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Overview

Topics:

▶ Structure of directed graphs

▶ DAGs: Directed acyclic graphs.

▶ Topological ordering.

▶ DFS pre/post number, and its properties.

▶ Linear time algorithm for SCCs.
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Directed Acyclic Graphs

Definition 17.1.
A directed graph G is a directed
acyclic graph (DAG) if there is no
directed cycle in G. 1

2 3

4
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Is this a DAG?
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Sources and Sinks

source sink

1

2 3

4

Definition 17.2.
1. A vertex u is a source if it has no in-coming edges.

2. A vertex u is a sink if it has no out-going edges.
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Simple DAG Properties

Proposition 17.3.
Every DAG G has at least one source and at least one sink.

Proof.
Let P = v1, v2, . . . , vk be a longest path in G . Claim that v1 is a source and vk is a
sink. Suppose not. Then v1 has an incoming edge which either creates a cycle or a
longer path both of which are contradictions. Similarly if vk has an outgoing edge.
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DAG properties

1. G is a DAG if and only if Grev is a DAG.

2. G is a DAG if and only each node is in its own strong connected component.

Formal proofs: exercise.
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Total recall: Order on a set

Order or strict total order on a set X is a binary relation ≺ on X , such that

1. Transitivity: ∀x.y , z ∈ X x ≺ y and y ≺ z =⇒ x ≺ z .
2. For any x, y ∈ X , exactly one of the following holds:

x ≺ y , y ≺ x or x = y .

Cannot have x1, . . . , xm ∈ X , such that x1 ≺ X2, . . . , xm−1 ≺ xm, xm ≺ x1,
because...

Order on a (finite) set X : listing the elements of X from smallest to largest.
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Convention about writing edges

1. Undirected graph edges:
uv = {u, v} = vu ∈ E

2. Directed graph edges:

u → v ≡ (u, v) ≡ (u → v)
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Topological Ordering/Sorting

1

2 3

4

Graph G

1 2 3 4

Topological Ordering of G

Definition 17.4.
A topological ordering/topological sorting of G = (V ,E) is an ordering ≺ on V
such that if (u → v) ∈ E then u ≺ v .

Informal equivalent definition:

One can order the vertices of the graph along a line (say the x-axis) such that all edges
are from left to right.
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DAGs and Topological Sort

Lemma 17.5.
A directed graph G can be topologically ordered ⇐⇒ G is a DAG.

Need to show both directions.
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DAGs and Topological Sort

Lemma 17.6.
A directed graph G is a DAG =⇒ G can be topologically ordered.

Proof.
Consider the following algorithm:

1. Pick a source u, output it.
2. Remove u and all edges out of u.
3. Repeat until graph is empty.

Exercise: prove this gives topological sort.
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Topological ordering in linear time

Exercise: show algorithm can be implemented in O(m + n) time.
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Topological Sort: Example

a b c

d e

f g

h
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DAGs and Topological Sort

Lemma 17.7.
A directed graph G can be topologically ordered =⇒ G is a DAG.

Proof.
Proof by contradiction. Suppose G is not a DAG and has a topological ordering ≺. G
has a cycle

C = u1 → u2 → · · · → uk → u1.

Then u1 ≺ u2 ≺ . . . ≺ uk ≺ u1

=⇒ u1 ≺ u1.
A contradiction (to ≺ being an order). Not possible to topologically order the
vertices.
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Regular sorting and DAGs
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DAGs and Topological Sort

1. Note: A DAG G may have many different topological sorts.

2. Exercise: What is a DAG with the most number of distinct topological sorts for
a given number n of vertices?

3. Exercise: What is a DAG with the least number of distinct topological sorts for
a given number n of vertices?
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An explicit definition of what topological ordering of a graph is

For a graph G = (V ,E) a topological ordering of a graph is a numbering
π : V → {1, 2, . . . , n}, such that

∀ (u → v) ∈ E(G) =⇒ π(u) < π(v).

