Intro. Algorithms & Models of Computation CS/ECE 374A, Fall 2024

More Dynamic Programming

Lecture 14 Tuesday, October 15, 2024

^LATEXed: October 15, 2024 10:12

Intro. Algorithms & Models of Computation CS/ECE 374A, Fall 2024

14.1

Review of dynamic programming and some new problems

What is the running time of the following?

Consider computing $f(x, y)$ by recursive function + memoization.

$$
f(x,y) = \sum_{i=1}^{x+y-1} x * f(x+y-i, i-1),
$$

$$
f(0,y) = y \qquad f(x,0) = x.
$$

The resulting algorithm when computing $f(n, n)$ would take:

- (A) $O(n)$
- (B) $O(n \log n)$
- (C) $O(n^2)$
- (D) $O(n^3)$
- (E) The function is ill defined it can not be computed.

Recipe for Dynamic Programming

- 1. Develop a recursive backtracking style algorithm A for given problem.
- 2. Identify structure of subproblems generated by A on an instance I of size n
	- 2.1 Estimate number of different subproblems generated as a function of \boldsymbol{n} . Is it polynomial or exponential in \mathbf{n} ?
	- 2.2 If the number of problems is "small" (polynomial) then they typically have some "clean" structure.
- 3. Rewrite subproblems in a compact fashion.
- 4. Rewrite recursive algorithm in terms of notation for subproblems.
- 5. Convert to iterative algorithm by bottom up evaluation in an appropriate order.
- 6. Optimize further with data structures and/or additional ideas.

Intro. Algorithms & Models of Computation CS/ECE 374A, Fall 2024

14.1.1 Is in L^k ?

A variation

Input A string $w \in \Sigma^*$ and access to a language $L \subseteq \Sigma^*$ via function **IsStringinL(string x)** that decides whether x is in \bf{L} , and non-negative integer k

Goal Decide if $w \in L^k$ using **IsStringinL**(string x) as a black box sub-routine

Example 14.1.

Suppose L is English and we have a procedure to check whether a string/word is in the **English** dictionary.

- ▶ Is the string "isthisanenglishsentence" in *English*⁵?
- Is the string "isthisanenglishsentence" in English⁴?
- Is "asinineat" in English²?
- \blacktriangleright Is "asinineat" in English⁴?
- \blacktriangleright Is "zibzzzad" in English¹?

Recursive Solution

```
When is w \in L^k?
k=0: w\in L^k iff w=\epsilonk=1: w\in L^k iff w\in Lk>1: w\in L^k if w=uv with u\in L^{k-1} and v\in LAssume w is stored in array A[1..n]
```

```
IsStringinLk(A[1 \ldots i], k):if k = 0 and i = 0 then return YES
    if k = 0 then return NO // i > 0if k = 1 then
         return IsStringinL(A[1 . . . i])
    for \ell = 1 \ldots i - 1 do
         if IsStringinLk(A[1 \ldots \ell], k-1) and IsStringinL(A[\ell + 1 \ldots i]) then
              return YES
    return NO
```
Recursive Solution

```
When is w \in L^k?
k = 0: w \in L^k iff w = \epsilonk=1: w \in L^k iff w \in Lk>1: w\in L^k if w=uv with u\in L^{k-1} and v\in L
```
Assume w is stored in array $A[1..n]$

```
IsStringinLk(A[1 \ldots i], k):if k = 0 and i = 0 then return YES
    if k = 0 then return NO // i > 0if k = 1 then
         return IsStringinL(A[1 . . . i])
    for \ell = 1 \ldots i - 1 do
         if IsStringinLk(A[1 \ldots \ell], k-1) and IsStringinL(A[\ell + 1 \ldots i]) then
              return YES
    return NO
```
Recursive Solution

```
When is w \in L^k?
k = 0: w \in L^k iff w = \epsilonk=1: w \in L^k iff w \in Lk>1: w\in L^k if w=uv with u\in L^{k-1} and v\in LAssume w is stored in array A[1..n]
```

```
IsStringinLk(A[1...i], k):
    if k = 0 and i = 0 then return YES
    if k = 0 then return NO // i > 0if k = 1 then
         return IsStringinL(A[1...i])
    for \ell = 1, \ldots, i - 1 do
         if IsStringinLk(A[1 \ldots \ell], k-1) and IsStringinL(A[\ell + 1 \ldots i]) then
              return YES
    return NO
```

```
IsStringinLk(A[1...i], k):
    if k = 0 and i = 0 then return YES
    if k = 0 then return NO // i > 0if k = 1 then
         return IsStringinL(A[1...i])for \ell = 1 \ldots i - 1 do
         if IsStringinLk(A[1 \ldots \ell], k-1) and IsStringinL(A[\ell + 1 \ldots i]) then
             return YES
    return NO
```
How many distinct sub-problems are generated by **IsStringinLk(A[1..n], k)**? $O(nk)$

 \blacktriangleright How much space? $O(nk)$

```
IsStringinLk(A[1...i], k):
    if k = 0 and i = 0 then return YES
    if k = 0 then return NO // i > 0if k = 1 then
         return IsStringinL(A[1...i])for \ell = 1 \ldots i - 1 do
         if IsStringinLk(A[1 \ldots \ell], k-1) and IsStringinL(A[\ell + 1 \ldots i]) then
             return YES
    return NO
```
How many distinct sub-problems are generated by **IsStringinLk(A[1..n], k)**? $O(nk)$

