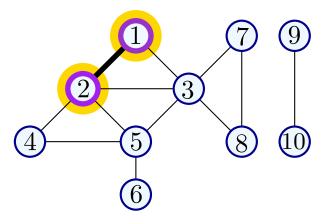
Animation

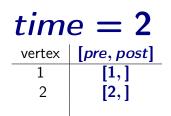


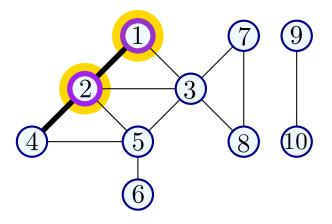
Animation



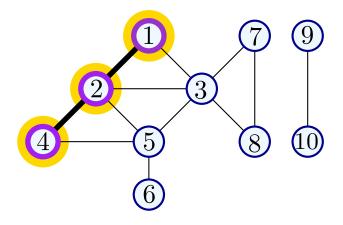
time = 2		
vertex	[pre, post]	
1	[1,]	
2	[2,]	



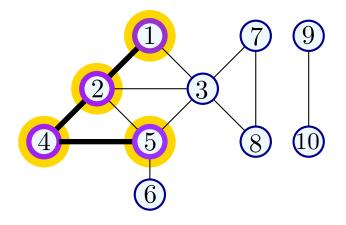




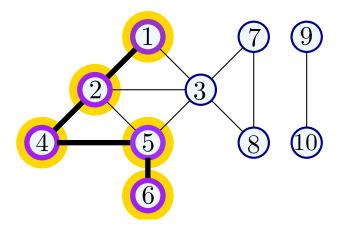
time = 3		
vertex	[pre, post]	
1	[1,]	
2	[2,]	
4	[3,]	



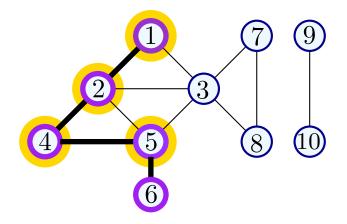
time = 4vertex | [pre, post] [1,]1 2 [2, 4 [3,] 5 [4,]



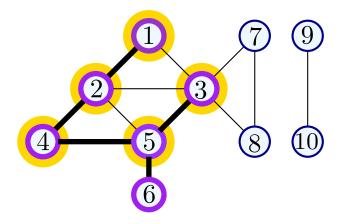
<i>time</i> = 5		
vertex	[pre, post]	
1	[1,]	
2	[2,]	
4	[3,]	
5	[4,]	
6	[5,]	



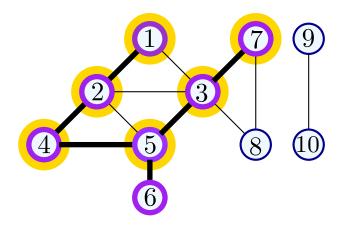
time = 6		
vertex	[pre, post]	
1	[1,]	
2	[2,]	
4	[3,]	
5	[4,]	
6	[5,6]	



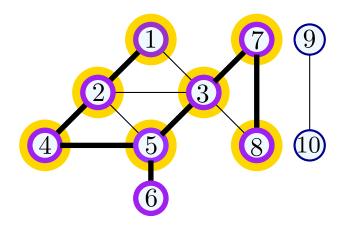
<i>time</i> = 7		
vertex	[pre, post]	
1	[1,]	
2	[2,]	
4	[3,]	
5	[4,]	
6	[5,6]	
3	[7,]	



<i>time</i> = 8		
vertex	[pre, post]	
1	[1,]	
2	[2,]	
4	[3,]	
5	[4,]	
6	[5,6]	
3	[7,]	
7	[8,]	

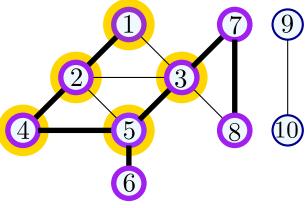


<i>time</i> = 9		
vertex	[pre, post]	
1	[1,]	
2	[2,]	
4	[3,]	
5	[4,]	
6	[5,6]	
3	[7,]	
7	[8,]	
8	[9,]	



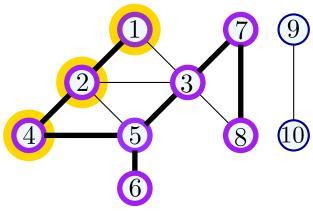
time = 10		
vertex	[pre, post]	(1) (7) (9)
1	[1,]	
2	[2,]	
4	[3,]	
5	[4,]	
6	[5,6]	
3	[7,]	
7	[8,]	
8	[9, 10]	(6)

L)
5
6)