(That is, π is one-to-one, and n = |V |)

24 / 91



Example...
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Depth First Search

1. DFS special case of Basic Search.

2. DFS is useful in understanding graph structure.

3. DFS used to obtain linear time (O(m + n)) algorithms for

3.1 Finding cut-edges and cut-vertices of undirected graphs
3.2 Finding strong connected components of directed graphs

4. ...many other applications as well.
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DFS in Undirected Graphs

Recursive version. Easier to understand some properties.

DFS(G)
for all u ∈ V (G) do

Mark u as unvisited

Set pred(u) to null

T is set to ∅
while ∃ unvisited u do

DFS(u)
Output T

DFS(u)
Mark u as visited

for each uv in Out(u) do
if v is not visited then

add edge uv to T
set pred(v) to u
DFS(v)

Implemented using a global array Visited for all recursive calls.
T is the search tree/forest.
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Example
1

2 3

4 5

6

7

8

9

10

Edges classified into two types: uv ∈ E is a

1. tree edge: belongs to T
2. non-tree edge: does not belong to T
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Properties of DFS tree

Proposition 17.1.
1. T is a forest

2. connected components of T are same as those of G .

3. If uv ∈ E is a non-tree edge then, in T , either:

3.1 u is an ancestor of v , or
3.2 v is an ancestor of u.

Question: Why are there no cross-edges?
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Exercise

Prove that DFS of a graph G with n vertices and m edges takes O(n + m) time.
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DFS with Visit Times

Keep track of when nodes are visited.

DFS(G)
for all u ∈ V (G) do

Mark u as unvisited

T is set to ∅
time = 0
while ∃ unvisited u do

DFS(u)
Output T

DFS(u)
Mark u as visited

pre(u) = ++time
for each uv in Out(u) do

if v is not marked then
add edge uv to T
DFS(v)

post(u) = ++time
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pre and post numbers

Node u is active in time interval [pre(u), post(u)]

Proposition 17.2.
For any two nodes u and v , the two intervals [pre(u), post(u)] and [pre(v), post(v)]
are disjoint or one is contained in the other.

Proof.
▶ Assume without loss of generality that pre(u) < pre(v). Then v visited after u.
▶ If DFS(v) invoked before DFS(u) finished, post(v) < post(u).
▶ If DFS(v) invoked after DFS(u) finished, pre(v) > post(u).

pre and post numbers useful in several applications of DFS
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DFS in Directed Graphs

DFS(G)
Mark all nodes u as unvisited

T is set to ∅
time = 0
while there is an unvisited node u do

DFS(u)
Output T

DFS(u)
Mark u as visited

pre(u) = ++time
for each edge (u, v) in Out(u) do

if v is not visited

add edge (u, v) to T
DFS(v)

post(u) = ++time
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Example of DFS in directed graph

AB C

DE F

G H
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Example of DFS in directed graph
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G H
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DFS Properties

Generalizing ideas from undirected graphs:

1. DFS(G) takes O(m + n) time.

2. Edges added form a branching: a forest of out-trees. Output of DFS(G) depends
on the order in which vertices are considered.

3. If u is the first vertex considered by DFS(G) then DFS(u) outputs a directed
out-tree T rooted at u and a vertex v is in T if and only if v ∈ rch(u)

4. For any two vertices x, y the intervals [pre(x), post(x)] and [pre(y), post(y)]
are either disjoint or one is contained in the other.

Note: Not obvious whether DFS(G) is useful in directed graphs but it is.

41 / 91



DFS Properties

Generalizing ideas from undirected graphs:

1. DFS(G) takes O(m + n) time.

2. Edges added form a branching: a forest of out-trees. Output of DFS(G) depends
on the order in which vertices are considered.

3. If u is the first vertex considered by DFS(G) then DFS(u) outputs a directed
out-tree T rooted at u and a vertex v is in T if and only if v ∈ rch(u)

4. For any two vertices x, y the intervals [pre(x), post(x)] and [pre(y), post(y)]
are either disjoint or one is contained in the other.

Note: Not obvious whether DFS(G) is useful in directed graphs but it is.

41 / 91



DFS Properties

Generalizing ideas from undirected graphs:

1. DFS(G) takes O(m + n) time.

2. Edges added form a branching: a forest of out-trees. Output of DFS(G) depends
on the order in which vertices are considered.