 \blacktriangleright How much space? $O(nk)$

```
IsStringinLk(A[1...i], k):
    if k = 0 and i = 0 then return YES
    if k = 0 then return NO // i > 0if k = 1 then
         return IsStringinL(A[1...i])for \ell = 1 \ldots i - 1 do
         if IsStringinLk(A[1 \ldots \ell], k-1) and IsStringinL(A[\ell + 1 \ldots i]) then
             return YES
    return NO
```
- How many distinct sub-problems are generated by **IsStringinLk(A[1..n], k)**? $O(nk)$
- How much space? $O(nk)$

```
IsStringinLk(A[1...i], k):
    if k = 0 and i = 0 then return YES
    if k = 0 then return NO // i > 0if k = 1 then
         return IsStringinL(A[1...i])for \ell = 1 \ldots i - 1 do
         if IsStringinLk(A[1 \ldots \ell], k-1) and IsStringinL(A[\ell + 1 \ldots i]) then
             return YES
    return NO
```
- How many distinct sub-problems are generated by **IsStringinLk(A[1..n], k)**? $O(nk)$
- How much space? $O(nk)$

```
IsStringinLk(A[1...i], k):
    if k = 0 and i = 0 then return YES
    if k = 0 then return NO // i > 0if k = 1 then
         return IsStringinL(A[1...i])for \ell = 1 \ldots i - 1 do
         if IsStringinLk(A[1 \ldots \ell], k-1) and IsStringinL(A[\ell + 1 \ldots i]) then
             return YES
    return NO
```
- How many distinct sub-problems are generated by **IsStringinLk(A[1..n], k)**? $O(nk)$
- How much space? $O(nk)$
- Running time if we use memoization? $O(n^2k)$

```
IsStringinLk(A[1...i], k):
    if k = 0 and i = 0 then return YES
    if k = 0 then return NO // i > 0if k = 1 then
         return IsStringinL(A[1...i])for \ell = 1 \ldots i - 1 do
         if IsStringinLk(A[1 \ldots \ell], k-1) and IsStringinL(A[\ell + 1 \ldots i]) then
             return YES
    return NO
```
- How many distinct sub-problems are generated by **IsStringinLk(A[1..n], k)**? $O(nk)$
- How much space? $O(nk)$
- Running time if we use memoization? $O(n^2k)$

Another variant

Question: What if we want to check if $w \in L^i$ for some $0 \leq i \leq k$? That is, is $w \in \cup_{i=0}^k L^i$?

Exercise

Definition 14.2.

A string is a palindrome if $w = w^R$. Examples: I, RACECAR, MALAYALAM, DOOFFOOD

Problem: Given a string w find the longest subsequence of w that is a palindrome.

MAHDYNAMICPROGRAMZLETMESHOWYOUTHEM has MHYMRORMYHM as a palindromic subsequence

Exercise

Definition 14.2.

A string is a palindrome if $w = w^R$. Examples: I, RACECAR, MALAYALAM, DOOFFOOD

Problem: Given a string w find the longest subsequence of w that is a palindrome.

Example 14.3. MAHDYNAMICPROGRAMZLETMESHOWYOUTHEM has MHYMRORMYHM as a palindromic subsequence

Exercise

Assume w is stored in an array $A[1..n]$

 $LPS(A[1..n])$: length of longest palindromic subsequence of A.

Recursive expression/code?

Intro. Algorithms & Models of Computation CS/ECE 374A, Fall 2024

14.2 Edit Distance and Sequence Alignment

Intro. Algorithms & Models of Computation CS/ECE 374A, Fall 2024

14.2.1 Problem definition and background

Spell Checking Problem

Given a string "exponen" that is not in the dictionary, how should a spell checker suggest a nearby string?

What does nearness mean?

Question: Given two strings $x_1x_2 \ldots x_n$ and $y_1y_2 \ldots y_m$ what is a distance between them?

Edit Distance: minimum number of "edits" to transform x into y .

Spell Checking Problem

Given a string "exponen" that is not in the dictionary, how should a spell checker suggest a nearby string?

What does nearness mean?

Question: Given two strings $x_1x_2 \ldots x_n$ and $y_1y_2 \ldots y_m$ what is a distance between them?

Edit Distance: minimum number of "edits" to transform x into y .

Spell Checking Problem

Given a string "exponen" that is not in the dictionary, how should a spell checker suggest a nearby string?

What does nearness mean?

Question: Given two strings $x_1x_2 \ldots x_n$ and $y_1y_2 \ldots y_m$ what is a distance between them?

Edit Distance: minimum number of "edits" to transform x into y .

Edit Distance

Definition 14.1.

Edit distance between two words X and Y is the number of letter insertions, letter deletions and letter substitutions required to obtain Y from X .

Example 14.2.

The edit distance between FOOD and MONEY is at most 4:

 $FOOD \rightarrow MOOD \rightarrow MONOD \rightarrow MONED \rightarrow MONEY$

Edit Distance: Alternate View

Alignment

Place words one on top of the other, with gaps in the first word indicating insertions, and gaps in the second word indicating deletions.

F O O D M O N E Y

Formally, an alignment is a set M of pairs (i, j) such that each index appears at most once, and there is no "crossing": $i < i'$ and i is matched to j implies i' is matched to $j' > j$. In the above example, this is $M = \{(1,1), (2,2), (3,3), (4,5)\}$. Cost of an alignment is the number of mismatched columns plus number of unmatched indices in both strings.

Edit Distance: Alternate View

Alignment

Place words one on top of the other, with gaps in the first word indicating insertions, and gaps in the second word indicating deletions.

> F O O D M O N E Y

Formally, an alignment is a set M of pairs (i, j) such that each index appears at most once, and there is no "crossing": $i < i'$ and i is matched to j implies i' is matched to $j' > j$. In the above example, this is $M = \{(1,1), (2,2), (3,3), (4,5)\}$. Cost of an alignment is the number of mismatched columns plus number of unmatched indices in both strings.

Edit Distance: Alternate View

Alignment

Place words one on top of the other, with gaps in the first word indicating insertions, and gaps in the second word indicating deletions.