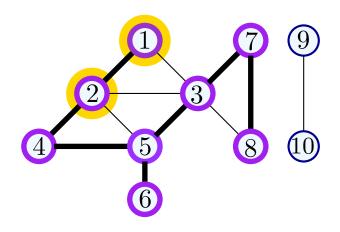


tim	<i>e</i> = 12	
vertex	[pre, post]	(1) (7) (9)
1	[1,]	
2	[2,]	
4	[3,]	
5	[4,]	
6	[5,6]	
3	[7, 12]	
7	[8, 11]	
8	[9, 10]	6

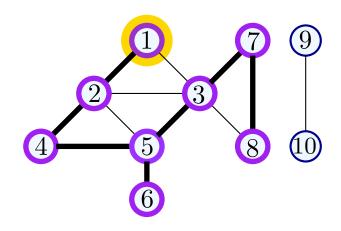
tim	e = 13	
vertex	[pre, post]	
1	[1,]	
2	[2,]	
4	[3,]	
5	[4, 13]	
6	[5,6]	$\overline{4}$
3	[7, 12]	
7	[8, 11]	
8	[9, 10]	



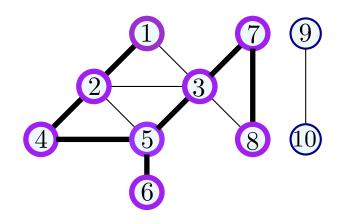
<i>time</i> = 14			
vertex	[pre, post]		
1	[1,]		
2	[2,]		
4	[3, 14]		
5	[4, 13]		
6	[5,6]		
3	[7, 12]		
7	[8, 11]		
8	[9, 10]		



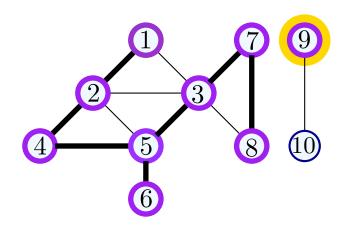
<i>time</i> = 15		
vertex	[pre, post]	
1	[1,]	
2	[2, 15]	
4	[3, 14]	
5	[4, 13]	
6	[5,6]	
3	[7, 12]	
7	[8, 11]	
8	[9, 10]	



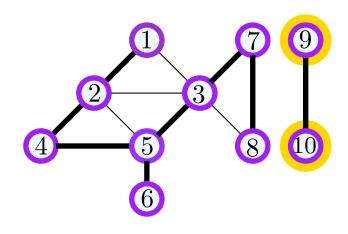
tim	e = 16
vertex	[pre, post]
1	[1, 16]
2	[2, 15]
4	[3, 14]
5	[4, 13]
6	[5,6]
3	[7, 12]
7	[8, 11]
8	[9, 10]



<i>time</i> = 17		
vertex	[pre, post]	
1	[1, 16]	
2	[2, 15]	
4	[3, 14]	
5	[4, 13]	
6	[5,6]	
3	[7, 12]	
7	[8, 11]	
8	[9, 10]	
9	[17,]	

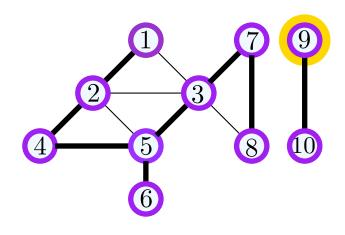


tim	e = 18
vertex	[pre, post]
1	[1, 16]
2	[2, 15]
4	[3, 14]
5	[4, 13]
6	[5,6]
3	[7, 12]
7	[8, 11]
8	[9, 10]
9	[17,]
10	[18,]



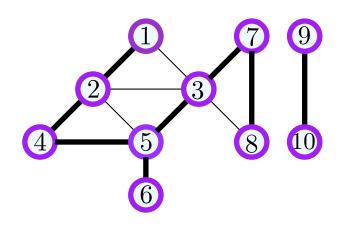
Animation

tim	e = 19
vertex	[pre, post]
1	[1, 16]
2	[2, 15]
4	[3, 14]
5	[4, 13]
6	[5,6]
3	[7, 12]
7	[8, 11]
8	[9, 10]
9	[17,]
10	[18, 19]

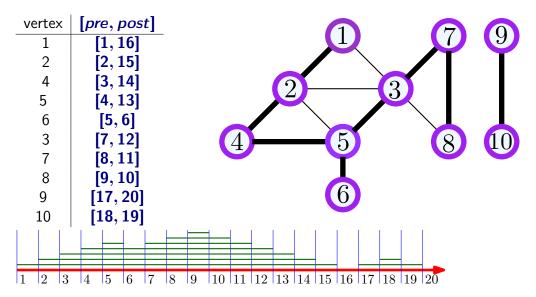


Animation

tim	e = 20
vertex	[pre, post]
1	[1, 16]
2	[2, 15]
4	[3, 14]
5	[4, 13]
6	[5,6]
3	[7, 12]
7	[8, 11]
8	[9, 10]
9	[17, 20]
10	[18, 19]



Animation



pre and post numbers

Node u is <u>active</u> in time interval [pre(u), post(u)]

Proposition 17.2.

