
Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2024

Introduction to Dynamic
Programming
Lecture 13
Thursday, October 10, 2024

LATEXed: October 15, 2024 15:29

1 / 65

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2024

13.1
Recursion and Memoization
FLNAME:13.1.0.0 ZZZ:13.1.0.0 Recursion and Memoization

2 / 65

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2024

13.1.1
Fibonacci Numbers
FLNAME:13.1.1.0 ZZZ:13.1.1.0 Fibonacci Numbers

3 / 65

Fibonacci Numbers

Fibonacci numbers defined by recurrence:

F (n) = F (n − 1) + F (n − 2) and F (0) = 0,F (1) = 1.

These numbers have many interesting properties. A journal The Fibonacci Quarterly!

1. Binet’s formula: F (n) = φn−(1−φ)n√
5

≈ 1.618n−(−0.618)n√
5

≈ 1.618n
√

5

φ is the golden ratio (1 +
√
5)/2 ≃ 1.618.

2. limn→∞F (n + 1)/F (n) = φ

4 / 65

Fibonacci Numbers

Fibonacci numbers defined by recurrence:

F (n) = F (n − 1) + F (n − 2) and F (0) = 0,F (1) = 1.

These numbers have many interesting properties. A journal The Fibonacci Quarterly!

1. Binet’s formula: F (n) = φn−(1−φ)n√
5

≈ 1.618n−(−0.618)n√
5

≈ 1.618n
√

5

φ is the golden ratio (1 +
√
5)/2 ≃ 1.618.

2. limn→∞F (n + 1)/F (n) = φ

4 / 65

How many bits?

Consider the nth Fibonacci number F (n). Writing the number F (n) in base 2 requires

(A) Θ(n2) bits.

(B) Θ(n) bits.

(C) Θ(log n) bits.

(D) Θ(log log n) bits.

5 / 65

Recursive Algorithm for Fibonacci Numbers

Question: Given n, compute F (n).

Fib(n):
if (n = 0)

return 0

else if (n = 1)
return 1

else
return Fib(n − 1) + Fib(n − 2)

Running time? Let T (n) be the number of additions in Fib(n).

T (n) = T (n − 1) + T (n − 2) + 1 and T (0) = T (1) = 0

6 / 65

Recursive Algorithm for Fibonacci Numbers

Question: Given n, compute F (n).

Fib(n):
if (n = 0)

return 0

else if (n = 1)
return 1

else
return Fib(n − 1) + Fib(n − 2)

Running time? Let T (n) be the number of additions in Fib(n).

T (n) = T (n − 1) + T (n − 2) + 1 and T (0) = T (1) = 0

6 / 65

Recursive Algorithm for Fibonacci Numbers

Question: Given n, compute F (n).

Fib(n):
if (n = 0)

return 0

else if (n = 1)
return 1

else
return Fib(n − 1) + Fib(n − 2)

Running time? Let T (n) be the number of additions in Fib(n).

T (n) = T (n − 1) + T (n − 2) + 1 and T (0) = T (1) = 0

6 / 65

Recursive Algorithm for Fibonacci Numbers

Question: Given n, compute F (n).

Fib(n):
if (n = 0)

return 0

else if (n = 1)
return 1

else
return Fib(n − 1) + Fib(n − 2)

Running time? Let T (n) be the number of additions in Fib(n).

T (n) = T (n − 1) + T (n − 2) + 1 and T (0) = T (1) = 0

Roughly same as F (n): T (n) = Θ(φn).
The number of additions is exponential in n. Can we do better?

6 / 65

Recursion tree for the Recursive Fibonacci

10

7 / 65

Recursion tree for the Recursive Fibonacci

10 2

0 1

7 / 65

Recursion tree for the Recursive Fibonacci

10

1

3

2

0 1

2

0 1

7 / 65

Recursion tree for the Recursive Fibonacci

10

1

3

2

0 1

2

0 1

1

3

2

0 1

2

0 1

4

7 / 65

Recursion tree for the Recursive Fibonacci

1

3

2

0 1 1

3

2

0 1

2

0 1

4

1

3

2

0 1 1

3

2

0 1

2

0 1

4

5

7 / 65

Recursion tree for the Recursive Fibonacci

1

3

2

0 1

2

0 1

4

1

3

2

0 1 1

3

2

0 1

2

0 1

4

5

1

3

2

0 1

2

0 1

4

1

3

2

0 1 1

3

2

0 1

2

0 1

4

5

6

7 / 65

Recursion tree for the Recursive Fibonacci

1

3

2

0 1 1

3

2

0 1

2

0 1

4

5

1

3

2

0 1

2

0 1

4

1

3

2

0 1 1

3

2

0 1

2

0 1

4

5

6

1

3

2

0 1 1

3

2

0 1

2

0 1

4

5

1

3

2

0 1

2

0 1

4

1

3

2

0 1 1

3

2

0 1

2

0 1

4

5

6

7

7 / 65

An iterative algorithm for Fibonacci numbers

FibIter(n):
if (n = 0) then

return 0

if (n = 1) then
return 1

F [0] = 0
F [1] = 1
for i = 2 to n do

F [i] = F [i − 1] + F [i − 2]
return F [n]

What is the running time of the algorithm? O(n) additions.

8 / 65

An iterative algorithm for Fibonacci numbers

FibIter(n):
if (n = 0) then

return 0

if (n = 1) then
return 1

F [0] = 0
F [1] = 1
for i = 2 to n do

F [i] = F [i − 1] + F [i − 2]
return F [n]

What is the running time of the algorithm? O(n) additions.

8 / 65

An iterative algorithm for Fibonacci numbers

FibIter(n):
if (n = 0) then

return 0

if (n = 1) then
return 1

F [0] = 0
F [1] = 1
for i = 2 to n do

F [i] = F [i − 1] + F [i − 2]
return F [n]

What is the running time of the algorithm? O(n) additions.

8 / 65

What is the difference?

1. Recursive algorithm is computing the same numbers again and again.

2. Iterative algorithm is storing computed values and building bottom up the final
value. Memoization.

Dynamic Programming:

Finding a recursion that can be effectively/efficiently memoized.

Leads to polynomial time algorithm if number of sub-problems is polynomial in input
size.

9 / 65

What is the difference?

1. Recursive algorithm is computing the same numbers again and again.

2. Iterative algorithm is storing computed values and building bottom up the final
value. Memoization.

Dynamic Programming:

Finding a recursion that can be effectively/efficiently memoized.

Leads to polynomial time algorithm if number of sub-problems is polynomial in input
size.

9 / 65

What is the difference?

1. Recursive algorithm is computing the same numbers again and again.

2. Iterative algorithm is storing computed values and building bottom up the final
value. Memoization.

Dynamic Programming:

Finding a recursion that can be effectively/efficiently memoized.

Leads to polynomial time algorithm if number of sub-problems is polynomial in input
size.

9 / 65

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2024

13.1.2
Automatic/implicit memoization
FLNAME:13.1.2.0 ZZZ:13.1.2.0 Automatic/implicit memoization

10 / 65

Automatic Memoization

Can we convert recursive algorithm into an efficient algorithm without explicitly doing
an iterative algorithm?

Fib(n):
if (n = 0)

return 0
if (n = 1)

return 1
if (Fib(n) was previously computed)

return stored value of Fib(n)

else
return Fib(n − 1) + Fib(n − 2)

How do we keep track of previously computed values?
Two methods: explicitly and implicitly (via data structure)

11 / 65

Automatic Memoization

Can we convert recursive algorithm into an efficient algorithm without explicitly doing
an iterative algorithm?