> F O O D M O N E Y

Formally, an alignment is a set M of pairs (i, j) such that each index appears at most once, and there is no "crossing": $i < i'$ and i is matched to j implies i' is matched to $j' > j$. In the above example, this is $M = \{(1,1), (2,2), (3,3), (4,5)\}$. Cost of an alignment is the number of mismatched columns plus number of unmatched indices in both strings.

Edit Distance Problem

Problem

Given two words, find the edit distance between them, i.e., an alignment of smallest cost.

Applications

- 1. Spell-checkers and Dictionaries
- 2. Unix diff
- 3. DNA sequence alignment . . . but, we need a new metric

Similarity Metric

Definition 14.3.

For two strings X and Y , the cost of alignment M is

- 1. [Gap penalty] For each gap in the alignment, we incur a cost δ .
- 2. [Mismatch cost] For each pair p and q that have been matched in M , we incur cost α_{pq} ; typically $\alpha_{pp} = 0$.

Edit distance is special case when $\delta = \alpha_{\text{p}q} = 1$.

Similarity Metric

Definition 14.3.

For two strings X and Y , the cost of alignment M is

- 1. [Gap penalty] For each gap in the alignment, we incur a cost δ .
- 2. [Mismatch cost] For each pair p and q that have been matched in M , we incur cost α_{pq} ; typically $\alpha_{pp} = 0$.

Edit distance is special case when $\delta = \alpha_{nn} = 1$.

Intro. Algorithms & Models of Computation CS/ECE 374A, Fall 2024

14.2.2 Edit distance as alignment

An Example

Example 14.4.

o c u r r a n c e o c c u r r e n c e Cost = δ + αae

Alternative:

o c u r r a n c e o c c u r r e n c e Cost = 3δ

$$
Cost = 3\delta
$$

Or a really stupid solution (delete string, insert other string):

$$
o \mid c \mid u \mid r \mid r \mid a \mid n \mid c \mid e \mid o \mid c \mid c \mid u \mid r \mid r \mid e \mid n \mid c \mid e
$$

 $Cost = 19\delta$.

What is the edit distance between...

What is the minimum edit distance for the following two strings, if insertion/deletion/change of a single character cost 1 unit?

(A) 1 (B) 2 (C) 3 (D) 4 (E) 5

What is the edit distance between...

What is the minimum edit distance for the following two strings, if insertion/deletion/change of a single character cost 1 unit?

(A) 1 (B) 2 (C) 3 (D) 4 (E) 5
What is the edit distance between...

What is the minimum edit distance for the following two strings, if insertion/deletion/change of a single character cost 1 unit?

(A) 1 (B) 2 (C) 3 (D) 4 (E) 5

Sequence Alignment

Input Given two words X and Y, and gap penalty δ and mismatch costs $\alpha_{\text{p}q}$ Goal Find alignment of minimum cost

Sequence Alignment in Practice

- 1. Typically the DNA sequences that are aligned are about $10⁵$ letters long!
- 2. So about 10^{10} operations and 10^{10} bytes needed
- 3. The killer is the 10GB storage
- 4. Can we reduce space requirements?

Intro. Algorithms & Models of Computation CS/ECE 374A, Fall 2024

14.2.3 Edit distance: The algorithm

Edit distance

Basic observation

Let $X = \alpha x$ and $Y = \beta y$

 α , β : strings.

 x and y single characters.

Think about optimal edit distance between X and Y as alignment, and consider last column of alignment of the two strings:

α	x	α	x	α	x	
β	y	or	α	x	α	α

Observation 14.5.

Prefixes must have optimal alignment!

Problem Structure

Observation 14.6.

Let $X = x_1x_2 \cdots x_m$ and $Y = y_1y_2 \cdots y_n$. If (m, n) are not matched then either the mth position of X remains unmatched or the nth position of Y remains unmatched.

1. Case x_m and y_n are matched.

1.1 Pay mismatch cost $\alpha_{x_m y_n}$ plus cost of aligning strings $x_1 \cdots x_{m-1}$ and $y_1 \cdots y_{n-1}$

2. Case x_m is unmatched.

2.1 Pay gap penalty plus cost of aligning $x_1 \cdots x_{m-1}$ and $y_1 \cdots y_n$

3. Case v_n is unmatched.

3.1 Pay gap penalty plus cost of aligning $x_1 \cdots x_m$ and $y_1 \cdots y_{n-1}$

Subproblems and Recurrence

$x_1 \ldots x_{i-1}$	x_i	$x_1 \ldots x_{i-1}$	x	$x_1 \ldots x_{i-1}$	x
$y_1 \ldots y_{j-1}$	y_j	or	$x_1 \ldots x_{i-1}x_i$	$y_1 \ldots y_{j-1}$	y_j

Optimal Costs

Let $\mathrm{Opt}(i,j)$ be optimal cost of aligning $\mathrm{x}_1\cdots\mathrm{x}_i$ and $\mathrm{y}_1\cdots\mathrm{y}_j$. Then

$$
Opt(i, j) = min \begin{cases} \alpha_{x_i y_j} + Opt(i - 1, j - 1), \\ \delta + Opt(i - 1, j), \\ \delta + Opt(i, j - 1) \end{cases}
$$

Base Cases: $Opt(i, 0) = \delta \cdot i$ and $Opt(0, j) = \delta \cdot j$

Subproblems and Recurrence

$x_1 \ldots x_{i-1}$	x_i	$x_1 \ldots x_{i-1}$	x	$x_1 \ldots x_{i-1}$	x
$y_1 \ldots y_{j-1}$	y_j	or	$x_1 \ldots x_{i-1}x_i$	$y_1 \ldots y_{j-1}$	y_j