3. If u is the first vertex considered by DFS(G) then DFS(u) outputs a directed
out-tree T rooted at u and a vertex v is in T if and only if v ∈ rch(u)

4. For any two vertices x, y the intervals [pre(x), post(x)] and [pre(y), post(y)]
are either disjoint or one is contained in the other.

Note: Not obvious whether DFS(G) is useful in directed graphs but it is.

41 / 91



DFS Properties

Generalizing ideas from undirected graphs:

1. DFS(G) takes O(m + n) time.

2. Edges added form a branching: a forest of out-trees. Output of DFS(G) depends
on the order in which vertices are considered.

3. If u is the first vertex considered by DFS(G) then DFS(u) outputs a directed
out-tree T rooted at u and a vertex v is in T if and only if v ∈ rch(u)

4. For any two vertices x, y the intervals [pre(x), post(x)] and [pre(y), post(y)]
are either disjoint or one is contained in the other.

Note: Not obvious whether DFS(G) is useful in directed graphs but it is.
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DFS tree and related edges

Edges of G can be classified with respect to the DFS
tree T as:

1. Tree edges that belong to T

2. A forward edge is a non-tree edges (x, y) such
that pre(x) < pre(y) < post(y) < post(x).

3. A backward edge is a non-tree edge (y , x)
such that
pre(x) < pre(y) < post(y) < post(x).

4. A cross edge is a non-tree edges (x, y) such
that the intervals [pre(x), post(x)] and
[pre(y), post(y)] are disjoint.

A

C D
Cross

Forward
Backward

B
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Types of Edges
[1, 16]

[2, 11] [12, 15]

[13, 14]

[3, 10]

[6, 7]

[4, 5]

[8, 9]

AB C

DE F

G H
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17.4.2
DFS and cycle detection: Topological
sorting using DFS
FLNAME:17.4.2.0 ZZZ:17.4.2.0 DFS and cycle detection: Topological sorting using DFS
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Cycles in graphs

Question: Given an undirected graph how do we check whether it has a cycle and
output one if it has one?

Question: Given an directed graph how do we check whether it has a cycle and output
one if it has one?
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Cycle detection in directed graph using topological sorting

Question
Given G, is it a DAG?

If it is, compute a topological sort.
If it is not, then output the cycle C .
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Topological sort a graph using DFS...
And detect a cycle in the process

DFS based algorithm:

1. Compute DFS(G)

2. If there is a back edge e = (v , u) then G is not a DAG. Output cycle C formed
by path from u to v in T plus edge (v , u).

3. Otherwise output nodes in decreasing post-visit order. Note: no need to sort,
DFS(G) can output nodes in this order.

Computes topological ordering of the vertices.

Algorithm runs in O(n + m) time.
Correctness is not so obvious. See next two propositions.
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Back edge and Cycles

Proposition 17.1.
G has a cycle ⇐⇒ there is a back-edge in DFS(G).

Proof.
If: (u, v) is a back edge implies there is a cycle C consisting of the path from v to u in
DFS search tree and the edge (u, v).

Only if: Suppose there is a cycle C = v1 → v2 → . . . → vk → v1.
Let vi be first node in C visited in DFS.
All other nodes in C are descendants of vi since they are reachable from vi .
Therefore, (vi−1, vi) (or (vk , v1) if i = 1) is a back edge.
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Decreasing post numbering is valid

Proposition 17.2.
Let G be a DAG. If post(v) > post(u), then (u → v) is not in G.

Proof.
Assume (u → v) ∈ E(G).

post(u)pre(u)

I(u)

post(v)pre(v)

I(v)
: But if (u → v) ∈ E(G) =⇒ I (v) ⊆ I (v).

post(u)pre(u)

I(u)

post(v)

pre(v) I(v)
: u is decedent of v in DFS tree =⇒ (u → v) is a

back edge =⇒ there is a cycle in G. Contradiction.
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Decreasing post numbering is valid (alt proof)

Proposition 17.3.
Let G be a DAG. If post(v) > post(u), then (u → v) is not in G.

