Intro. Algorithms & Models of Computation CS/ECE 374A, Fall 2024

Even More on Dynamic Programming

Lecture 15 Thursday, October 17, 2024

^LATEXed: August 25, 2024 14:22

Part I

[Longest Common Subsequence Problem](#page-1-0)

The LCS Problem

Definition 15.1.

LCS between two strings X and Y is the length of longest common subsequence between X and Y .

Example 15.2.

LCS between ABAZDC and BACBAD is 4 via ABAD

Derive a dynamic programming algorithm for the problem.

The LCS Problem

Definition 15.1.

LCS between two strings X and Y is the length of longest common subsequence between X and Y .

Example 15.2.

LCS between ABAZDC and BACBAD is4 via ABAD

Derive a dynamic programming algorithm for the problem.

The LCS Problem

Definition 15.1.

LCS between two strings X and Y is the length of longest common subsequence between X and Y .

Example 15.2.

LCS between ABAZDC and BACBAD is4 via ABAD

Derive a dynamic programming algorithm for the problem.

Part II

[Maximum Weighted Independent Set in Trees](#page-5-0)

Maximum Weight Independent Set Problem

Input Graph $G = (V, E)$ and weights $w(v) \geq 0$ for each $v \in V$ Goal Find maximum weight independent set in G

Maximum weight independent set in above graph: $\{B, D\}$

Maximum Weight Independent Set Problem

Input Graph $G = (V, E)$ and weights $w(v) \geq 0$ for each $v \in V$ Goal Find maximum weight independent set in G

Maximum weight independent set in above graph: $\{B, D\}$

Maximum Weight Independent Set in a Tree

Input Tree $T = (V, E)$ and weights $w(v) \geq 0$ for each $v \in V$ Goal Find maximum weight independent set in T

Maximum weight independent set in above tree: ??

For an arbitrary graph G :

- 1. Number vertices as v_1, v_2, \ldots, v_n
- 2. Find recursively optimum solutions without v_n (recurse on $G v_n$) and with v_n (recurse on $G - v_n - N(v_n)$ & include v_n).
- 3. Saw that if graph G is arbitrary there was no good ordering that resulted in a small number of subproblems.

What about a tree? Natural candidate for v_n is root r of T ?

For an arbitrary graph G :

- 1. Number vertices as v_1, v_2, \ldots, v_n
- 2. Find recursively optimum solutions without v_n (recurse on $G v_n$) and with v_n (recurse on $G - v_n - N(v_n)$ & include v_n).
- 3. Saw that if graph G is arbitrary there was no good ordering that resulted in a small number of subproblems.

What about a tree? Natural candidate for v_n is root r of T ?

For an arbitrary graph G :

- 1. Number vertices as v_1, v_2, \ldots, v_n
- 2. Find recursively optimum solutions without v_n (recurse on $G v_n$) and with v_n (recurse on $G - v_n - N(v_n)$ & include v_n).
- 3. Saw that if graph G is arbitrary there was no good ordering that resulted in a small number of subproblems.

What about a tree? Natural candidate for v_n is root r of T ?

Natural candidate for v_n is root r of T? Let $\mathcal O$ be an optimum solution to the whole problem.

Case $r \notin \mathcal{O}$: Then $\mathcal O$ contains an optimum solution for each subtree of T hanging at a child of r .

Case $r \in \mathcal{O}$: None of the children of r can be in \mathcal{O} . $\mathcal{O} - \{r\}$ contains an optimum solution for each subtree of T hanging at a grandchild of r .

Subproblems? Subtrees of T rooted at nodes in T .

Natural candidate for v_n is root r of T? Let $\mathcal O$ be an optimum solution to the whole problem.

Case $r \notin \mathcal{O}$: Then $\mathcal O$ contains an optimum solution for each subtree of T hanging at a child of r .

Case $r \in \mathcal{O}$: None of the children of r can be in \mathcal{O} . $\mathcal{O} - \{r\}$ contains an optimum solution for each subtree of T hanging at a grandchild of r .

Subproblems? Subtrees of T rooted at nodes in T .

Natural candidate for v_n is root r of T? Let $\mathcal O$ be an optimum solution to the whole problem.