Optimal Costs

Let $\mathrm{Opt}(i,j)$ be optimal cost of aligning $\mathrm{x}_1\cdots\mathrm{x}_i$ and $\mathrm{y}_1\cdots\mathrm{y}_j$. Then

$$
Opt(i, j) = min \begin{cases} \alpha_{x_i y_j} + Opt(i - 1, j - 1), \\ \delta + Opt(i - 1, j), \\ \delta + Opt(i, j - 1) \end{cases}
$$

Base Cases: $Opt(i, 0) = \delta \cdot i$ and $Opt(0, j) = \delta \cdot j$

Recursive Algorithm

Assume X is stored in array $A[1..m]$ and Y is stored in $B[1..n]$ Array COST stores cost of matching two chars. Thus $COST[a, b]$ give the cost of matching character a to character b .

```
EDIST(A[1..m], B[1..n])If (m = 0) return n\deltaIf (n = 0) return m\deltam_1 = \delta + EDIST(A[1..(m-1)], B[1..n])m_2 = \delta + EDIST(A[1..m], B[1..(n-1)]))m_3 = COST[A[m], B[n]] + EDIST(A[1..(m-1)], B[1..(n-1)])return min(m_1, m_2, m_3)
```


$D | R | E | A | D$ $D | E | E | | D$

Intro. Algorithms & Models of Computation CS/ECE 374A, Fall 2024

14.2.4

Dynamic programming algorithm for edit-distance

As part of the input...

The cost of aligning a character against another character

Σ: Alphabet

We are given a **cost** function (in a table):

 $\forall b, c \in \Sigma$ COST[b][c] = cost of aligning b with c. $\forall b \in \Sigma$ COST[b][b] = 0

 δ : price of deletion of insertion of a single character

Memoizing the Recursive Algorithm (Explicit Memoization)

Input: Two strings $A[1 \ldots m]$ $B[1 \ldots n]$

> EditDistance (A, B) int M[0..m][0..n] $\forall i, j \quad M[i][j] \leftarrow \infty$ return edEMI(m, n)

```
edEMI( i , j) // A[1...i], B[1...i]if M[i][i] < \inftyreturn M[i][j] // stored value
if i = 0 or j = 0M[i][j] = (i + j)\deltareturn M[i][j]m_1 = \delta + \text{edEMI}(i-1, i)m_2 = \delta + \text{edEMI}(i, j - 1)m_3 = COST[A[i]][B[j]]+ edEMI( i - 1 , j - 1 )
M[i][j] = min(m_1, m_2, m_3)return M[i][j]
```
Dynamic program for edit distance

Removing Recursion to obtain Iterative Algorithm

```
EDIST(A[1..m], B[1..n])int M[0..m][0..n]
for i = 1 to m do M[i, 0] = i\deltafor j = 1 to n do M[0, j] = j\deltafor i = 1 to m do
     for i = 1 to n do
          M[i][j] = min\sqrt{ }\int\mathcal{L}COST[A[i][B[j]] + M[i-1][j-1],\delta + M[i-1][j],\delta + M[i][j-1]
```
1. Running time is $O(mn)$.

Dynamic program for edit distance

Removing Recursion to obtain Iterative Algorithm

```
EDIST(A[1..m], B[1..n])int M[0..m][0..n]
for i = 1 to m do M[i, 0] = i\deltafor j = 1 to n do M[0, j] = j\deltafor i = 1 to m do
     for i = 1 to n do
          M[i][j] = min\sqrt{ }\int\mathcal{L}COST[A[i][B[j]] + M[i-1][j-1],\delta + M[i-1][j],\delta + M[i][j-1]
```
Analysis

1. Running time is $O(mn)$.

Dynamic program for edit distance

Removing Recursion to obtain Iterative Algorithm

```
EDIST(A[1..m], B[1..n])int M[0..m][0..n]
for i = 1 to m do M[i, 0] = i\deltafor j = 1 to n do M[0, j] = j\deltafor i = 1 to m do
     for j = 1 to n do
          M[i][j] = min\sqrt{ }\int\mathcal{L}COST[A[i][B[j]] + M[i-1][j-1],\delta + M[i-1][j],\delta + M[i][j-1]
```
Analysis

- 1. Running time is $O(mn)$.
- 2. Space used is $O(mn)$.

Intro. Algorithms & Models of Computation CS/ECE 374A, Fall 2024

14.2.5 Reducing space for edit distance

Matrix and DAG of computation of edit distance

Figure: Iterative algorithm in previous slide computes values in row order.

Optimizing Space

1. Recall

$$
M(i,j) = \min \begin{cases} \alpha_{x_iy_j} + M(i-1,j-1), \\ \delta + M(i-1,j), \\ \delta + M(i,j-1) \end{cases}
$$

- 2. Entries in jth column only depend on $(j 1)$ st column and earlier entries in jth column
- 3. Only store the current column and the previous column reusing space; $N(i, 0)$ stores $M(i, j - 1)$ and $N(i, 1)$ stores $M(i, j)$

Computing in column order to save space

Figure: $M(i, j)$ only depends on previous column values. Keep only two columns and compute in column order.

Space Efficient Algorithm

```
for all i do N[i, 0] = i\deltafor j = 1 to n do
 N[0, 1] = j\delta (* corresponds to M(0, j) *)
 for i = 1 to m do
      N[i, 1] = \min\sqrt{ }\int\mathcal{L}\alpha_{x_i y_j} + N[i-1,0]\delta + N[i-1,1]\delta + N[i, 0]for i = 1 to m do
      Copy N[i, 0] = N[i, 1]
```
Analysis

Running time is $O(mn)$ and space used is $O(2m) = O(m)$
Analyzing Space Efficiency

- 1. From the $m \times n$ matrix M we can construct the actual alignment (exercise)
- 2. Matrix \bm{N} computes cost of optimal alignment but no way to construct the actual alignment
- 3. Space efficient computation of alignment? More complicated algorithm see notes and Kleinberg-Tardos book.