Fib(n):
if (n = 0)

return 0
if (n = 1)

return 1
if (Fib(n) was previously computed)

return stored value of Fib(n)

else
return Fib(n − 1) + Fib(n − 2)

How do we keep track of previously computed values?
Two methods: explicitly and implicitly (via data structure)

11 / 65

Automatic Memoization

Can we convert recursive algorithm into an efficient algorithm without explicitly doing
an iterative algorithm?

Fib(n):
if (n = 0)

return 0
if (n = 1)

return 1
if (Fib(n) was previously computed)

return stored value of Fib(n)

else
return Fib(n − 1) + Fib(n − 2)

How do we keep track of previously computed values?
Two methods: explicitly and implicitly (via data structure)

11 / 65

Automatic Memoization

Can we convert recursive algorithm into an efficient algorithm without explicitly doing
an iterative algorithm?

Fib(n):
if (n = 0)

return 0
if (n = 1)

return 1
if (Fib(n) was previously computed)

return stored value of Fib(n)

else
return Fib(n − 1) + Fib(n − 2)

How do we keep track of previously computed values?
Two methods: explicitly and implicitly (via data structure)

11 / 65

Automatic memoization in python3...

Running it:

12 / 65

Automatic implicit memoization

Initialize a (dynamic) dictionary data structure D to empty

Fib(n):
if (n = 0)

return 0

if (n = 1)
return 1

if (n is already in D)

return value stored with n in D
val ⇐ Fib(n − 1) + Fib(n − 2)
Store (n, val) in D
return val

Use hash-table or a map to remember which values were already computed.

13 / 65

Explicit memoization (not automatic)

1. Initialize table/array M of size n: M[i] = −1 for i = 0, . . . , n.
2. Resulting code:

Fib(n):
if (n = 0)

return 0

if (n = 1)
return 1

if (M[n] ̸= −1) // M[n]: stored value of Fib(n)
return M[n]

M[n] ⇐ Fib(n − 1) + Fib(n − 2)
return M[n]

3. Need to know upfront the number of subproblems to allocate memory.

14 / 65

Explicit memoization (not automatic)

1. Initialize table/array M of size n: M[i] = −1 for i = 0, . . . , n.
2. Resulting code:

Fib(n):
if (n = 0)

return 0

if (n = 1)
return 1

if (M[n] ̸= −1) // M[n]: stored value of Fib(n)
return M[n]

M[n] ⇐ Fib(n − 1) + Fib(n − 2)
return M[n]

3. Need to know upfront the number of subproblems to allocate memory.

14 / 65

Explicit memoization (not automatic)

1. Initialize table/array M of size n: M[i] = −1 for i = 0, . . . , n.
2. Resulting code:

Fib(n):
if (n = 0)

return 0

if (n = 1)
return 1

if (M[n] ̸= −1) // M[n]: stored value of Fib(n)
return M[n]

M[n] ⇐ Fib(n − 1) + Fib(n − 2)
return M[n]

3. Need to know upfront the number of subproblems to allocate memory.

14 / 65

Recursion tree for the memoized Fib...

1

3

2

0 1 1

3

2

0 1

2

0 1

4

1

3

2

0 1

2

0 10 1 1 2

0 1

1

3

0

2

1

5

2 3

4

7

4 5

6

15 / 65

Recursion tree for the memoized Fib...

1

3

2

0 1 1

3

2

0 1

2

0 1

4

1

3

2

0 1

2

0 10 1 1 2

0 1

1

3

0

2

1

5

2 3

4

7

4 5

6

15 / 65

Recursion tree for the memoized Fib...

1

3

2

0 1 1

3

2

0 1

2

0 1

4

1

3

2

0 1

2

0 10 1 1 2

0 1

1

3

0

2

1

5

2 3

4

7

4 5

6

7

15 / 65

Recursion tree for the memoized Fib...

1

3

2

0 1 1

3

2

0 1

2

0 1

4

1

3

2

0 1

2

0 10 1 1 2

0 1

1

3

0

2

1

5

2 3

4

7

4 5

65

7

15 / 65

Recursion tree for the memoized Fib...

1

3

2

0 1 1

3

2

0 1

2

0 1

4

1

3

2

0 1

2

0 10 1 1 2

0 1

1

3

0

2

1

5

2 3

4

7

4 5

6

3

5

7

15 / 65

Recursion tree for the memoized Fib...

1

3

2

0 1 1

3

2

0 1

2

0 1

4

1

3

2

0 1

2

0 10 1 1 2

0 1

1

3

0

2

1

5

2 3

4

7

4 5

6

1

3

5

7

15 / 65

Recursion tree for the memoized Fib...

1

3

2

0 1 1

3

2

0 1

2

0 1

4

1

3

2

0 1

2

0 10 1 1 2

0 1

1

3

0

2

1

5

2 3

4

7

4 5

6

1

3

2

5

7

15 / 65

Recursion tree for the memoized Fib...

1

3

2

0 1 1

3

2

0 1

2

0 1

4

1

3

2

0 1

2

0 10 1 1 2

0 1

1

3

0

2

1

5

2 3

4

7

4 5

6

1

3

0

2

5

7

15 / 65

Recursion tree for the memoized Fib...

1

3

2

0 1 1

3

2

0 1

2

0 1

4

1

3

2

0 1

2

0 10 1 1 2

0 1

1

3

0

2

1

5

2 3

4

7

4 5

6

1

3

0

2

1

5

7

15 / 65

Recursion tree for the memoized Fib...

1

3

2

0 1 1

3

2

0 1

2

0 1

4

1

3

2

0 1

2

0 10 1 1 2

0 1

1

3

0

2

1

5

2 3

4

7

4 5

6

1

3

0

2

1

5

4

7

15 / 65

Recursion tree for the memoized Fib...

1

3

2

0 1 1

3

2

0 1

2

0 1

4

1

3

2

0 1

2

0 10 1 1 2

0 1

1

3

0

2

1

5

2 3

4

7

4 5

6

1

3

0

2

1

5

2

4

7

15 / 65

Recursion tree for the memoized Fib...

1

3

2

0 1 1

3

2

0 1

2

0 1

4

1

3

2

0 1

2

0 10 1 1 2

0 1

1

3

0

2

1

5

2 3

4

7

4 5

6

1

3

0

2

1

5

2 3

4

7

15 / 65

Recursion tree for the memoized Fib...

1

3

2

0 1 1

3

2

0 1

2

0 1

4

1

3

2

0 1

2

0 10 1 1 2

0 1

1

3

0

2

1

5

2 3

4

7

4 5

6

1

3

0

2

1

5

2 3

4

7

6

15 / 65

Recursion tree for the memoized Fib...

1

3

2

0 1 1

3

2

0 1

2

0 1

4

1

3

2

0 1

2

0 10 1 1 2

0 1

1

3

0

2

1

5

2 3

4

7

4 5

6

1

3

0

2

1

5

2 3

4

7

4

6

15 / 65

Recursion tree for the memoized Fib...

1

3

2

0 1 1

3

2

0 1

2

0 1

4

1

3

2

0 1

2

0 10 1 1 2

0 1

1

3

0

2

1

5

2 3

4

7

4 5

6

1

3

0

2

1

5

2 3

4

7

4 5

6

15 / 65

Automatic Memoization

1. Recursive version:

f (x1, x2, . . . , xd):
CODE

2. Recursive version with memoization:

g(x1, x2, . . . , xd):
if f already computed for (x1, x2, . . . , xd) then

return value already computed

NEW CODE

3. NEW CODE:

3.1 Replaces any “return α” with
3.2 Remember “f (x1, . . . , xd) = α”; return α.

16 / 65

Automatic Memoization

1. Recursive version:

f (x1, x2, . . . , xd):
CODE

2. Recursive version with memoization:

g(x1, x2, . . . , xd):
if f already computed for (x1, x2, . . . , xd) then

return value already computed

NEW CODE

3. NEW CODE:

3.1 Replaces any “return α” with
3.2 Remember “f (x1, . . . , xd) = α”; return α.

16 / 65

Automatic Memoization

1. Recursive version:

f (x1, x2, . . . , xd):
CODE

2. Recursive version with memoization:

g(x1, x2, . . . , xd):
if f already computed for (x1, x2, . . . , xd) then

return value already computed

NEW CODE

3. NEW CODE:

3.1 Replaces any “return α” with
3.2 Remember “f (x1, . . . , xd) = α”; return α.

16 / 65

Explicit vs Implicit Memoization

1. Explicit memoization (on the way to iterative algorithm) preferred:

1.1 analyze problem ahead of time
1.2 Allows for efficient memory allocation and access.