For any two nodes u and v, the two intervals [pre(u), post(u)] and [pre(v), post(v)] are disjoint or one is contained in the other.

Proof.

Assume without loss of generality that pre(u) < pre(v). Then v visited after u.
 If DFS(v) invoked before DFS(u) finished, post(v) < post(u).

▶ If DFS(v) invoked after DFS(u) finished, pre(v) > post(u).

pre and post numbers useful in several applications of DFS

pre and post numbers

Node u is <u>active</u> in time interval [pre(u), post(u)]

Proposition 17.2.

For any two nodes u and v, the two intervals [pre(u), post(u)] and [pre(v), post(v)] are disjoint or one is contained in the other.

Proof.

Assume without loss of generality that pre(u) < pre(v). Then v visited after u.

▶ If DFS(v) invoked before DFS(u) finished, post(v) < post(u).

• If DFS(v) invoked after DFS(u) finished, pre(v) > post(u).

pre and post numbers useful in several applications of DFS

pre and post numbers

Node u is <u>active</u> in time interval [pre(u), post(u)]

Proposition 17.2.

For any two nodes u and v, the two intervals [pre(u), post(u)] and [pre(v), post(v)] are disjoint or one is contained in the other.

Proof.

- Assume without loss of generality that pre(u) < pre(v). Then v visited after u.
- If DFS(v) invoked before DFS(u) finished, post(v) < post(u).
- If DFS(v) invoked after DFS(u) finished, pre(v) > post(u).

 \mathbf{pre} and \mathbf{post} numbers useful in several applications of DFS

Intro. Algorithms & Models of Computation CS/ECE 374A, Fall 2024

$17.4 \ \rm DFS$ in Directed Graphs

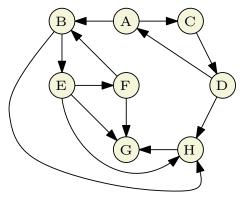
Intro. Algorithms & Models of Computation CS/ECE 374A, Fall 2024

$\ensuremath{\textbf{17.4.1}}\xspace$ DFS in Directed Graphs: Pre/Post numbering

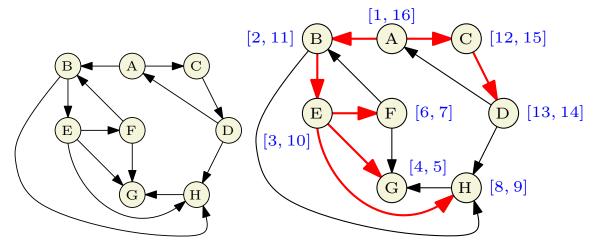
$\ensuremath{\mathrm{DFS}}$ in Directed Graphs

```
DFS(u)
Mark u as visited
pre(u) = ++time
for each edge (u, v) in Out(u) do
    if v is not visited
        add edge (u, v) to T
        DFS(v)
post(u) = ++time
```

Example of DFS in directed graph



Example of DFS in directed graph



Generalizing ideas from undirected graphs:

- 1. **DFS(G)** takes O(m + n) time.
- 2. Edges added form a <u>branching</u>: a forest of out-trees. Output of **DFS(G)** depends on the order in which vertices are considered.
- If u is the first vertex considered by DFS(G) then DFS(u) outputs a directed out-tree T rooted at u and a vertex v is in T if and only if v ∈ rch(u)
- 4. For any two vertices x, y the intervals [pre(x), post(x)] and [pre(y), post(y)] are either disjoint or one is contained in the other.

Generalizing ideas from undirected graphs:

- 1. **DFS(G)** takes O(m + n) time.
- 2. Edges added form a <u>branching</u>: a forest of out-trees. Output of **DFS(G)** depends on the order in which vertices are considered.
- If u is the first vertex considered by DFS(G) then DFS(u) outputs a directed out-tree T rooted at u and a vertex v is in T if and only if v ∈ rch(u)
- 4. For any two vertices x, y the intervals [pre(x), post(x)] and [pre(y), post(y)] are either disjoint or one is contained in the other.

Generalizing ideas from undirected graphs:

- 1. **DFS(G)** takes O(m + n) time.
- 2. Edges added form a <u>branching</u>: a forest of out-trees. Output of **DFS(G)** depends on the order in which vertices are considered.
- 3. If u is the first vertex considered by DFS(G) then DFS(u) outputs a directed out-tree T rooted at u and a vertex v is in T if and only if $v \in rch(u)$
- 4. For any two vertices x, y the intervals [pre(x), post(x)] and [pre(y), post(y)] are either disjoint or one is contained in the other.