Intro. Algorithms & Models of Computation CS/ECE 374A, Fall 2024

14.2.6 Longest Common Subsequence Problem

LCS Problem

Definition 14.7.

LCS between two strings X and Y is the length of longest common subsequence between X and Y .

Example 14.8.

LCS between ABAZDC and BACBAD is 4 via ABAD

Derive a dynamic programming algorithm for the problem.

LCS Problem

Definition 14.7.

LCS between two strings X and Y is the length of longest common subsequence between X and Y .

Example 14.8.

LCS between ABAZDC and BACBAD is 4 via ABAD

Derive a dynamic programming algorithm for the problem.

LCS Problem

Definition 14.7.

LCS between two strings X and Y is the length of longest common subsequence between X and Y .

Example 14.8.

LCS between ABAZDC and BACBAD is 4 via ABAD

Derive a dynamic programming algorithm for the problem.

LCS recursive definition

 $A[1..n], B[1..m]$: Input strings.

$$
LCS(i,j) = \begin{cases} 0 & i = 0 \text{ or } j = 0 \\ \max \begin{pmatrix} LCS(i-1,j), \\ LCS(i,j-1) \end{pmatrix} & A[i] \neq B[j] \\ \max \begin{pmatrix} LCS(i-1,j), \\ LCS(i,j-1), \\ 1 + LCS(i-1,j-1) \end{pmatrix} & A[i] = B[j] \end{cases}
$$

Similar to edit distance... $O(nm)$ time algorithm $O(m)$ space. Better recurrence with a bit of thinking: \sim \sim $0 \leq x \leq 0$ in $0 \leq x \leq 0$

$$
LCS(i,j) = \begin{cases} 0 & i = 0 \text{ or } j = 0 \\ \max \begin{pmatrix} LCS(i-1,j), \\ LCS(i,j-1) \end{pmatrix} & A[i] \neq B[j] \\ 1 + LCS(i-1,j-1) & A[i] = B[j]. \end{cases}
$$

LCS recursive definition

 $A[1..n], B[1..m]$: Input strings.

$$
LCS(i,j) = \begin{cases} 0 & i = 0 \text{ or } j = 0 \\ \max \begin{pmatrix} LCS(i-1,j), \\ LCS(i,j-1) \end{pmatrix} & A[i] \neq B[j] \\ \max \begin{pmatrix} LCS(i-1,j), \\ LCS(i,j-1), \\ 1 + LCS(i-1,j-1) \end{pmatrix} & A[i] = B[j] \end{cases}
$$

Similar to edit distance... $O(nm)$ time algorithm $O(m)$ space. Better recurrence with a bit of thinking: ϵ

$$
LCS(i,j) = \begin{cases} 0 & i = 0 \text{ or } j = 0 \\ \max \begin{pmatrix} LCS(i-1,j), \\ LCS(i,j-1) \end{pmatrix} & A[i] \neq B[j] \\ 1 + LCS(i-1,j-1) & A[i] = B[j]. \end{cases}
$$

Longest common subsequence is just edit distance for the two sequences...

- A, B : input sequences
- Σ : "alphabet" all the different values in A and B

 $\forall b, c \in \Sigma : b \neq c$ $COST[b][c] = +\infty.$ $\forall b \in \Sigma$ COST[b][b] = 1

1 : price of deletion of insertion of a single character

Length of longest common subsequence = $m + n - \text{ed}(A, B)$

Longest common subsequence is just edit distance for the two sequences...

- A, B : input sequences
- Σ : "alphabet" all the different values in **A** and **B**

 $\forall b, c \in \Sigma : b \neq c$ $COST[b][c] = +\infty.$ $\forall b \in \Sigma$ COST[b][b] = 1

1 : price of deletion of insertion of a single character

Length of longest common subsequence $= m + n - \text{ed}(A, B)$

Intro. Algorithms & Models of Computation CS/ECE 374A, Fall 2024

14.3 Maximum Weighted Independent Set in Trees

Maximum Weight Independent Set Problem

Input Graph $G = (V, E)$ and weights $w(v) \geq 0$ for each $v \in V$ Goal Find maximum weight independent set in G

Maximum weight independent set in above graph: $\{B, D\}$

Maximum Weight Independent Set Problem

Input Graph $G = (V, E)$ and weights $w(v) \geq 0$ for each $v \in V$ Goal Find maximum weight independent set in G

Maximum weight independent set in above graph: $\{B, D\}$

Maximum Weight Independent Set in a Tree

Input Tree $T = (V, E)$ and weights $w(v) \geq 0$ for each $v \in V$ Goal Find maximum weight independent set in T

Maximum weight independent set in above tree: ??

For an arbitrary graph G :

- 1. Number vertices as v_1, v_2, \ldots, v_n
- 2. Find recursively optimum solutions without v_n (recurse on $G v_n$) and with v_n (recurse on $G - v_n - N(v_n)$ & include v_n).
- 3. Saw that if graph G is arbitrary there was no good ordering that resulted in a small number of subproblems.

What about a tree? Natural candidate for v_n is root r of T ?

For an arbitrary graph G :

- 1. Number vertices as v_1, v_2, \ldots, v_n
- 2. Find recursively optimum solutions without v_n (recurse on $G v_n$) and with v_n (recurse on $G - v_n - N(v_n)$ & include v_n).
- 3. Saw that if graph G is arbitrary there was no good ordering that resulted in a small number of subproblems.

What about a tree? Natural candidate for v_n is root r of T ?