Proof.
Assume post(u) < post(v) and (u → v) is an edge in G . One of two holds:

▶ Case 1: [pre(u), post(u)] is contained in [pre(v), post(v)].
▶ Case 2: [pre(u), post(u)] is disjoint from [pre(v), post(v)].
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Proposition 17.3.
Let G be a DAG. If post(v) > post(u), then (u → v) is not in G.

Proof.
Assume post(u) < post(v) and (u → v) is an edge in G . One of two holds:

▶ Case 1: [pre(u), post(u)] is contained in [pre(v), post(v)]. Implies that u is
explored during DFS(v) and hence is a descendant of v . Edge (u, v) implies a
cycle in G but G is assumed to be DAG!

▶ Case 2: [pre(u), post(u)] is disjoint from [pre(v), post(v)]. This cannot
happen since v would be explored from u.
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Translation

We just proved:

Proposition 17.4.
If G is a DAG and post(v) > post(u), then (u → v) is not in G.

=⇒ sort the vertices of a DAG by decreasing post numbering in decreasing order,
then this numbering is valid.
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Topological sorting

Theorem 17.5.
G = (V ,E): Graph with n vertices and m edges.
Compute a topological sorting of G using DFS in O(n + m) time.
That is, compute a numbering π : V → {1, 2, . . . , n}, such that

(u → v) ∈ E(G) =⇒ π(u) < π(v).
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Example

a b c

d e

f g

h
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17.5
The meta graph of strong connected
components
FLNAME:17.5.0.0 ZZZ:17.5.0.0 The meta graph of strong connected components
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Strong Connected Components (SCCs)

Algorithmic Problem
Find all SCCs of a given directed graph.

Previous lecture:
Saw an O(n · (n + m)) time algorithm.
This lecture: sketch of a O(n+m) time algorithm.

AB C

DE F

G H

55 / 91



Graph of SCCs

G:

AB C

DE F

G H

B,E, F

G H

A,C,D

Graph of SCCs GSCC

Meta-graph of SCCs

Let S1, S2, . . . Sk be the strong connected components (i.e., SCCs) of G. The graph
of SCCs is GSCC

1. Vertices are S1, S2, . . . Sk

2. There is an edge (Si , Sj) if there is some u ∈ Si and v ∈ Sj such that (u, v) is
an edge in G.
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Reversal and SCCs

Proposition 17.1.

For any graph G, the graph of SCCs of G rev is the same as the reversal of GSCC.

Proof.
Exercise.
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The meta graph of SCCs is a DAG...

Proposition 17.2.

For any graph G, the graph GSCC has no directed cycle.

Proof.

If GSCC has a cycle S1, S2, . . . , Sk then S1 ∪ S2 ∪ · · · ∪ Sk should be in the same
SCC in G. Formal details: exercise.
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To Remember: Structure of Graphs

Undirected graph: connected components of G = (V ,E) partition V and can be
computed in O(m + n) time.

Directed graph: the meta-graph GSCC of G can be computed in O(m + n) time.
GSCC gives information on the partition of V into strong connected components and
how they form a DAG structure.

Above structural decomposition will be useful in several algorithms
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17.6
Linear time algorithm for finding all strong
connected components of a directed graph
FLNAME:17.6.0.0 ZZZ:17.6.0.0 Linear time algorithm for finding all strong connected components of a directed graph
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17.6.1
Wishful thinking linear-time SCC algorithm
FLNAME:17.6.1.0 ZZZ:17.6.1.0 Wishful thinking linear-time SCC algorithm

61 / 91



Finding all SCCs of a Directed Graph

Problem
Given a directed graph G = (V ,E), output all its strong connected components.

Straightforward algorithm:

Mark all vertices in V as not visited.

for each vertex u ∈ V not visited yet do
find SCC(G , u) the strong component of u:

Compute rch(G , u) using DFS(G , u)
Compute rch(G rev, u) using DFS(G rev, u)
SCC(G , u) ⇐ rch(G , u) ∩ rch(G rev, u)
∀u ∈ SCC(G , u): Mark u as visited.