Generalizing ideas from undirected graphs:

- 1. **DFS(G)** takes O(m + n) time.
- 2. Edges added form a <u>branching</u>: a forest of out-trees. Output of **DFS(G)** depends on the order in which vertices are considered.
- 3. If u is the first vertex considered by DFS(G) then DFS(u) outputs a directed out-tree T rooted at u and a vertex v is in T if and only if $v \in rch(u)$
- 4. For any two vertices x, y the intervals [pre(x), post(x)] and [pre(y), post(y)] are either disjoint or one is contained in the other.

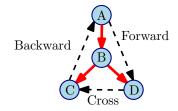
Generalizing ideas from undirected graphs:

- 1. **DFS(G)** takes O(m + n) time.
- 2. Edges added form a <u>branching</u>: a forest of out-trees. Output of **DFS(G)** depends on the order in which vertices are considered.
- 3. If u is the first vertex considered by DFS(G) then DFS(u) outputs a directed out-tree T rooted at u and a vertex v is in T if and only if $v \in rch(u)$
- 4. For any two vertices x, y the intervals [pre(x), post(x)] and [pre(y), post(y)] are either disjoint or one is contained in the other.

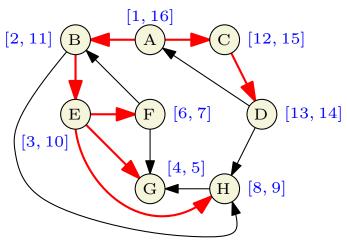
$\ensuremath{\mathrm{DFS}}$ tree and related edges

Edges of *G* can be classified with respect to the **DFS** tree T as:

- 1. Tree edges that belong to T
- 2. A forward edge is a non-tree edges (x, y) such that $\operatorname{pre}(x) < \operatorname{pre}(y) < \operatorname{post}(y) < \operatorname{post}(x)$.
- 3. A <u>backward edge</u> is a non-tree edge (y, x)such that pre(x) < pre(y) < post(y) < post(x).
- A cross edge is a non-tree edges (x, y) such that the intervals [pre(x), post(x)] and [pre(y), post(y)] are disjoint.



Types of Edges



Intro. Algorithms & Models of Computation CS/ECE 374A, Fall 2024

17.4.2 DFS and cycle detection: Topological sorting using **DFS**

Cycles in graphs

Question: Given an <u>undirected</u> graph how do we check whether it has a cycle and output one if it has one?

Question: Given an <u>directed</u> graph how do we check whether it has a cycle and output one if it has one?

Cycles in graphs

Question: Given an <u>undirected</u> graph how do we check whether it has a cycle and output one if it has one?

Question: Given an directed graph how do we check whether it has a cycle and output one if it has one?

Cycle detection in directed graph using topological sorting

Question

Given G, is it a DAG?

If it is, compute a topological sort. If it is not, then output the cycle C.

Topological sort a graph using DFS...

And detect a cycle in the process

DFS based algorithm:

- 1. Compute **DFS(G)**
- 2. If there is a back edge e = (v, u) then G is not a DAG. Output cycle C formed by path from u to v in T plus edge (v, u).
- 3. Otherwise output nodes in decreasing post-visit order. Note: no need to sort, DFS(G) can output nodes in this order.

Computes topological ordering of the vertices.

Algorithm runs in O(n+m) time.

Correctness is not so obvious. See next two propositions.

Topological sort a graph using DFS...

And detect a cycle in the process

DFS based algorithm:

- 1. Compute **DFS(G)**
- 2. If there is a back edge e = (v, u) then G is not a DAG. Output cycle C formed by path from u to v in T plus edge (v, u).
- Otherwise output nodes in decreasing post-visit order. Note: no need to sort, DFS(G) can output nodes in this order.

Computes topological ordering of the vertices.

Algorithm runs in O(n + m) time.

Correctness is not so obvious. See next two propositions.

Topological sort a graph using DFS...

And detect a cycle in the process

DFS based algorithm:

- 1. Compute **DFS(G)**
- 2. If there is a back edge e = (v, u) then G is not a DAG. Output cycle C formed by path from u to v in T plus edge (v, u).
- Otherwise output nodes in decreasing post-visit order. Note: no need to sort, DFS(G) can output nodes in this order.

Computes topological ordering of the vertices.

Algorithm runs in O(n + m) time.

Correctness is not so obvious. See next two propositions.

Back edge and Cycles

Proposition 17.1.

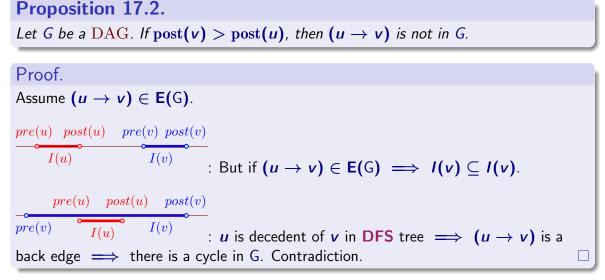
G has a cycle \iff there is a back-edge in **DFS**(G).