2. Implicit (automatic) memoization:

2.1 problem structure or algorithm is not well understood.
2.2 Need to pay overhead of data-structure.
2.3 Functional languages (e.g., LISP) automatically do memoization, usually via

hashing based dictionaries.

17 / 65

Explicit vs Implicit Memoization

1. Explicit memoization (on the way to iterative algorithm) preferred:

1.1 analyze problem ahead of time
1.2 Allows for efficient memory allocation and access.

2. Implicit (automatic) memoization:

2.1 problem structure or algorithm is not well understood.
2.2 Need to pay overhead of data-structure.
2.3 Functional languages (e.g., LISP) automatically do memoization, usually via

hashing based dictionaries.

17 / 65

Explicit vs Implicit Memoization

1. Explicit memoization (on the way to iterative algorithm) preferred:

1.1 analyze problem ahead of time
1.2 Allows for efficient memory allocation and access.

2. Implicit (automatic) memoization:

2.1 problem structure or algorithm is not well understood.
2.2 Need to pay overhead of data-structure.
2.3 Functional languages (e.g., LISP) automatically do memoization, usually via

hashing based dictionaries.

17 / 65

Explicit vs Implicit Memoization

1. Explicit memoization (on the way to iterative algorithm) preferred:

1.1 analyze problem ahead of time
1.2 Allows for efficient memory allocation and access.

2. Implicit (automatic) memoization:

2.1 problem structure or algorithm is not well understood.
2.2 Need to pay overhead of data-structure.
2.3 Functional languages (e.g., LISP) automatically do memoization, usually via

hashing based dictionaries.

17 / 65

Explicit vs Implicit Memoization

1. Explicit memoization (on the way to iterative algorithm) preferred:

1.1 analyze problem ahead of time
1.2 Allows for efficient memory allocation and access.

2. Implicit (automatic) memoization:

2.1 problem structure or algorithm is not well understood.
2.2 Need to pay overhead of data-structure.
2.3 Functional languages (e.g., LISP) automatically do memoization, usually via

hashing based dictionaries.

17 / 65

Explicit/implicit memoization for Fibonacci

Init: M[i] = −1, i = 0, . . . , n.

Fib(k):
if (k = 0)

return 0

if (k = 1)
return 1

if (M[k] ̸= −1)
return M[n]

M[k] ⇐ Fib(k − 1) + Fib(k − 2)
return M[k]

Explicit memoization

Init: Init dictionary D

Fib(n):
if (n = 0)

return 0

if (n = 1)
return 1

if (n is already in D)

return value stored with n in D
val ⇐ Fib(n − 1) + Fib(n − 2)

Store (n, val) in D
return val

Implicit memoization

18 / 65

How many distinct calls?

binom(t, b) // computes
(t
b

)
if t = 0 then return 0

if b = t or b = 0 then return 1

return binom(t − 1, b − 1) + binom(t − 1, b).

How many distinct calls does binom(n, ⌊n/2⌋) makes during its recursive execution?

(A) Θ(1).

(B) Θ(n).
(C) Θ(n log n).
(D) Θ(n2).

(E) Θ
((n

⌊n/2⌋

))
.

That is, if the algorithm calls recursively binom(17, 5) about 5000 times during the
computation, we count this is a single distinct call.

19 / 65

Running time of memoized binom?

D: Initially an empty dictionary.

binomM(t, b) // computes
(t
b

)
if b = t then return 1

if b = 0 then return 0

if D[t, b] is defined then return D[t, b]
D[t, b] ⇐ binomM(t − 1, b − 1) + binomM(t − 1, b).
return D[t, b]

Assuming that every arithmetic operation takes O(1) time, What is the running time of
binomM(n, ⌊n/2⌋)?
(A) Θ(1).

(B) Θ(n).
(C) Θ(n2).

(D) Θ
(
n3

)
.

(E) Θ
((n

⌊n/2⌋

))
.

20 / 65

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2024

13.2
Dynamic programming
FLNAME:13.2.0.0 ZZZ:13.2.0.0 Dynamic programming

21 / 65

Removing the recursion by filling the table in the right order
“Dynamic programming”

Fib(n):
if (n = 0)

return 0

if (n = 1)
return 1

if (M[n] ̸= −1)
return M[n]

M[n] ⇐ Fib(n − 1) + Fib(n − 2)
return M[n]

FibIter(n):
if (n = 0) then

return 0

if (n = 1) then
return 1

F [0] = 0
F [1] = 1
for i = 2 to n do

F [i] = F [i − 1] + F [i − 2]
return F [n]

22 / 65

Dynamic programming: Saving space!

Saving space. Do we need an array of n numbers? Not really.

FibIter(n):
if (n = 0) then

return 0

if (n = 1) then
return 1

F [0] = 0
F [1] = 1
for i = 2 to n do

F [i] = F [i − 1] + F [i − 2]
return F [n]

FibIter(n):
if (n = 0) then

return 0

if (n = 1) then
return 1

prev2 = 0
prev1 = 1
for i = 2 to n do

temp = prev1 + prev2
prev2 = prev1
prev1 = temp

return prev1

23 / 65

Dynamic programming – quick review

Dynamic Programming is smart recursion
+ explicit memoization
+ filling the table in right order
+ removing recursion.

24 / 65

Dynamic programming – quick review

Dynamic Programming is smart recursion
+ explicit memoization
+ filling the table in right order
+ removing recursion.

24 / 65

Dynamic programming – quick review

Dynamic Programming is smart recursion
+ explicit memoization
+ filling the table in right order
+ removing recursion.

24 / 65

Analyzing memoized recursive function

Question: Suppose we have a recursive program foo(x) that takes an input x .
▶ On input of size n the number of distinct sub-problems that foo(x) generates is at

most A(n)
▶ foo(x) spends at most B(n) time not counting the time for its recursive calls.

Suppose we memoize the recursion.
Assumption: Storing and retrieving solutions to pre-computed problems takes O(1)
time.
Q: What is an upper bound on the running time of memoized version of foo(x) if
|x| = n? O(A(n)B(n)).

25 / 65

Analyzing memoized recursive function

Question: Suppose we have a recursive program foo(x) that takes an input x .
▶ On input of size n the number of distinct sub-problems that foo(x) generates is at

most A(n)
▶ foo(x) spends at most B(n) time not counting the time for its recursive calls.

Suppose we memoize the recursion.
Assumption: Storing and retrieving solutions to pre-computed problems takes O(1)
time.
Q: What is an upper bound on the running time of memoized version of foo(x) if
|x| = n? O(A(n)B(n)).

25 / 65

Analyzing memoized recursive function

Question: Suppose we have a recursive program foo(x) that takes an input x .
▶ On input of size n the number of distinct sub-problems that foo(x) generates is at

most A(n)
▶ foo(x) spends at most B(n) time not counting the time for its recursive calls.

Suppose we memoize the recursion.
Assumption: Storing and retrieving solutions to pre-computed problems takes O(1)
time.
Q: What is an upper bound on the running time of memoized version of foo(x) if
|x| = n? O(A(n)B(n)).