Case $r \notin \mathcal{O}$: Then $\mathcal O$ contains an optimum solution for each subtree of T hanging at a child of r .

Case $r \in \mathcal{O}$: None of the children of r can be in \mathcal{O} . $\mathcal{O} - \{r\}$ contains an optimum solution for each subtree of T hanging at a grandchild of r .

Subproblems? Subtrees of T rooted at nodes in T .

Natural candidate for v_n is root r of T? Let $\mathcal O$ be an optimum solution to the whole problem.

Case $r \notin \mathcal{O}$: Then $\mathcal O$ contains an optimum solution for each subtree of T hanging at a child of r .

Case $r \in \mathcal{O}$: None of the children of r can be in \mathcal{O} . $\mathcal{O} - \{r\}$ contains an optimum solution for each subtree of T hanging at a grandchild of r .

Subproblems? Subtrees of T rooted at nodes in T .

Natural candidate for v_n is root r of T? Let $\mathcal O$ be an optimum solution to the whole problem.

Case $r \notin \mathcal{O}$: Then $\mathcal O$ contains an optimum solution for each subtree of T hanging at a child of r .

Case $r \in \mathcal{O}$: None of the children of r can be in \mathcal{O} . $\mathcal{O} - \{r\}$ contains an optimum solution for each subtree of T hanging at a grandchild of r .

Subproblems? Subtrees of T rooted at nodes in T .

Example

A Recursive Solution

 $T(u)$: subtree of T hanging at node u $OPT(u)$: max weighted independent set value in $T(u)$

> $OPT(u) = \max \left\{ \sum_{v \text{ child of } u} OPT(v), \right\}$ $w(u) + \sum_{v \text{ grandchild of }} u \text{ } OPT(v)$

A Recursive Solution

 $T(u)$: subtree of T hanging at node u $OPT(u)$: max weighted independent set value in $T(u)$

$$
OPT(u) = \max \begin{cases} \sum_{v \text{ child of } u} OPT(v), \\ w(u) + \sum_{v \text{ grandchild of } u} OPT(v) \end{cases}
$$

- 1. Compute $OPT(u)$ bottom up. To evaluate $OPT(u)$ need to have computed values of all children and grandchildren of $$
- 2. What is an ordering of nodes of a tree T to achieve above? Post-order traversal of a tree.

- 1. Compute $OPT(u)$ bottom up. To evaluate $OPT(u)$ need to have computed values of all children and grandchildren of $$
- 2. What is an ordering of nodes of a tree T to achieve above? Post-order traversal of a tree.

- 1. Naive bound: $O(n^2)$ since each $M[\nu_i]$ evaluation may take $O(n)$ time and there are n evaluations.
- 2. Better bound: $O(n)$. A value $M[v_i]$ is accessed only by its parent and grand parent.

- 1. Naive bound: $O(n^2)$ since each $M[\nu_i]$ evaluation may take $O(n)$ time and there are n evaluations.
- 2. Better bound: $O(n)$. A value $M[v_i]$ is accessed only by its parent and grand parent.

- 1. Naive bound: $O(n^2)$ since each $M[\nu_i]$ evaluation may take $O(n)$ time and there are n evaluations.
- 2. Better bound: $O(n)$. A value $M[v_i]$ is accessed only by its parent and grand parent.

- 1. Naive bound: $O(n^2)$ since each $M[v_i]$ evaluation may take $O(n)$ time and there are n evaluations.
- 2. Better bound: $O(n)$. A value $M[v_i]$ is accessed only by its parent and grand parent.

- 1. Naive bound: $O(n^2)$ since each $M[v_i]$ evaluation may take $O(n)$ time and there are n evaluations.
- 2. Better bound: $O(n)$. A value $M[v_i]$ is accessed only by its parent and grand parent.

Example

Part III

[Context free grammars: The CYK Algorithm](#page-28-0)

Parsing

We saw regular languages and context free languages.

Most programming languages are specified via context-free grammars. Why?

- \triangleright CFLs are sufficiently expressive to support what is needed.
- \triangleright At the same time one can "efficiently" solve the parsing problem: given a string/program w , is it a valid program according to the CFG specification of the programming language?