Proof.

If: (u, v) is a back edge implies there is a cycle C consisting of the path from v to u in **DFS** search tree and the edge (u, v).

Only if: Suppose there is a cycle $C = v_1 \rightarrow v_2 \rightarrow \ldots \rightarrow v_k \rightarrow v_1$. Let v_i be first node in C visited in **DFS**. All other nodes in C are descendants of v_i since they are reachable from v_i . Therefore, (v_{i-1}, v_i) (or (v_k, v_1) if i = 1) is a back edge.

Decreasing post numbering is valid



Decreasing post numbering is valid (alt proof)

Proposition 17.3.

Let G be a DAG. If post(v) > post(u), then $(u \rightarrow v)$ is not in G.

Proof.

Assume post(u) < post(v) and $(u \rightarrow v)$ is an edge in G. One of two holds:

- Case 1: [pre(u), post(u)] is contained in [pre(v), post(v)].
- Case 2: [pre(u), post(u)] is disjoint from [pre(v), post(v)].

Decreasing post numbering is valid (alt proof)

Proposition 17.3.

Let G be a DAG. If post(v) > post(u), then $(u \rightarrow v)$ is not in G.

Proof.

Assume post(u) < post(v) and $(u \rightarrow v)$ is an edge in G. One of two holds:

- Case 1: [pre(u), post(u)] is contained in [pre(v), post(v)].
- Case 2: [pre(u), post(u)] is disjoint from [pre(v), post(v)].

Decreasing post numbering is valid (alt proof)

Proposition 17.3.

Let G be a DAG. If post(v) > post(u), then $(u \rightarrow v)$ is not in G.

Proof.

Assume post(u) < post(v) and $(u \rightarrow v)$ is an edge in G. One of two holds:

- Case 1: [pre(u), post(u)] is contained in [pre(v), post(v)]. Implies that u is explored during DFS(v) and hence is a descendant of v. Edge (u, v) implies a cycle in G but G is assumed to be DAG!
- Case 2: [pre(u), post(u)] is disjoint from [pre(v), post(v)]. This cannot happen since v would be explored from u.

Translation

We just proved:

Proposition 17.4.

```
If G is a DAG and post(v) > post(u), then (u \rightarrow v) is not in G.
```

 \implies sort the vertices of a DAG by decreasing post numbering in decreasing order, then this numbering is valid.

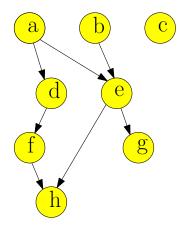
Topological sorting

Theorem 17.5.

G = (V, E): Graph with *n* vertices and *m* edges. Compute a topological sorting of *G* using **DFS** in O(n + m) time. That is, compute a numbering $\pi : V \to \{1, 2, ..., n\}$, such that

$$(u \rightarrow v) \in E(G) \implies \pi(u) < \pi(v).$$

Example



Intro. Algorithms & Models of Computation CS/ECE 374A, Fall 2024

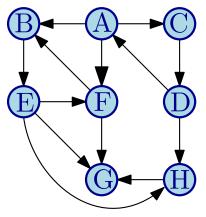
17.5 The meta graph of strong connected components

Strong Connected Components (SCCs)

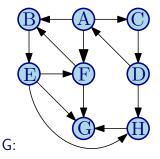
Algorithmic Problem

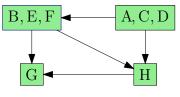
Find all SCCs of a given directed graph.

Previous lecture: Saw an $O(n \cdot (n + m))$ time algorithm. This lecture: sketch of a O(n + m) time algorithm.



Graph of SCCs





Graph of SCCs G^{SCC}

Meta-graph of SCCs

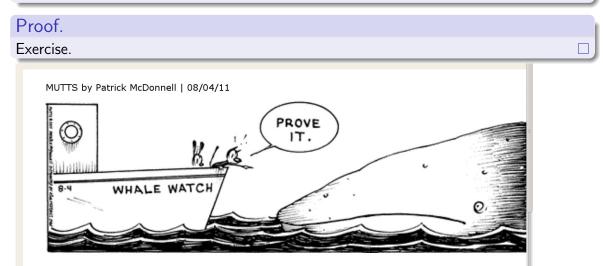
Let $S_1, S_2, \ldots S_k$ be the strong connected components (i.e., SCCs) of G. The graph of SCCs is G^{SCC}

- 1. Vertices are $S_1, S_2, \ldots S_k$
- 2. There is an edge (S_i, S_j) if there is some $u \in S_i$ and $v \in S_j$ such that (u, v) is an edge in G.