25 / 65

Analyzing memoized recursive function

Question: Suppose we have a recursive program foo(x) that takes an input x .
▶ On input of size n the number of distinct sub-problems that foo(x) generates is at

most A(n)
▶ foo(x) spends at most B(n) time not counting the time for its recursive calls.

Suppose we memoize the recursion.
Assumption: Storing and retrieving solutions to pre-computed problems takes O(1)
time.
Q: What is an upper bound on the running time of memoized version of foo(x) if
|x| = n? O(A(n)B(n)).

25 / 65

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2024

13.2.1
Fibonacci numbers are big – corrected
running time analysis
FLNAME:13.2.1.0 ZZZ:13.2.1.0 Fibonacci numbers are big – corrected running time analysis

26 / 65

Back to Fibonacci Numbers

FibIter(n):
if (n = 0) then

return 0

if (n = 1) then
return 1

prev2 = 0
prev1 = 1
for i = 2 to n do

temp = prev1 + prev2
prev2 = prev1
prev1 = temp

return prev1

Is the iterative algorithm a polynomial
time algorithm? Does it take O(n)
time?

1. input is n and hence input size is
Θ(log n)

2. output is F (n) and output size is
Θ(n). Why?

3. Hence output size is exponential in
input size so no polynomial time
algorithm possible!

4. Running time of iterative
algorithm: Θ(n) additions but
number sizes are O(n) bits long!
Hence total time is O(n2), in fact
Θ(n2). Why?

27 / 65

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2024

13.3
Checking if a string is in L∗

FLNAME:13.3.0.0 ZZZ:13.3.0.0 Checking if a string is in L∗

28 / 65

Problem

Input A string w ∈ Σ∗ and access to a language L ⊆ Σ∗ via function
IsInL(string x) that decides whether x is in L

Goal Decide if w ∈ L∗ using IsInL(string x) as a black box sub-routine

29 / 65

Problem

Input A string w ∈ Σ∗ and access to a language L ⊆ Σ∗ via function
IsInL(string x) that decides whether x is in L

Goal Decide if w ∈ L* using IsInL(string x) as a black box sub-routine

29 / 65

Problem

Input A string w ∈ Σ∗ and access to a language L ⊆ Σ∗ via function
IsInL(string x) that decides whether x is in L

Goal Decide if w ∈ L*using IsInL(string x) as a black box sub-routine

29 / 65

Problem

Input A string w ∈ Σ∗ and access to a language L ⊆ Σ∗ via function
IsInL(string x) that decides whether x is in L

Goal Decide if w ∈ L*using IsInL(string x) as a black box
sub-routine

29 / 65

Problem

Input A string w ∈ Σ∗ and access to a language L ⊆ Σ∗ via function
IsInL(string x) that decides whether x is in L

Goal Decide if w ∈ L*using
IsInL(string x) as a black box sub-routine

29 / 65

Problem

Input A string w ∈ Σ∗ and access to a language L ⊆ Σ∗ via function
IsInL(string x) that decides whether x is in L

Goal Decide if w ∈ L∗ using IsInL(string x) as a black box sub-routine

29 / 65

Problem

Input A string w ∈ Σ∗ and access to a language L ⊆ Σ∗ via function
IsInL(string x) that decides whether x is in L

Goal Decide if using IsInL(string x) as a black box sub-routine

Example 13.1.
Suppose L is English and we have a procedure to check whether a string/word is in the
English dictionary.

▶ Is the string “isthisanenglishsentence” in English∗?

▶ Is “stampstamp” in English∗?

▶ Is “zibzzzad” in English∗?

29 / 65

Recursive Solution

When is w ∈ L∗?

w ∈ L∗ ⇐⇒ w ∈ L or if w = uv where u ∈ L∗ and v ∈ L, |v | ≥ 1.

Assume w is stored in array A[1..n]

IsInL∗(A[1..n]):
If (n = 0) Output YES

If (IsInL(A[1..n]))
Output YES

Else

For (i = 1 to n − 1) do

If IsInL∗(A[1..i]) and IsInL(A[i + 1..n])
Output YES

Output NO

30 / 65

Recursive Solution

When is w ∈ L∗?

w ∈ L∗ ⇐⇒ w ∈ L or if w = uv where u ∈ L∗ and v ∈ L, |v | ≥ 1.

Assume w is stored in array A[1..n]

IsInL∗(A[1..n]):
If (n = 0) Output YES

If (IsInL(A[1..n]))
Output YES

Else

For (i = 1 to n − 1) do

If IsInL∗(A[1..i]) and IsInL(A[i + 1..n])
Output YES

Output NO

30 / 65

Recursive Solution

When is w ∈ L∗?

w ∈ L∗ ⇐⇒ w ∈ L or if w = uv where u ∈ L∗ and v ∈ L, |v | ≥ 1.

Assume w is stored in array A[1..n]

IsInL∗(A[1..n]):
If (n = 0) Output YES

If (IsInL(A[1..n]))
Output YES

Else

For (i = 1 to n − 1) do

If IsInL∗(A[1..i]) and IsInL(A[i + 1..n])
Output YES

Output NO

30 / 65

Recursive Solution

Assume w is stored in array A[1..n]

IsInL∗(A[1..n]):
If (n = 0) Output YES

If (IsInL(A[1..n]))
Output YES

Else

For (i = 1 to n − 1) do

If IsInL∗(A[1..i]) and IsInL(A[i + 1..n])
Output YES

Output NO

Question: How many distinct sub-problems does IsInL∗(A[1..n]) generate? O(n)

31 / 65

Recursive Solution

Assume w is stored in array A[1..n]

IsInL∗(A[1..n]):
If (n = 0) Output YES

If (IsInL(A[1..n]))
Output YES

Else

For (i = 1 to n − 1) do

If IsInL∗(A[1..i]) and IsInL(A[i + 1..n])
Output YES

Output NO

Question: How many distinct sub-problems does IsInL∗(A[1..n]) generate? O(n)

31 / 65

Recursive Solution

Assume w is stored in array A[1..n]

IsInL∗(A[1..n]):
If (n = 0) Output YES

If (IsInL(A[1..n]))
Output YES

Else

For (i = 1 to n − 1) do

If IsInL∗(A[1..i]) and IsInL(A[i + 1..n])
Output YES

Output NO

Question: How many distinct sub-problems does IsInL∗(A[1..n]) generate? O(n)

31 / 65

Example

Consider string samiam

32 / 65

Naming subproblems and recursive equation

After seeing that number of subproblems is O(n) we name them to help us understand
the structure better.

ISL∗(i): a boolean which is 1 if A[1..i] is in L∗, 0 otherwise

Base case: ISL∗(0) = 1 interpreting A[1..0] as ϵ
Recursive relation:

▶ ISL∗(i) = 1 if
∃j , 0 ≤ j < i s.t ISL∗(j) and IsInL(A[j + 1..i])

▶ ISL∗(i) = 0 otherwise

Output: ISL∗(n)

33 / 65

Naming subproblems and recursive equation

After seeing that number of subproblems is O(n) we name them to help us understand
the structure better.

ISL∗(i): a boolean which is 1 if A[1..i] is in L∗, 0 otherwise

Base case: ISL∗(0) = 1 interpreting A[1..0] as ϵ
Recursive relation:

▶ ISL∗(i) = 1 if
∃j , 0 ≤ j < i s.t ISL∗(j) and IsInL(A[j + 1..i])

▶ ISL∗(i) = 0 otherwise

Output: ISL∗(n)

33 / 65

Naming subproblems and recursive equation

After seeing that number of subproblems is O(n) we name them to help us understand
the structure better.