For an arbitrary graph G :

- 1. Number vertices as v_1, v_2, \ldots, v_n
- 2. Find recursively optimum solutions without v_n (recurse on $G v_n$) and with v_n (recurse on $G - v_n - N(v_n)$ & include v_n).
- 3. Saw that if graph G is arbitrary there was no good ordering that resulted in a small number of subproblems.

What about a tree? Natural candidate for v_n is root r of T ?

Natural candidate for v_n is root r of T? Let $\mathcal O$ be an optimum solution to the whole problem.

Case $r \notin \mathcal{O}$: Then $\mathcal O$ contains an optimum solution for each subtree of T hanging at a child of r .

Case $r \in \mathcal{O}$: None of the children of r can be in \mathcal{O} . $\mathcal{O} - \{r\}$ contains an optimum solution for each subtree of T hanging at a grandchild of r .

Subproblems? Subtrees of T rooted at nodes in T .

Natural candidate for v_n is root r of T? Let $\mathcal O$ be an optimum solution to the whole problem.

Case $r \notin \mathcal{O}$: Then $\mathcal O$ contains an optimum solution for each subtree of T hanging at a child of r .

Case $r \in \mathcal{O}$: None of the children of r can be in \mathcal{O} . $\mathcal{O} - \{r\}$ contains an optimum solution for each subtree of T hanging at a grandchild of r .

Subproblems? Subtrees of T rooted at nodes in T .

Natural candidate for v_n is root r of T? Let $\mathcal O$ be an optimum solution to the whole problem.

Case $r \notin \mathcal{O}$: Then $\mathcal O$ contains an optimum solution for each subtree of T hanging at a child of r .

Case $r \in \mathcal{O}$: None of the children of r can be in \mathcal{O} . $\mathcal{O} - \{r\}$ contains an optimum solution for each subtree of T hanging at a grandchild of r .

Subproblems? Subtrees of T rooted at nodes in T .

Natural candidate for v_n is root r of T? Let $\mathcal O$ be an optimum solution to the whole problem.

Case $r \notin \mathcal{O}$: Then $\mathcal O$ contains an optimum solution for each subtree of T hanging at a child of r .

Case $r \in \mathcal{O}$: None of the children of r can be in \mathcal{O} . $\mathcal{O} - \{r\}$ contains an optimum solution for each subtree of T hanging at a grandchild of r .

Subproblems? Subtrees of T rooted at nodes in T .

Natural candidate for v_n is root r of T? Let $\mathcal O$ be an optimum solution to the whole problem.

Case $r \notin \mathcal{O}$: Then $\mathcal O$ contains an optimum solution for each subtree of T hanging at a child of r .

Case $r \in \mathcal{O}$: None of the children of r can be in \mathcal{O} . $\mathcal{O} - \{r\}$ contains an optimum solution for each subtree of T hanging at a grandchild of r .

Subproblems? Subtrees of T rooted at nodes in T .

Example

A Recursive Solution

 $T(u)$: subtree of T hanging at node u $OPT(u)$: max weighted independent set value in $T(u)$

> $OPT(u) = \max \left\{ \sum_{v \text{ child of } u} OPT(v), \right\}$ $w(u) + \sum_{v \text{ grandchild of }} u \text{ } OPT(v)$

A Recursive Solution

 $T(u)$: subtree of T hanging at node u $OPT(u)$: max weighted independent set value in $T(u)$

$$
OPT(u) = \max \begin{cases} \sum_{v \text{ child of } u} OPT(v), \\ w(u) + \sum_{v \text{ grandchild of } u} OPT(v) \end{cases}
$$

- 1. Compute $OPT(u)$ bottom up. To evaluate $OPT(u)$ need to have computed values of all children and grandchildren of $$
- 2. What is an ordering of nodes of a tree T to achieve above? Post-order traversal of a tree.

- 1. Compute $OPT(u)$ bottom up. To evaluate $OPT(u)$ need to have computed values of all children and grandchildren of $$
- 2. What is an ordering of nodes of a tree T to achieve above? Post-order traversal of a tree.

- 1. Naive bound: $O(n^2)$ since each $M[\nu_i]$ evaluation may take $O(n)$ time and there are n evaluations.
- 2. Better bound: $O(n)$. A value $M[v_i]$ is accessed only by its parent and grand parent.

- 1. Naive bound: $O(n^2)$ since each $M[\nu_i]$ evaluation may take $O(n)$ time and there are n evaluations.
- 2. Better bound: $O(n)$. A value $M[v_i]$ is accessed only by its parent and grand parent.

- 1. Naive bound: $O(n^2)$ since each $M[\nu_i]$ evaluation may take $O(n)$ time and there are n evaluations.
- 2. Better bound: $O(n)$. A value $M[v_i]$ is accessed only by its parent and grand parent.

- 1. Naive bound: $O(n^2)$ since each $M[v_i]$ evaluation may take $O(n)$ time and there are n evaluations.
- 2. Better bound: $O(n)$. A value $M[v_i]$ is accessed only by its parent and grand parent.

- 1. Naive bound: $O(n^2)$ since each $M[v_i]$ evaluation may take $O(n)$ time and there are n evaluations.
- 2. Better bound: $O(n)$. A value $M[v_i]$ is accessed only by its parent and grand parent.

Example

Intro. Algorithms & Models of Computation CS/ECE 374A, Fall 2024

14.4 Dynamic programming and DAGs

Takeaway Points

- 1. Dynamic programming is based on finding a recursive way to solve the problem. Need a recursion that generates a small number of subproblems.
- 2. Given a recursive algorithm there is a natural DAG associated with the subproblems that are generated for given instance; this is the dependency graph. An iterative algorithm simply evaluates the subproblems in some topological sort of this DAG.
- 3. The space required to evaluate the answer can be reduced in some cases by a careful examination of that dependency DAG of the subproblems and keeping only a subset of the DAG at any time.