Reversal and SCCs

Proposition 17.1.

For any graph G, the graph of SCCs of G^{rev} is the same as the reversal of G^{SCC} .



The meta graph of SCCs is a $\operatorname{DAG}...$

Proposition 17.2.

For any graph G, the graph G^{SCC} has no directed cycle.

Proof.

If G^{SCC} has a cycle S_1, S_2, \ldots, S_k then $S_1 \cup S_2 \cup \cdots \cup S_k$ should be in the same SCC in G. Formal details: exercise.

To Remember: Structure of Graphs

Undirected graph: connected components of G = (V, E) partition V and can be computed in O(m + n) time.

Directed graph: the meta-graph G^{SCC} of **G** can be computed in O(m + n) time. G^{SCC} gives information on the partition of **V** into strong connected components and how they form a DAG structure.

Above structural decomposition will be useful in several algorithms

Intro. Algorithms & Models of Computation CS/ECE 374A, Fall 2024

17.6

Linear time algorithm for finding all strong connected components of a directed graph Intro. Algorithms & Models of Computation CS/ECE 374A, Fall 2024

17.6.1 Wishful thinking linear-time $\underline{\rm SCC}$ algorithm

Finding all SCCs of a Directed Graph

Problem

Given a directed graph G = (V, E), output all its strong connected components.

Straightforward algorithm:

```
Mark all vertices in V as not visited.

for each vertex u \in V not visited yet do

find SCC(G, u) the strong component of u:

Compute rch(G, u) using DFS(G, u)

Compute rch(G^{rev}, u) using DFS(G^{rev}, u)

SCC(G, u) \Leftarrow rch(G, u) \cap rch(G^{rev}, u)

\forall u \in SCC(G, u): Mark u as visited.
```

Running time: O(n(n + m))Is there an O(n + m) time algorithm?

Finding all SCCs of a Directed Graph

Problem

Given a directed graph G = (V, E), output all its strong connected components.

Straightforward algorithm:

```
Mark all vertices in V as not visited.

for each vertex u \in V not visited yet do

find SCC(G, u) the strong component of u:

Compute rch(G, u) using DFS(G, u)

Compute rch(G^{rev}, u) using DFS(G^{rev}, u)

SCC(G, u) \Leftarrow rch(G, u) \cap rch(G^{rev}, u)

\forall u \in SCC(G, u): Mark u as visited.
```

Running time: O(n(n + m))Is there an O(n + m) time algorithm?

Finding all SCCs of a Directed Graph

Problem

Given a directed graph G = (V, E), output all its strong connected components.

Straightforward algorithm:

```
Mark all vertices in V as not visited.

for each vertex u \in V not visited yet do

find SCC(G, u) the strong component of u:

Compute rch(G, u) using DFS(G, u)

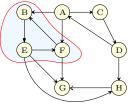
Compute rch(G^{rev}, u) using DFS(G^{rev}, u)

SCC(G, u) \Leftarrow rch(G, u) \cap rch(G^{rev}, u)

\forall u \in SCC(G, u): Mark u as visited.
```

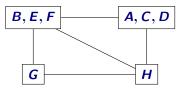
Running time: O(n(n + m))Is there an O(n + m) time algorithm?

Structure of a Directed Graph



H

 $\mathsf{Graph}\ \mathbf{G}$



Graph of SCCs G^{SCC}

Reminder

 $G^{\rm SCC}$ is created by collapsing every strong connected component to a single vertex.

Proposition 17.1.

For a directed graph G, its meta-graph G^{SCC} is a DAG.

Exploit structure of meta-graph...

Wishful Thinking Algorithm

- 1. Let \boldsymbol{u} be a vertex in a sink SCC of G^{SCC}
- 2. Do **DFS**(u) to compute **SCC**(u)
- 3. Remove SCC(u) and repeat

Justification

1. **DFS(**u**)** only visits vertices (and edges) in SCC(u**)**

2.

3

4.

Exploit structure of meta-graph...

Wishful Thinking Algorithm

- 1. Let \boldsymbol{u} be a vertex in a sink SCC of G^{SCC}
- 2. Do **DFS**(u) to compute **SCC**(u)
- 3. Remove SCC(u) and repeat

Justification

1. **DFS(**u**)** only visits vertices (and edges) in SCC(u**)**

2

Exploit structure of meta-graph...

Wishful Thinking Algorithm

- 1. Let \boldsymbol{u} be a vertex in a sink SCC of G^{SCC}
- 2. Do **DFS**(u) to compute **SCC**(u)
- 3. Remove SCC(u) and repeat

Justification

```
1. DFS(u) only visits vertices (and edges) in SCC(u)
```

```
2. ... since there are no edges coming out a sink!
```

3.

4.

Exploit structure of meta-graph...