ISL∗(i): a boolean which is 1 if A[1..i] is in L∗, 0 otherwise

Base case: ISL∗(0) = 1 interpreting A[1..0] as ϵ
Recursive relation:

▶ ISL∗(i) = 1 if
∃j , 0 ≤ j < i s.t ISL∗(j) and IsInL(A[j + 1..i])

▶ ISL∗(i) = 0 otherwise

Output: ISL∗(n)

33 / 65

Removing recursion to obtain iterative algorithm

Typically, after finding a dynamic programming recursion, we often convert the recursive
algorithm into an iterative algorithm via explicit memoization and bottom up
computation.

Why? Mainly for further optimization of running time and space.

How?

▶ First, allocate a data structure (usually an array or a multi-dimensional array that
can hold values for each of the subproblems)

▶ Figure out a way to order the computation of the sub-problems starting from the
base case.

Caveat: Dynamic programming is not about filling tables. It is about finding a
smart recursion. First, find the correct recursion.

34 / 65

Removing recursion to obtain iterative algorithm

Typically, after finding a dynamic programming recursion, we often convert the recursive
algorithm into an iterative algorithm via explicit memoization and bottom up
computation.

Why? Mainly for further optimization of running time and space.

How?

▶ First, allocate a data structure (usually an array or a multi-dimensional array that
can hold values for each of the subproblems)

▶ Figure out a way to order the computation of the sub-problems starting from the
base case.

Caveat: Dynamic programming is not about filling tables. It is about finding a
smart recursion. First, find the correct recursion.

34 / 65

Removing recursion to obtain iterative algorithm

Typically, after finding a dynamic programming recursion, we often convert the recursive
algorithm into an iterative algorithm via explicit memoization and bottom up
computation.

Why? Mainly for further optimization of running time and space.

How?

▶ First, allocate a data structure (usually an array or a multi-dimensional array that
can hold values for each of the subproblems)

▶ Figure out a way to order the computation of the sub-problems starting from the
base case.

Caveat: Dynamic programming is not about filling tables. It is about finding a
smart recursion. First, find the correct recursion.

34 / 65

Removing recursion to obtain iterative algorithm

Typically, after finding a dynamic programming recursion, we often convert the recursive
algorithm into an iterative algorithm via explicit memoization and bottom up
computation.

Why? Mainly for further optimization of running time and space.

How?

▶ First, allocate a data structure (usually an array or a multi-dimensional array that
can hold values for each of the subproblems)

▶ Figure out a way to order the computation of the sub-problems starting from the
base case.

Caveat: Dynamic programming is not about filling tables. It is about finding a
smart recursion. First, find the correct recursion.

34 / 65

Iterative Algorithm

IsStringinLstar-Iterative(A[1..n]):
boolean ISL∗[0..(n + 1)]
ISL∗[0] = TRUE
for i = 1 to n do

for j = 0 to i − 1 do
if (ISL∗[j] and IsInL(A[j + 1..i]))

ISL∗[i] = TRUE
break

if (ISL∗[n] = 1) Output YES

else Output NO

▶ Running time: O(n2) (assuming call to IsInL is O(1) time)

▶ Space: O(n)

35 / 65

Iterative Algorithm

IsStringinLstar-Iterative(A[1..n]):
boolean ISL∗[0..(n + 1)]
ISL∗[0] = TRUE
for i = 1 to n do

for j = 0 to i − 1 do
if (ISL∗[j] and IsInL(A[j + 1..i]))

ISL∗[i] = TRUE
break

if (ISL∗[n] = 1) Output YES

else Output NO

▶ Running time: O(n2) (assuming call to IsInL is O(1) time)

▶ Space: O(n)

35 / 65

Iterative Algorithm

IsStringinLstar-Iterative(A[1..n]):
boolean ISL∗[0..(n + 1)]
ISL∗[0] = TRUE
for i = 1 to n do

for j = 0 to i − 1 do
if (ISL∗[j] and IsInL(A[j + 1..i]))

ISL∗[i] = TRUE
break

if (ISL∗[n] = 1) Output YES

else Output NO

▶ Running time: O(n2) (assuming call to IsInL is O(1) time)

▶ Space: O(n)

35 / 65

Iterative Algorithm

IsStringinLstar-Iterative(A[1..n]):
boolean ISL∗[0..(n + 1)]
ISL∗[0] = TRUE
for i = 1 to n do

for j = 0 to i − 1 do
if (ISL∗[j] and IsInL(A[j + 1..i]))

ISL∗[i] = TRUE
break

if (ISL∗[n] = 1) Output YES

else Output NO

▶ Running time: O(n2) (assuming call to IsInL is O(1) time)

▶ Space: O(n)

35 / 65

Iterative Algorithm

IsStringinLstar-Iterative(A[1..n]):
boolean ISL∗[0..(n + 1)]
ISL∗[0] = TRUE
for i = 1 to n do

for j = 0 to i − 1 do
if (ISL∗[j] and IsInL(A[j + 1..i]))

ISL∗[i] = TRUE
break

if (ISL∗[n] = 1) Output YES

else Output NO

▶ Running time: O(n2) (assuming call to IsInL is O(1) time)

▶ Space: O(n)

35 / 65

Example

Consider string samiam

36 / 65

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2024

13.4
Longest Increasing Subsequence Revisited
FLNAME:13.4.0.0 ZZZ:13.4.0.0 Longest Increasing Subsequence Revisited

37 / 65

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2024

13.4.1
Longest Increasing Subsequence
FLNAME:13.4.1.0 ZZZ:13.4.1.0 Longest Increasing Subsequence

38 / 65

Sequences

Definition 13.1.
Sequence: an ordered list a1, a2, . . . , an. Length of a sequence is number of elements
in the list.

Definition 13.2.
ai1, . . . , aik is a subsequence of a1, . . . , an if 1 ≤ i1 < i2 < . . . < ik ≤ n.

Definition 13.3.
A sequence is increasing if a1 < a2 < . . . < an. It is non-decreasing if
a1 ≤ a2 ≤ . . . ≤ an. Similarly decreasing and non-increasing.

39 / 65

Sequences
Example...

Example 13.4.
1. Sequence: 6, 3, 5, 2, 7, 8, 1, 9

2. Subsequence of above sequence: 5, 2, 1

3. Increasing sequence: 3, 5, 9, 17, 54

4. Decreasing sequence: 34, 21, 7, 5, 1

5. Increasing subsequence of the first sequence: 2, 7, 9.

40 / 65

Longest Increasing Subsequence Problem

Input A sequence of numbers a1, a2, . . . , an

Goal Find an increasing subsequence ai1, ai2, . . . , aik of maximum length

Example 13.5.
1. Sequence: 6, 3, 5, 2, 7, 8, 1

2. Increasing subsequences: 6, 7, 8 and 3, 5, 7, 8 and 2, 7 etc

3. Longest increasing subsequence: 3, 5, 7, 8

41 / 65

Longest Increasing Subsequence Problem

Input A sequence of numbers a1, a2, . . . , an

Goal Find an increasing subsequence ai1, ai2, . . . , aik of maximum length

Example 13.5.
1. Sequence: 6, 3, 5, 2, 7, 8, 1

2. Increasing subsequences: 6, 7, 8 and 3, 5, 7, 8 and 2, 7 etc

3. Longest increasing subsequence: 3, 5, 7, 8

41 / 65

Recursive Approach: Take 1
LIS: Longest increasing subsequence

Can we find a recursive algorithm for LIS?

LIS(A[1..n]):
1. Case 1: Does not contain A[n] in which case

LIS(A[1..n]) = LIS(A[1..(n − 1)])

2. Case 2: contains A[n] in which case LIS(A[1..n]) is not so clear.

Observation 13.6.
For second case we want to find a subsequence in A[1..(n − 1)] that is restricted to
numbers less than A[n]. This suggests that a more general problem is
LIS smaller(A[1..n], x) which gives the longest increasing subsequence in A where
each number in the sequence is less than x .