CFG specification for C

```
<relational-expression> ::= <shift-expression>
                           <relational-expression> < <shift-expression>
                           <relational-expression> > <shift-expression>
                           <relational-expression> <= <shift-expression>
                           <relational-expression> >= <shift-expression>
<shift-expression> ::= <additive-expression>
                      <shift-expression> << <additive-expression>
                      <shift-expression> >> <additive-expression>
<additive-expression> ::= <multiplicative-expression>
                         <additive-expression> + <multiplicative-expression>
                         <additive-expression> - <multiplicative-expression>
<multiplicative-expression> ::= <cast-expression>
                               <multiplicative-expression> * <cast-expression>
                               <multiplicative-expression> / <cast-expression>
                               <multiplicative-expression> % <cast-expression>
<cast-expression> ::= <unary-expression>
                     ( <type-name> ) <cast-expression>
<unary-expression> ::= <postfix-expression>
                      ++ <unary-expression>
                      -- <unarv-expression>
                      <unary-operator> <cast-expression>
                      sizeof <unary-expression>
                      sizeof <type-name>
<postfix-expression> ::= <primary-expression>
                        <postfix-expression> ( {<assignment-expression>}* )
```

```
16 / 25
```
Algorithmic Problem

Given a CFG $G = (V, T, P, S)$ and a string $w \in T^*$, is $w \in L(G)$?

- \blacktriangleright That is, does S derive w?
- \blacktriangleright Equivalently, is there a parse tree for w ?

Simplifying assumption: G is in Chomsky Normal Form (CNF)

- ▶ Productions are all of the form $A \rightarrow BC$ or $A \rightarrow a$. If $\epsilon \in L$ then $S \to \epsilon$ is also allowed. (This is the only place in the grammar that has an ε .)
- \triangleright Every CFG G can be converted into CNF form via an efficient algorithm
- ▶ Advantage: parse tree of constant degree.

Algorithmic Problem

Given a CFG $G = (V, T, P, S)$ and a string $w \in T^*$, is $w \in L(G)$?

- \blacktriangleright That is, does S derive w?
- \blacktriangleright Equivalently, is there a parse tree for w ?

Simplifying assumption: G is in Chomsky Normal Form (CNF)

- ▶ Productions are all of the form $A \rightarrow BC$ or $A \rightarrow a$. If $\epsilon \in L$ then $S \to \epsilon$ is also allowed. (This is the only place in the grammar that has an ε .)
- \triangleright Every CFG G can be converted into CNF form via an efficient algorithm
- ▶ Advantage: parse tree of constant degree.

Example

 $S \rightarrow \epsilon$ | AB | XB $Y \rightarrow AB \mid XB$ $X \rightarrow AY$ $A \rightarrow 0$ $B \rightarrow 1$

Question:

- **Is 000111 in** $L(G)$ **?**
- **Is 00011 in** $L(G)$ **?**

Towards Recursive Algorithm

Assume G is a CNF grammar. **S** derives w iff one of the following holds:

- \blacktriangleright $|w| = 1$ and $S \rightarrow w$ is a rule in P
- \triangleright $|w| > 1$ and there is a rule $S \rightarrow AB$ and a split $w = uv$ with $|u|, |v| > 1$ such that \boldsymbol{A} derives $\boldsymbol{\mu}$ and \boldsymbol{B} derives $\boldsymbol{\nu}$

Observation: Subproblems generated require us to know if some non-terminal **A** will derive a substring of w.

Towards Recursive Algorithm

Assume G is a CNF grammar. **S** derives w iff one of the following holds:

- \blacktriangleright $|w| = 1$ and $S \rightarrow w$ is a rule in P
- \triangleright $|w| > 1$ and there is a rule $S \rightarrow AB$ and a split $w = uv$ with $|u|, |v| > 1$ such that \boldsymbol{A} derives $\boldsymbol{\mu}$ and \boldsymbol{B} derives $\boldsymbol{\nu}$

Observation: Subproblems generated require us to know if some non-terminal A will derive a substring of w .