Wishful Thinking Algorithm

- 1. Let \boldsymbol{u} be a vertex in a sink SCC of G^{SCC}
- 2. Do **DFS**(u) to compute **SCC**(u)
- 3. Remove SCC(u) and repeat

Justification

- 1. **DFS(**u**)** only visits vertices (and edges) in SCC(u**)**
- 2. ... since there are no edges coming out a sink!
- 3. **DFS**(u) takes time proportional to size of SCC(u)

Exploit structure of meta-graph...

Wishful Thinking Algorithm

- 1. Let \boldsymbol{u} be a vertex in a sink SCC of G^{SCC}
- 2. Do **DFS**(u) to compute **SCC**(u)
- 3. Remove SCC(u) and repeat

Justification

- 1. **DFS**(u) only visits vertices (and edges) in SCC(u)
- 2. ... since there are no edges coming out a sink!
- 3. **DFS**(u) takes time proportional to size of SCC(u)
- 4. Therefore, total time O(n + m)!

Big Challenge(s)

How do we find a vertex in a sink SCC of G^{SCC} ?

Can we obtain an implicit topological sort of $\mathsf{G}^{ ext{SCC}}$ without computing $\mathsf{G}^{ ext{SCC}}$?

Answer: **DFS**(G) gives some information!

Big Challenge(s)

How do we find a vertex in a sink \underline{SCC} of \underline{G}^{SCC} ?

Can we obtain an implicit topological sort of G^{SCC} without computing G^{SCC} ?

Answer: **DFS**(G) gives some information!

Big Challenge(s)

How do we find a vertex in a sink SCC of G^{SCC} ?

Can we obtain an implicit topological sort of G^{SCC} without computing G^{SCC} ?

Answer: **DFS**(G) gives some information!

Intro. Algorithms & Models of Computation CS/ECE 374A, Fall 2024

17.6.2

Maximum post numbering and the source of the meta-graph

Post numbering and the meta graph

Claim 17.2.

Let v be the vertex with maximum post numbering in DFS(G). Then v is in a SCC S, such that S is a source of G^{SCC} .

Reverse post numbering and the meta graph

Claim 17.3.

Let v be the vertex with maximum post numbering in DFS(G^{rev}). Then v is in a SCC S, such that S is a sink of G^{SCC} .

Holds even after we delete the vertices of **S** (i.e., the vertex with the maximum post numbering, is in a sink of the meta graph).

Reverse post numbering and the meta graph

Claim 17.3.

Let v be the vertex with maximum post numbering in DFS(G^{rev}). Then v is in a SCC S, such that S is a sink of G^{SCC} .

Holds even after we delete the vertices of S (i.e., the vertex with the maximum post numbering, is in a sink of the meta graph).

Intro. Algorithms & Models of Computation CS/ECE 374A, Fall 2024

17.6.3 The linear-time SCC algorithm itself

Linear Time Algorithm

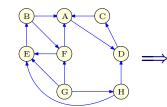
...for computing the strong connected components in ${\bf G}$

```
do DFS(G^{rev}) and output vertices in decreasing post order.
Mark all nodes as unvisited
for each u in the computed order do
if u is not visited then
DFS(u)
Let S_u be the nodes reached by u
Output S_u as a strong connected component
Remove S_u from G
```

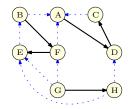
Theorem 17.4.

Algorithm runs in time O(m + n) and correctly outputs all the SCCs of G.

Linear Time Algorithm: An Example - Initial steps 1Graph G:Reverse graph G^{rev}:Reverse graph G^{rev}:

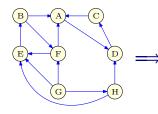


DFS of reverse graph:

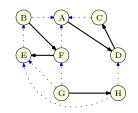


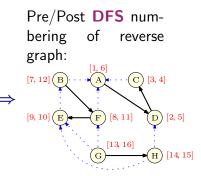
Linear Time Algorithm: An Example - Initial steps 2

Reverse graph **G**^{rev}:



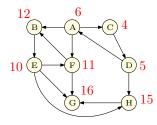
DFS of reverse graph:



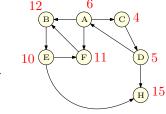


Removing connected components: 1

Original graph G with rev post numbers:

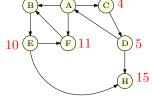


Do **DFS** from vertex G remove it. $\frac{12}{6}$

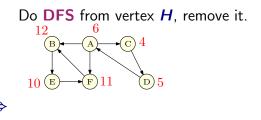


 $\frac{\rm SCC}{\{G\}}$

Removing connected components: 2 Do **DFS** from vertex G remove it. 12 6 6 12 6



 $\frac{\rm SCC}{\{G\}}$



SCC computed: {G}, {H}

Removing connected components: 3



Do **DFS** from vertex **B** Remove visited vertices: $\{F, B, E\}$.