42 / 65

Recursive Approach: Take 1
LIS: Longest increasing subsequence

Can we find a recursive algorithm for LIS?

LIS(A[1..n]):
1. Case 1: Does not contain A[n] in which case

LIS(A[1..n]) = LIS(A[1..(n − 1)])

2. Case 2: contains A[n] in which case LIS(A[1..n]) is not so clear.

Observation 13.6.
For second case we want to find a subsequence in A[1..(n − 1)] that is restricted to
numbers less than A[n]. This suggests that a more general problem is
LIS smaller(A[1..n], x) which gives the longest increasing subsequence in A where
each number in the sequence is less than x .

42 / 65

Recursive Approach

LIS(A[1..n]): the length of longest increasing subsequence in A

LIS smaller(A[1..n], x): length of longest increasing subsequence in A[1..n] with all
numbers in subsequence less than x

LIS smaller(A[1..i], x):
if i = 0 then return 0
m = LIS smaller(A[1..i − 1], x)
if A[i] < x then

m = max(m, 1 + LIS smaller(A[1..i − 1],A[i]))
Output m

LIS(A[1..n]):
return LIS smaller(A[1..n],∞)

43 / 65

Recursive Approach

LIS smaller(A[1..i], x):
if i = 0 then return 0
m = LIS smaller(A[1..i − 1], x)
if A[i] < x then

m = max(m, 1 + LIS smaller(A[1..i − 1],A[i]))
Output m

LIS(A[1..n]):
return LIS smaller(A[1..n],∞)

▶ How many distinct sub-problems will LIS smaller(A[1..n],∞) generate? O(n2)

▶ What is the running time if we memoize recursion? O(n2) since each call takes
O(1) time to assemble the answers from to recursive calls and no other
computation.

▶ How much space for memoization? O(n2)

44 / 65

Recursive Approach

LIS smaller(A[1..i], x):
if i = 0 then return 0
m = LIS smaller(A[1..i − 1], x)
if A[i] < x then

m = max(m, 1 + LIS smaller(A[1..i − 1],A[i]))
Output m

LIS(A[1..n]):
return LIS smaller(A[1..n],∞)

▶ How many distinct sub-problems will LIS smaller(A[1..n],∞) generate? O(n2)

▶ What is the running time if we memoize recursion? O(n2) since each call takes
O(1) time to assemble the answers from to recursive calls and no other
computation.

▶ How much space for memoization? O(n2)

44 / 65

Recursive Approach

LIS smaller(A[1..i], x):
if i = 0 then return 0
m = LIS smaller(A[1..i − 1], x)
if A[i] < x then

m = max(m, 1 + LIS smaller(A[1..i − 1],A[i]))
Output m

LIS(A[1..n]):
return LIS smaller(A[1..n],∞)

▶ How many distinct sub-problems will LIS smaller(A[1..n],∞) generate? O(n2)

▶ What is the running time if we memoize recursion? O(n2) since each call takes
O(1) time to assemble the answers from to recursive calls and no other
computation.

▶ How much space for memoization? O(n2)

44 / 65

Recursive Approach

LIS smaller(A[1..i], x):
if i = 0 then return 0
m = LIS smaller(A[1..i − 1], x)
if A[i] < x then

m = max(m, 1 + LIS smaller(A[1..i − 1],A[i]))
Output m

LIS(A[1..n]):
return LIS smaller(A[1..n],∞)

▶ How many distinct sub-problems will LIS smaller(A[1..n],∞) generate? O(n2)

▶ What is the running time if we memoize recursion? O(n2) since each call takes
O(1) time to assemble the answers from to recursive calls and no other
computation.

▶ How much space for memoization? O(n2)

44 / 65

Recursive Approach

LIS smaller(A[1..i], x):
if i = 0 then return 0
m = LIS smaller(A[1..i − 1], x)
if A[i] < x then

m = max(m, 1 + LIS smaller(A[1..i − 1],A[i]))
Output m

LIS(A[1..n]):
return LIS smaller(A[1..n],∞)

▶ How many distinct sub-problems will LIS smaller(A[1..n],∞) generate? O(n2)

▶ What is the running time if we memoize recursion? O(n2) since each call takes
O(1) time to assemble the answers from to recursive calls and no other
computation.

▶ How much space for memoization? O(n2)

44 / 65

Recursive Approach

LIS smaller(A[1..i], x):
if i = 0 then return 0
m = LIS smaller(A[1..i − 1], x)
if A[i] < x then

m = max(m, 1 + LIS smaller(A[1..i − 1],A[i]))
Output m

LIS(A[1..n]):
return LIS smaller(A[1..n],∞)

▶ How many distinct sub-problems will LIS smaller(A[1..n],∞) generate? O(n2)

▶ What is the running time if we memoize recursion? O(n2) since each call takes
O(1) time to assemble the answers from to recursive calls and no other
computation.

▶ How much space for memoization? O(n2)

44 / 65

Naming subproblems and recursive equation

After seeing that number of subproblems is O(n2) we name them to help us understand
the structure better. For notational ease we add ∞ at end of array (in position n + 1)

LIS(i , j): length of longest increasing sequence in A[1..i] among numbers less than
A[j] (defined only for i < j)

Base case: LIS(0, j) = 0 for 1 ≤ j ≤ n + 1
Recursive relation:

▶ LIS(i , j) = LIS(i − 1, j) if A[i] > A[j]
▶ LIS(i , j) = max{LIS(i − 1, j), 1 + LIS(i − 1, i)} if A[i] ≤ A[j]

Output: LIS(n, n + 1).
Assumption: A[n + 1] = +∞.

45 / 65

Naming subproblems and recursive equation

After seeing that number of subproblems is O(n2) we name them to help us understand
the structure better. For notational ease we add ∞ at end of array (in position n + 1)

LIS(i , j): length of longest increasing sequence in A[1..i] among numbers less than
A[j] (defined only for i < j)

Base case: LIS(0, j) = 0 for 1 ≤ j ≤ n + 1
Recursive relation:

▶ LIS(i , j) = LIS(i − 1, j) if A[i] > A[j]
▶ LIS(i , j) = max{LIS(i − 1, j), 1 + LIS(i − 1, i)} if A[i] ≤ A[j]

Output: LIS(n, n + 1).
Assumption: A[n + 1] = +∞.

45 / 65

How to order bottom up computation?
i j
⇓ 1 2 3 4 5 6 7 8 = n + 1

0
1
2
3
4
5
6
7

Recursive relation:

LIS(i , j) =
0 i = 0

LIS(i − 1, j) A[i] > A[j]

max

{
LIS(i − 1, j)

1 + LIS(i − 1, i)
A[i] ≤ A[j]

Sequence: A[1..7] = 6, 3, 5, 2, 7, 8, 1 and A[8] = +∞.

46 / 65

Iterative algorithm
The dynamic program for longest increasing subsequence

LIS-Iterative(A[1..n]):
A[n + 1] = ∞
int LIS[0..n, 1..n + 1]
for j = 1 . . . n + 1) do LIS[0, j] = 0

for i = 1 . . . n) do
for (j = i + 1 . . . n do

if (A[i] > A[j])
LIS[i , j] = LIS[i − 1, j]

else
LIS[i , j] = max(LIS[i − 1, j], 1 + LIS[i − 1, i])

Return LIS[n, n + 1]

Running time: O(n2)
Space: O(n2)

47 / 65

Two comments

Question: Can we compute an optimum solution and not just its value?
Yes! See notes.

Question: Is there a faster algorithm for LIS? Yes! Using a different recursion and
optimizing one can obtain an O(n log n) time and O(n) space algorithm. O(n log n)
time is not obvious. Depends on improving time by using data structures on top of
dynamic programming.