Intro. Algorithms & Models of Computation CS/ECE 374A, Fall 2024

14.5

Supplemental: Context free grammars: The CYK Algorithm

Intro. Algorithms & Models of Computation CS/ECE 374A, Fall 2024

14.5.1 CYK: Problem statement, basic idea, and an example
Parsing

We saw regular languages and context free languages.

Most programming languages are specified via context-free grammars. Why?

- \triangleright CFLs are sufficiently expressive to support what is needed.
- \triangleright At the same time one can "efficiently" solve the parsing problem: given a string/program w , is it a valid program according to the CFG specification of the programming language?

CFG specification for C

```
<relational-expression> ::= <shift-expression>
                           <relational-expression> < <shift-expression>
                           <relational-expression> > <shift-expression>
                           <relational-expression> <= <shift-expression>
                           <relational-expression> >= <shift-expression>
<shift-expression> ::= <additive-expression>
                      <shift-expression> << <additive-expression>
                      <shift-expression> >> <additive-expression>
<additive-expression> ::= <multiplicative-expression>
                         <additive-expression> + <multiplicative-expression>
                         <additive-expression> - <multiplicative-expression>
<multiplicative-expression> ::= <cast-expression>
                               <multiplicative-expression> * <cast-expression>
                               <multiplicative-expression> / <cast-expression>
                               <multiplicative-expression> % <cast-expression>
<cast-expression> ::= <unary-expression>
                     ( <type-name> ) <cast-expression>
<unary-expression> ::= <postfix-expression>
                      ++ <unary-expression>
                      -- <unarv-expression>
                      <unary-operator> <cast-expression>
                      sizeof <unary-expression>
                      sizeof <type-name>
<postfix-expression> ::= <primary-expression>
                        <postfix-expression> ( {<assignment-expression>}* )
```
63 / 1

Algorithmic Problem

Given a CFG $G = (V, T, P, S)$ and a string $w \in T^*$, is $w \in L(G)$?

- \blacktriangleright That is, does S derive w?
- \blacktriangleright Equivalently, is there a parse tree for w ?

Simplifying assumption: G is in Chomsky Normal Form (CNF)

- ▶ Productions are all of the form $A \rightarrow BC$ or $A \rightarrow a$. If $\epsilon \in L$ then $S \to \epsilon$ is also allowed. (This is the only place in the grammar that has an ε .)
- \triangleright Every CFG G can be converted into CNF form via an efficient algorithm
- ▶ Advantage: parse tree of constant degree.

Algorithmic Problem

Given a CFG $G = (V, T, P, S)$ and a string $w \in T^*$, is $w \in L(G)$?

- \blacktriangleright That is, does S derive w?
- \blacktriangleright Equivalently, is there a parse tree for w ?

Simplifying assumption: G is in Chomsky Normal Form (CNF)

- ▶ Productions are all of the form $A \rightarrow BC$ or $A \rightarrow a$. If $\epsilon \in L$ then $S \to \epsilon$ is also allowed. (This is the only place in the grammar that has an ε .)
- \triangleright Every CFG G can be converted into CNF form via an efficient algorithm
- ▶ Advantage: parse tree of constant degree.

Towards Recursive Algorithm

 CYK Algorithm $=$ Cocke-Younger-Kasami algorithm

Assume G is a CNF grammar.

S derives $w \iff$ one of the following holds:

 \blacktriangleright $|w| = 1$ and $S \rightarrow w$ is a rule in P

 \triangleright $|w| > 1$ and there is a rule $S \rightarrow AB$ and a split $w = uv$ with $|u|, |v| > 1$ such that \boldsymbol{A} derives $\boldsymbol{\mu}$ and \boldsymbol{B} derives $\boldsymbol{\nu}$

Observation: Subproblems generated require us to know if some non-terminal **A** will derive a substring of w .

Towards Recursive Algorithm

 CYK Algorithm $=$ Cocke-Younger-Kasami algorithm

Assume G is a CNF grammar.

S derives $w \iff$ one of the following holds:

- \blacktriangleright $|w| = 1$ and $S \rightarrow w$ is a rule in P
- \triangleright $|w| > 1$ and there is a rule $S \rightarrow AB$ and a split $w = uv$ with $|u|, |v| > 1$ such that \boldsymbol{A} derives $\boldsymbol{\mu}$ and \boldsymbol{B} derives $\boldsymbol{\nu}$

Observation: Subproblems generated require us to know if some non-terminal A will derive a substring of w .

 $S \rightarrow \epsilon$ | AB | XB $Y \rightarrow AB \mid XB$ $X \rightarrow AY$ $A \rightarrow 0$ $B \rightarrow 1$

Question:

- \triangleright Is 000111 in $L(G)$?
- \blacktriangleright Is 00011 in $L(G)$?

Order of evaluation for iterative algorithm: increasing order of substring length.