Running time: O(n(n + m))
Is there an O(n + m) time algorithm?
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Structure of a Directed Graph
AB C

DE F

G H

Graph G

B,E , F

G H

A,C ,D

Graph of SCCs GSCC

Reminder

GSCC is created by collapsing every strong connected component to a single vertex.

Proposition 17.1.

For a directed graph G, its meta-graph GSCC is a DAG.
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Linear-time Algorithm for SCCs: Ideas
Exploit structure of meta-graph...

Wishful Thinking Algorithm

1. Let u be a vertex in a sink SCC of GSCC

2. Do DFS(u) to compute SCC(u)
3. Remove SCC(u) and repeat

Justification
1. DFS(u) only visits vertices (and edges) in SCC(u)
2.

3.

4.
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Linear-time Algorithm for SCCs: Ideas
Exploit structure of meta-graph...

Wishful Thinking Algorithm

1. Let u be a vertex in a sink SCC of GSCC

2. Do DFS(u) to compute SCC(u)
3. Remove SCC(u) and repeat

Justification
1. DFS(u) only visits vertices (and edges) in SCC(u)
2. ... since there are no edges coming out a sink!

3. DFS(u) takes time proportional to size of SCC(u)
4. Therefore, total time O(n + m)!

64 / 91



Big Challenge(s)

How do we find a vertex in a sink SCC of GSCC?

Can we obtain an implicit topological sort of GSCC without computing GSCC?

Answer: DFS(G) gives some information!
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17.6.2
Maximum post numbering and the source
of the meta-graph
FLNAME:17.6.2.0 ZZZ:17.6.2.0 Maximum post numbering and the source of the meta-graph
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Post numbering and the meta graph

Claim 17.2.
Let v be the vertex with maximum post numbering in DFS(G). Then v is in a SCC
S , such that S is a source of GSCC.
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Reverse post numbering and the meta graph

Claim 17.3.
Let v be the vertex with maximum post numbering in DFS(Grev). Then v is in a SCC
S , such that S is a sink of GSCC.

Holds even after we delete the vertices of S (i.e., the vertex with the maximum post
numbering, is in a sink of the meta graph).

68 / 91



Reverse post numbering and the meta graph

Claim 17.3.
Let v be the vertex with maximum post numbering in DFS(Grev). Then v is in a SCC
S , such that S is a sink of GSCC.

Holds even after we delete the vertices of S (i.e., the vertex with the maximum post
numbering, is in a sink of the meta graph).

68 / 91



Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2024

17.6.3
The linear-time SCC algorithm itself
FLNAME:17.6.3.0 ZZZ:17.6.3.0 The linear-time SCC algorithm itself
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Linear Time Algorithm
...for computing the strong connected components in G

do DFS(G rev) and output vertices in decreasing post order.

Mark all nodes as unvisited

for each u in the computed order do
if u is not visited then

DFS(u)
Let Su be the nodes reached by u
Output Su as a strong connected component

Remove Su from G

Theorem 17.4.
Algorithm runs in time O(m + n) and correctly outputs all the SCCs of G .
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Linear Time Algorithm: An Example - Initial steps 1
Graph G:

G

FE

B C

D

H

A

=⇒

Reverse graph G rev:

G

FE

B C

D

H

A

=⇒

DFS of reverse graph:

G

FE

B C

D

H

A
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Linear Time Algorithm: An Example - Initial steps 2

Reverse graph G rev:

G

FE

B C

D

H

A

=⇒

DFS of reverse graph:

G

FE

B C

D

H

A

=⇒

Pre/Post DFS num-
bering of reverse
graph:

6][1,

[7, 12]

[9, 10] [8, 11]

[13, 16]

[14, 15]

[2, 5]

[3, 4]

G

FE

B C

D

H

A
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Linear Time Algorithm: An Example
Removing connected components: 1

Original graph G with rev post num-
bers:

G

FE

B C

D

H

A

16

11

612

10

15

5

4 =⇒

Do DFS from vertex G
remove it.

FE

B C

D

H

A

11

612

10

15

5

4

SCC computed:
{G}
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Linear Time Algorithm: An Example
Removing connected components: 2

Do DFS from vertex G
remove it.