48 / 65

Two comments

Question: Can we compute an optimum solution and not just its value?
Yes! See notes.

Question: Is there a faster algorithm for LIS? Yes! Using a different recursion and
optimizing one can obtain an O(n log n) time and O(n) space algorithm. O(n log n)
time is not obvious. Depends on improving time by using data structures on top of
dynamic programming.

48 / 65

Two comments

Question: Can we compute an optimum solution and not just its value?
Yes! See notes.

Question: Is there a faster algorithm for LIS? Yes! Using a different recursion and
optimizing one can obtain an O(n log n) time and O(n) space algorithm. O(n log n)
time is not obvious. Depends on improving time by using data structures on top of
dynamic programming.

48 / 65

13.5: Dynamic programming via DAGs

49 / 65

andén

From wikipedia: An andén (plural andenes), Spanish for ”platform”, is a stair-step like
terrace dug into the slope of a hillside for agricultural purposes. The term is most often
used to refer to the terraces built by pre-Columbian cultures in the Andes mountains of
South America. Andenes had several functions, the most important of which was to
increase the amount of cultivatable land available to farmers by leveling a planting area
for crops. The best known andenes are in Peru, especially in the Sacred Valley near the
Inca capital of Cuzco and in the Colca Canyon. Many andenes have survived for more
than 500 years and are still in use by farmers throughout the region.

50 / 65

https://en.wikipedia.org/wiki/And%C3%A9n

Is it really dynamic programming?

Consider a sequence α̂ ≡ α1, . . . , αn of n distinct numbers, and a parameter δ > 0.
The sequence α̂ is a δ-andén, if there exists an index i , such that:

1. For all t, we have |αt − αt+1| ≤ δ.

2. For all t < i , we have αt < αt+1.

3. For all t ≥ i , we have αt > αt+1.

(I.e., a δ-andén is a hill where the difference between consecutive values is at most δ.)

51 / 65

The problem

The input is an array A[1 . . . n], and a parameter δ. Describe an algorithm that
computes the length of the longest subsequence of A that forms a δ-andén. Your
algorithm needs to output the number of elements in this subsequence (and not the
subsequence itself).

52 / 65

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2024

13.6
How to come up with dynamic
programming algorithm: summary
FLNAME:13.6.0.0 ZZZ:13.6.0.0 How to come up with dynamic programming algorithm: summary

53 / 65

Dynamic Programming

1. Find a “smart” recursion for the problem in which the number of distinct
subproblems is small; polynomial in the original problem size.

2. Estimate the number of subproblems, the time to evaluate each subproblem and
the space needed to store the value.

3. This gives an upper bound on the total running time if we use automatic/explicit
memoization.

4. Come up with an explicit memoization algorithm for the problem.

5. Eliminate recursion and find an iterative algorithm.

6. ...need to find the right way or order the subproblems evaluation. Th is leads to an
a dynamic programming algorithm.

7. Optimize the resulting algorithm further

8. ...

9. Get rich!

54 / 65

Dynamic Programming

1. Find a “smart” recursion for the problem in which the number of distinct
subproblems is small; polynomial in the original problem size.

2. Estimate the number of subproblems, the time to evaluate each subproblem and
the space needed to store the value.

3. This gives an upper bound on the total running time if we use automatic/explicit
memoization.

4. Come up with an explicit memoization algorithm for the problem.

5. Eliminate recursion and find an iterative algorithm.

6. ...need to find the right way or order the subproblems evaluation. Th is leads to an
a dynamic programming algorithm.

7. Optimize the resulting algorithm further

8. ...

9. Get rich!

54 / 65

Dynamic Programming

1. Find a “smart” recursion for the problem in which the number of distinct
subproblems is small; polynomial in the original problem size.

2. Estimate the number of subproblems, the time to evaluate each subproblem and
the space needed to store the value.

3. This gives an upper bound on the total running time if we use automatic/explicit
memoization.

4. Come up with an explicit memoization algorithm for the problem.

5. Eliminate recursion and find an iterative algorithm.

6. ...need to find the right way or order the subproblems evaluation. Th is leads to an
a dynamic programming algorithm.

7. Optimize the resulting algorithm further

8. ...

9. Get rich!

54 / 65

Dynamic Programming

1. Find a “smart” recursion for the problem in which the number of distinct
subproblems is small; polynomial in the original problem size.

2. Estimate the number of subproblems, the time to evaluate each subproblem and
the space needed to store the value.

3. This gives an upper bound on the total running time if we use automatic/explicit
memoization.

4. Come up with an explicit memoization algorithm for the problem.

5. Eliminate recursion and find an iterative algorithm.

6. ...need to find the right way or order the subproblems evaluation. Th is leads to an
a dynamic programming algorithm.

7. Optimize the resulting algorithm further

8. ...

9. Get rich!

54 / 65

Dynamic Programming

1. Find a “smart” recursion for the problem in which the number of distinct
subproblems is small; polynomial in the original problem size.

2. Estimate the number of subproblems, the time to evaluate each subproblem and
the space needed to store the value.

3. This gives an upper bound on the total running time if we use automatic/explicit
memoization.

4. Come up with an explicit memoization algorithm for the problem.

5. Eliminate recursion and find an iterative algorithm.

6. ...need to find the right way or order the subproblems evaluation. Th is leads to an
a dynamic programming algorithm.

7. Optimize the resulting algorithm further

8. ...

9. Get rich!

54 / 65

Dynamic Programming

1. Find a “smart” recursion for the problem in which the number of distinct
subproblems is small; polynomial in the original problem size.

2. Estimate the number of subproblems, the time to evaluate each subproblem and
the space needed to store the value.

3. This gives an upper bound on the total running time if we use automatic/explicit
memoization.

4. Come up with an explicit memoization algorithm for the problem.

5. Eliminate recursion and find an iterative algorithm.

6. ...need to find the right way or order the subproblems evaluation. Th is leads to an
a dynamic programming algorithm.

7. Optimize the resulting algorithm further

8. ...

9. Get rich!

54 / 65

Dynamic Programming

1. Find a “smart” recursion for the problem in which the number of distinct
subproblems is small; polynomial in the original problem size.

2. Estimate the number of subproblems, the time to evaluate each subproblem and
the space needed to store the value.

3. This gives an upper bound on the total running time if we use automatic/explicit
memoization.

4. Come up with an explicit memoization algorithm for the problem.

5. Eliminate recursion and find an iterative algorithm.

6. ...need to find the right way or order the subproblems evaluation. Th is leads to an
a dynamic programming algorithm.

7. Optimize the resulting algorithm further

8. ...

9. Get rich!

54 / 65

Dynamic Programming

1. Find a “smart” recursion for the problem in which the number of distinct
subproblems is small; polynomial in the original problem size.

2. Estimate the number of subproblems, the time to evaluate each subproblem and
the space needed to store the value.

3. This gives an upper bound on the total running time if we use automatic/explicit
memoization.

4. Come up with an explicit memoization algorithm for the problem.

5. Eliminate recursion and find an iterative algorithm.

6. ...need to find the right way or order the subproblems evaluation. Th is leads to an
a dynamic programming algorithm.

7. Optimize the resulting algorithm further

8. ...

9. Get rich!

54 / 65

Dynamic Programming

1. Find a “smart” recursion for the problem in which the number of distinct
subproblems is small; polynomial in the original problem size.

2. Estimate the number of subproblems, the time to evaluate each subproblem and
the space needed to store the value.

3. This gives an upper bound on the total running time if we use automatic/explicit
memoization.

4. Come up with an explicit memoization algorithm for the problem.

5. Eliminate recursion and find an iterative algorithm.

6. ...need to find the right way or order the subproblems evaluation. Th is leads to an
a dynamic programming algorithm.