 $S \rightarrow \epsilon$ | AB | XB $Y \rightarrow AB \mid XB$ $X \rightarrow AY$ $A \rightarrow 0$ $B \rightarrow 1$

Input: 0 0 0 1 1 1

 $S \rightarrow \epsilon$ | AB | XB $Y \rightarrow AB \mid XB$ $X \rightarrow AY$ $A \rightarrow 0$ $B \rightarrow 1$

Input: 0 0 1 1 1

Intro. Algorithms & Models of Computation CS/ECE 374A, Fall 2024

14.5.2 Formal description of algorithm

Recursive solution

- 1. Input: $w = w_1w_2 \ldots w_n$
- 2. Assume r non-terminals in $G: R_1, \ldots, R_r$.
- 3. R_1 : Start symbol.
- 4. $f(\ell, s, b)$: TRUE $\iff w_s w_{s+1} \dots, w_{s+\ell-1} \in L(R_b)$.
	- $=$ Substring w starting at pos ℓ of length s is deriveable by R_b .
- 5. Recursive formula: $f(1,s,a)$ is $1 \iff \big(R_a \to w_s\big) \in \boldsymbol{G}.$
- 6. For $\ell > 1$: f (length, start pos, variable index)

$$
f(\ell,s,a) = \bigvee_{\mu=1}^{\ell-1} \bigvee_{(R_a \to R_\beta R_\gamma) \in G} \Big(f(\mu,s,\beta) \wedge f(\ell-\mu,s+\mu,\gamma)\Big)
$$

7. Output: $w \in L(G) \iff f(n, 1, 1) = 1$.

Recursive solution

- 1. Input: $w = w_1w_2...w_n$
- 2. Assume r non-terminals in $G: R_1, \ldots, R_r$.
- 3. R_1 : Start symbol.
- 4. $f(\ell, s, b)$: TRUE $\iff w_s w_{s+1} \dots, w_{s+\ell-1} \in L(R_b)$. $=$ Substring w starting at pos ℓ of length s is deriveable by R_b .
- 5. Recursive formula: $f(1,s,a)$ is $1 \iff \big(R_a \to w_s\big) \in G.$
- 6. For $\ell > 1$: f (length, start pos, variable index)

$$
f(\ell,s,a) = \bigvee_{\mu=1}^{\ell-1} \bigvee_{\left(R_a \to R_\beta R_\gamma\right) \in G} \left(f(\mu,s,\beta) \wedge f(\ell-\mu,s+\mu,\gamma) \right)
$$

7. Output: $w \in L(G) \iff f(n, 1, 1) = 1$.

Recursive solution

- 1. Input: $w = w_1w_2...w_n$
- 2. Assume r non-terminals in $G: R_1, \ldots, R_r$.
- 3. R_1 : Start symbol.
- 4. $f(\ell, s, b)$: TRUE $\iff w_s w_{s+1} \dots, w_{s+\ell-1} \in L(R_b)$. $=$ Substring w starting at pos ℓ of length s is deriveable by R_b .
- 5. Recursive formula: $f(1,s,a)$ is $1 \iff \big(R_a \to w_s\big) \in G.$
- 6. For $\ell > 1$: f (length, start pos, variable index)

$$
f(\ell,s,a) = \bigvee_{\mu=1}^{\ell-1} \bigvee_{\left(R_a \rightarrow R_\beta R_\gamma\right) \in G} \left(f(\mu,s,\beta) \wedge f(\ell-\mu,s+\mu,\gamma) \right)
$$

7. Output: $w \in L(G) \iff f(n, 1, 1) = 1$.

Analysis

- Assume $G = \{R_1, R_2, \ldots, R_r\}$ with start symbol R_1
	- \blacktriangleright f (length, start pos, variable index).
	- Number of subproblems: $O(rn^2)$
	- \blacktriangleright Space: $O(rn^2)$
	- \triangleright Time to evaluate a subproblem from previous ones: $O(|P|n)$ P is set of rules
	- \triangleright Total time: $O(|P|rn^3)$ which is polynomial in both $|w|$ and $|G|$. For fixed G the run time is cubic in input string length.
	- Running time can be improved to $O(n^3|P|)$.
	- ▶ Not practical for most programming languages. Most languages assume restricted forms of CFGs that enable more efficient parsing algorithms.

Analysis

- Assume $G = \{R_1, R_2, \ldots, R_r\}$ with start symbol R_1
	- \blacktriangleright f (length, start pos, variable index).
	- Number of subproblems: $O(rn^2)$
	- \blacktriangleright Space: $O(rn^2)$
	- \triangleright Time to evaluate a subproblem from previous ones: $O(|P|n)$ P is set of rules
	- \triangleright Total time: $O(|P|rn^3)$ which is polynomial in both $|w|$ and $|G|$. For fixed G the run time is cubic in input string length.
	- Running time can be improved to $O(n^3|P|)$.
	- ▶ Not practical for most programming languages. Most languages assume restricted forms of CFGs that enable more efficient parsing algorithms.

Analysis

- Assume $G = \{R_1, R_2, \ldots, R_r\}$ with start symbol R_1
	- \blacktriangleright f (length, start pos, variable index).
	- Number of subproblems: $O(rn^2)$
	- \blacktriangleright Space: $O(rn^2)$
	- \triangleright Time to evaluate a subproblem from previous ones: $O(|P|n)$ P is set of rules
	- \triangleright Total time: $O(|P|rn^3)$ which is polynomial in both $|w|$ and $|G|$. For fixed G the run time is cubic in input string length.
	- Running time can be improved to $O(n^3|P|)$.
	- Not practical for most programming languages. Most languages assume restricted forms of CFGs that enable more efficient parsing algorithms.

CYK Algorithm

```
Input string: X = x_1 \dots x_n.
Input grammar G: r nonterminal symbols R_1...R_r, R_1 start symbol.
P[n][n][r]: Array of booleans. Initialize all to FALSE
for s = 1 to n do
    for each unit production R_v \rightarrow x_s do
         P[1][s][v] \leftarrow \text{TRUE}for \ell = 2 to n do // Length of span
    for s = 1 to n - \ell + 1 do // Start of span
         for \mu = 1 to \ell - 1 do // Partition of span
              for all (R_a \rightarrow R_\beta R_\gamma) \in G do
                   if P[p][s][\beta] and P[\ell-\mu][s+\mu][\gamma] then
                        P[\ell][s][a] \leftarrow \text{TRUE}if P[n][1][1] is TRUE then
    return 'X is member of language''
else
    return 'X is not member of language''
```