D)5

SCC computed: $\{G\}, \{H\}$

SCC computed: $\{G\}, \{H\}, \{F, B, E\}$

Removing connected components: 4

►(C

D)5

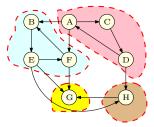
Do **DFS** from vertex FRemove visited vertices: $\{F, B, E\}$.

SCC computed: $\{G\}, \{H\}, \{F, B, E\}$

Do **DFS** from vertex ARemove visited vertices: $\{A, C, D\}$.

SCC computed: {*G*}, {*H*}, {*F*, *B*, *E*}, {*A*, *C*, *D*}

Final result



SCC computed: $\{G\}, \{H\}, \{F, B, E\}, \{A, C, D\}$ Which is the correct answer!

Obtaining the meta-graph...

Once the strong connected components are computed.

Exercise:

Given all the strong connected components of a directed graph G = (V, E) show that the meta-graph G^{SCC} can be obtained in O(m + n) time.

Solving Problems on Directed Graphs

A template for a class of problems on directed graphs:

- ▶ Is the problem solvable when *G* is strongly connected?
- ▶ Is the problem solvable when *G* is a DAG?
- If the above two are feasible then is the problem solvable in a general directed graph G by considering the meta graph G^{SCC}?

Intro. Algorithms & Models of Computation CS/ECE 374A, Fall 2024

17.7 An Application of directed graphs to make

Make/Makefile

- (A) I know what make/makefile is.
- (B) I do NOT know what make/makefile is.

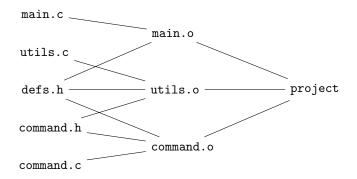
make Utility [Feldman]

- 1. Unix utility for automatically building large software applications
- 2. A makefile specifies
 - 2.1 Object files to be created,
 - 2.2 Source/object files to be used in creation, and
 - 2.3 How to create them

An Example makefile

```
project: main.o utils.o command.o
    cc -o project main.o utils.o command.o
main.o: main.c defs.h
    cc -c main.c
utils.o: utils.c defs.h command.h
    cc -c utils.c
command.o: command.c defs.h command.h
    cc -c command.c
```

makefile as a Digraph



Computational Problems for make

- 1. Is the makefile reasonable?
- 2. If it is reasonable, in what order should the object files be created?
- 3. If it is not reasonable, provide helpful debugging information.
- 4. If some file is modified, find the fewest compilations needed to make application consistent.

Algorithms for make

- 1. Is the makefile reasonable? Is G a DAG?
- 2. If it is reasonable, in what order should the object files be created? Find a topological sort of a DAG.
- 3. If it is not reasonable, provide helpful debugging information. Output a cycle. More generally, output all strong connected components.
- 4. If some file is modified, find the fewest compilations needed to make application consistent.
 - 4.1 Find all vertices reachable (using **DFS**/**BFS**) from modified files in directed graph, and recompile them in proper order. Verify that one can find the files to recompile and the ordering in linear time.

Intro. Algorithms & Models of Computation CS/ECE 374A, Fall 2024

17.8 Summary

Take away Points

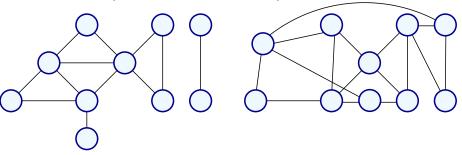
- 1. DAGs
- 2. Topological orderings.
- 3. **DFS**: pre/post numbering.
- 4. Given a directed graph G, its SCCs and the associated acyclic meta-graph G^{SCC} give a structural decomposition of G that should be kept in mind.
- 5. There is a **DFS** based linear time algorithm to compute all the SCCs and the meta-graph. Properties of **DFS** crucial for the algorithm.
- 6. DAGs arise in many application and topological sort is a key property in algorithm design. Linear time algorithms to compute a topological sort (there can be many possible orderings so not unique).

Intro. Algorithms & Models of Computation CS/ECE 374A, Fall 2024

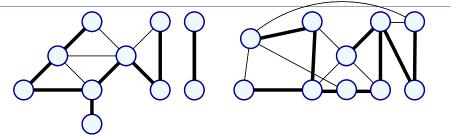
17.9 An example of DFS forests

Example: Undirected **DFS** forest

The input graph (disconnected in this case):

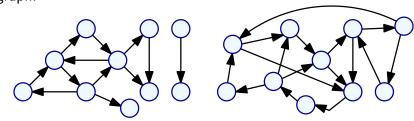


The resulting **DFS** forest:



Example: Directed **DFS** forest

The input graph:



The resulting **DFS** forest (numbers indicate the order of **DFS**):