FE

B C

D

H

A

11

612

10

15

5

4

SCC computed:
{G}

=⇒

Do DFS from vertex H , remove it.

FE

B C

D

A

11

612

10 5

4

SCC computed:
{G}, {H}
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Linear Time Algorithm: An Example
Removing connected components: 3

Do DFS from vertex H , remove it.

FE

B C

D

A

11

612

10 5

4

SCC computed:
{G}, {H}

=⇒

Do DFS from vertex B
Remove visited vertices:
{F ,B,E}.

C

D

A

6

5

4

SCC computed:
{G}, {H}, {F ,B,E}
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Linear Time Algorithm: An Example
Removing connected components: 4

Do DFS from vertex F
Remove visited vertices:
{F ,B,E}.

C

D

A

6

5

4

SCC computed:
{G}, {H}, {F ,B,E}

=⇒

Do DFS from vertex A
Remove visited vertices:
{A,C ,D}.

SCC computed:
{G}, {H}, {F ,B,E}, {A,C ,D}
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Linear Time Algorithm: An Example
Final result

G

FE

B C

D

H

A

SCC computed:
{G}, {H}, {F ,B,E}, {A,C ,D}
Which is the correct answer!
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Obtaining the meta-graph...
Once the strong connected components are computed.

Exercise:
Given all the strong connected components of a directed graph G = (V ,E) show that
the meta-graph GSCC can be obtained in O(m + n) time.
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Solving Problems on Directed Graphs

A template for a class of problems on directed graphs:

▶ Is the problem solvable when G is strongly connected?

▶ Is the problem solvable when G is a DAG?

▶ If the above two are feasible then is the problem solvable in a general directed
graph G by considering the meta graph GSCC?
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An Application of directed graphs to make
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Make/Makefile

(A) I know what make/makefile is.

(B) I do NOT know what make/makefile is.
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make Utility [Feldman]

1. Unix utility for automatically building large software applications

2. A makefile specifies

2.1 Object files to be created,
2.2 Source/object files to be used in creation, and
2.3 How to create them
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An Example makefile

project: main.o utils.o command.o

cc -o project main.o utils.o command.o

main.o: main.c defs.h

cc -c main.c

utils.o: utils.c defs.h command.h

cc -c utils.c

command.o: command.c defs.h command.h

cc -c command.c

83 / 91



makefile as a Digraph

project

main.o

utils.o

command.o

main.c

utils.c

defs.h

command.h

command.c
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Computational Problems for make

1. Is the makefile reasonable?

2. If it is reasonable, in what order should the object files be created?

3. If it is not reasonable, provide helpful debugging information.

4. If some file is modified, find the fewest compilations needed to make application
consistent.
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Algorithms for make

1. Is the makefile reasonable? Is G a DAG?

2. If it is reasonable, in what order should the object files be created? Find a
topological sort of a DAG.

3. If it is not reasonable, provide helpful debugging information. Output a cycle. More
generally, output all strong connected components.

4. If some file is modified, find the fewest compilations needed to make application
consistent.

4.1 Find all vertices reachable (using DFS/BFS) from modified files in directed graph,
and recompile them in proper order. Verify that one can find the files to recompile
and the ordering in linear time.
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17.8
Summary
FLNAME:17.8.0.0 ZZZ:17.8.0.0 Summary
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Take away Points

1. DAGs

2. Topological orderings.

3. DFS: pre/post numbering.

4. Given a directed graph G, its SCCs and the associated acyclic meta-graph GSCC

give a structural decomposition of G that should be kept in mind.

5. There is a DFS based linear time algorithm to compute all the SCCs and the
meta-graph. Properties of DFS crucial for the algorithm.

6. DAGs arise in many application and topological sort is a key property in algorithm
design. Linear time algorithms to compute a topological sort (there can be many
possible orderings so not unique).
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17.9
An example of DFS forests
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Example: Undirected DFS forest

The input graph (disconnected in this case):

The resulting DFS forest:
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Example: Directed DFS forest

The input graph:

The resulting DFS forest (numbers indicate the order of DFS):

3
1

2

5

4
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