Recursive solution

- 1. Input: $w = w_1w_2 \ldots w_n$
- 2. Assume r non-terminals in $G: R_1, \ldots, R_r$.
- 3. R_1 : Start symbol.
- 4. $f(\ell, s, b)$: TRUE $\iff w_s w_{s+1} \dots, w_{s+\ell-1} \in L(R_b)$.
	- $=$ Substring w starting at pos ℓ of length s is deriveable by R_b .
- 5. Recursive formula: $f(1,s,a)$ is 1 iff $\big(R_a \rightarrow w_s\big) \in G.$ 6. For $\ell > 1$:

$$
f(\ell,s,a) = \bigvee_{p=1}^{\ell-1} \bigvee_{(R_a \to R_b R_c) \in G} \Big(f(p,s,b) \wedge f(\ell-p,s+p,c)\Big)
$$

7. Output: $w \in L(G) \iff f(n, 1, 1) = 1$.

Recursive solution

- 1. Input: $w = w_1w_2...w_n$
- 2. Assume r non-terminals in $G: R_1, \ldots, R_r$.
- 3. R_1 : Start symbol.
- 4. $f(\ell, s, b)$: TRUE $\iff w_s w_{s+1} \dots, w_{s+\ell-1} \in L(R_b)$. $=$ Substring w starting at pos ℓ of length s is deriveable by R_b .
- 5. Recursive formula: $f(1,s,a)$ is 1 iff $\big(R_a \rightarrow w_s\big) \in G.$
- 6. For $\ell > 1$:

$$
f(\ell,s,a) = \bigvee_{p=1}^{\ell-1} \bigvee_{(R_a \to R_b R_c) \in G} \Big(f(p,s,b) \wedge f(\ell-p,s+p,c)\Big)
$$

7. Output: $w \in L(G) \iff f(n, 1, 1) = 1$.

Analysis

Assume $G = \{R_1, R_2, \ldots, R_r\}$ with start symbol R_1

- Number of subproblems: $O(rn^2)$
- \blacktriangleright Space: $O(rn^2)$
- \triangleright Time to evaluate a subproblem from previous ones: $O(|P|n)$ where P is set of rules
- ▶ Total time: $O(|P|rn^3)$ which is polynomial in both $|w|$ and $|G|$. For fixed G the run time is cubic in input string length.
- Running time can be improved to $O(n^3|P|)$.
- ▶ Not practical for most programming languages. Most languages assume restricted forms of CFGs that enable more efficient parsing algorithms.

CYK Algorithm

```
Input string: X = x_1 \dots x_n.
Input grammar G: r nonterminal symbols R_1...R_r, R_1 start symbol.
P[n][n][r]: Array of booleans. Initialize all to FALSE
for s = 1 to n do
    for each unit production R_v \rightarrow x_s do
         P[1][s][v] \leftarrow \text{TRUE}for \ell = 2 to n do // Length of span
    for s = 1 to n - \ell + 1 do // Start of span
         for p = 1 to \ell - 1 do // Partition of span
             for all (R_a \rightarrow R_b R_c) \in G do
                  if P[p][s][b] and P[1-p][s+p][c] then
                      P[1][s][a] \leftarrow \text{TRUE}if P[n][1][1] is TRUE then
    return 'X is member of language''
else
    return 'X is not member of language''
```
Example

 $S \rightarrow \epsilon$ | AB | XB $Y \rightarrow AB \mid XB$ $X \rightarrow AY$ $A \rightarrow 0$ $B \rightarrow 1$

Question:

- \triangleright Is 000111 in $L(G)$?
- \blacktriangleright Is 00011 in $L(G)$?

Order of evaluation for iterative algorithm: increasing order of substring length.

Example

 $S \rightarrow \epsilon$ | AB | XB $Y \rightarrow AB \mid XB$ $X \rightarrow AY$ $A \rightarrow 0$ $B \rightarrow 1$

Takeaway Points

- 1. Dynamic programming is based on finding a recursive way to solve the problem. Need a recursion that generates a small number of subproblems.
- 2. Given a recursive algorithm there is a natural DAG associated with the subproblems that are generated for given instance; this is the dependency graph. An iterative algorithm simply evaluates the subproblems in some topological sort of this DAG.
- 3. The space required to evaluate the answer can be reduced in some cases by a careful examination of that dependency DAG of the subproblems and keeping only a subset of the DAG at any time.