7. Optimize the resulting algorithm further

8. ...

9. Get rich!

54 / 65

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2024

13.7
Supplemental: Some experiments with
memoization
FLNAME:13.7.0.0 ZZZ:13.7.0.0 Supplemental: Some experiments with memoization

55 / 65

Edit distance: different memoizations
Input size Running time in seconds

n DP Partial Implicit memoization

1, 250 0.01 0.04 0.20
2, 500 0.04 0.15 0.84
5, 000 0.18 0.64 3.73

10, 000 0.72 2.50 15.05
20, 000 2.88 9.91 55.35
40, 000 12.00 40.00 out of memory

For the input n, two random strings of length n were generated, and their distance
computed using edit distance.
Note, that edit-distance is simple enough to that DP gets very good performance. For
more complicated problems, the advantage of DP would probably be much smaller.
The asymptotic running time here is Θ(n2).

56 / 65

Edit distance: different memoizations
More details

1. The implementation was done in C++, using -O9 in compilation.

2. DP = Dynamic Programming = iterative implementation using arrays.

3. Partial memoization = Still uses recursive code, but remembers the results in
tables that are managed directly by the code.

4. Implicit memoization = implemented using the standard unordered map.

57 / 65

Edit distance: different memoizations
Conclusions

1. If you are in interview setup, you should probably solve the problem using DP. That
what you would be expected to do.

2. Otherwise, I would probably implement partial memoization – it still has the
simplicity of the recursive solution, while having a decent performance. If I really
care about performance I would implement the DP.

3. Using implicit memoization probably makes sense only if running time is not really
an issue.

58 / 65

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2024

13.8
Tangential: Fibonacci and his numbers
FLNAME:13.8.0.0 ZZZ:13.8.0.0 Tangential: Fibonacci and his numbers

59 / 65

Fibonacci = Leonardo Bonacci

1. CE 1170–1250.

2. Italian. Spent time in Bugia, Algeria with his father (trader).

3. Traveled around the Mediterranean coast, learned the Hindu–Arabic numerals

4. Hindu–Arabic numerals:

4.1 Developed before 400 CE by Hindu philosophers.
4.2 Arrived to the Arab world sometime before 825CE.
4.3 Muhammad ibn Musa al-Khwarizmi (Algorithm/Algebra) wrote a book in 825 CE

explaining the new system. (Showed how to solved quadratic equations.)

5. 1202 CE: Fibonacci wrote a book “Liber Abaci” (book of calculations) that
popularized the new system.

6. Brought and popularized the Hindu–Arabic system to Italy.

60 / 65

Fibonacci numbers

1. Fibonacci in Liber Abaci posed and solved a problem involving the growth of a
population of rabbits based on idealized assumptions.

2. Describe growth processes.
Every month a mature pair of rabbits give birth to one pair of young rabbits.

Month grownup pairs Young pairs

1 1 0
2 1 1
3 2 1
4 3 2
5 5 3
...

...
...

40 102,334,155 63,245,986

61 / 65

Fibonacci numbers

1. Fibonacci in Liber Abaci posed and solved a problem involving the growth of a
population of rabbits based on idealized assumptions.

2. Describe growth processes.
Every month a mature pair of rabbits give birth to one pair of young rabbits.

Month grownup pairs Young pairs

1 1 0
2 1 1
3 2 1
4 3 2
5 5 3
...

...
...

40 102,334,155 63,245,986

61 / 65

Fibonacci numbers

1. Fibonacci in Liber Abaci posed and solved a problem involving the growth of a
population of rabbits based on idealized assumptions.

2. Describe growth processes.
Every month a mature pair of rabbits give birth to one pair of young rabbits.

Month grownup pairs Young pairs

1 1 0
2 1 1
3 2 1
4 3 2
5 5 3
...

...
...

40 102,334,155 63,245,986

61 / 65

Fibonacci numbers

1. Fibonacci in Liber Abaci posed and solved a problem involving the growth of a
population of rabbits based on idealized assumptions.

2. Describe growth processes.
Every month a mature pair of rabbits give birth to one pair of young rabbits.

Month grownup pairs Young pairs

1 1 0
2 1 1
3 2 1
4 3 2
5 5 3
...

...
...

40 102,334,155 63,245,986

61 / 65

Fibonacci numbers

1. Fibonacci in Liber Abaci posed and solved a problem involving the growth of a
population of rabbits based on idealized assumptions.

2. Describe growth processes.
Every month a mature pair of rabbits give birth to one pair of young rabbits.

Month grownup pairs Young pairs

1 1 0
2 1 1
3 2 1
4 3 2
5 5 3
...

...
...

40 102,334,155 63,245,986

61 / 65

Fibonacci numbers

1. Fibonacci in Liber Abaci posed and solved a problem involving the growth of a
population of rabbits based on idealized assumptions.

2. Describe growth processes.
Every month a mature pair of rabbits give birth to one pair of young rabbits.

Month grownup pairs Young pairs

1 1 0
2 1 1
3 2 1
4 3 2
5 5 3
...

...
...

40 102,334,155 63,245,986

61 / 65

Fibonacci numbers

1. Fibonacci in Liber Abaci posed and solved a problem involving the growth of a
population of rabbits based on idealized assumptions.

2. Describe growth processes.
Every month a mature pair of rabbits give birth to one pair of young rabbits.

Month grownup pairs Young pairs

1 1 0
2 1 1
3 2 1
4 3 2
5 5 3
...

...
...

40 102,334,155 63,245,986

61 / 65

Fibonacci numbers

1. Fibonacci in Liber Abaci posed and solved a problem involving the growth of a
population of rabbits based on idealized assumptions.

2. Describe growth processes.
Every month a mature pair of rabbits give birth to one pair of young rabbits.

Month grownup pairs Young pairs

1 1 0
2 1 1
3 2 1
4 3 2
5 5 3
...

...
...

40 102,334,155 63,245,986

61 / 65

Fibonacci numbers II

1. limn→∞ Fn/Fn−1 = φ.

2. Golden ratio: φ = (
√
5 + 1)/2 ≈ 1.618033.

3. For a > b > 0, φ = a+b
a = a

b . =⇒ φ+1
φ

= φ. =⇒ 0 = φ2 − φ− 1.

4. φ = 1±
√

1+4
2

since φ is not negative, so...

5. Fn = φn−(1−φ)n√
5

6. Golden ratio goes back to Euclid

7. Many applications of GR and Fibonacci numbers in nature, models (stock market),
art, etc...

62 / 65

Fibonacci numbers II

1. limn→∞ Fn/Fn−1 = φ.

2. Golden ratio: φ = (
√
5 + 1)/2 ≈ 1.618033.

3. For a > b > 0, φ = a+b
a = a

b . =⇒ φ+1
φ

= φ. =⇒ 0 = φ2 − φ− 1.

4. φ = 1±
√

1+4
2

since φ is not negative, so...

5. Fn = φn−(1−φ)n√
5

6. Golden ratio goes back to Euclid

7. Many applications of GR and Fibonacci numbers in nature, models (stock market),
art, etc...

62 / 65

Fibonacci numbers II

1. limn→∞ Fn/Fn−1 = φ.

2. Golden ratio: φ = (
√
5 + 1)/2 ≈ 1.618033.

3. For a > b > 0, φ = a+b
a = a

b . =⇒ φ+1
φ

= φ. =⇒ 0 = φ2 − φ− 1.

4. φ = 1±
√

1+4
2

since φ is not negative, so...

5. Fn = φn−(1−φ)n√
5

6. Golden ratio goes back to Euclid

7. Many applications of GR and Fibonacci numbers in nature, models (stock market),
art, etc...

62 / 65

Fibonacci numbers II

1. limn→∞ Fn/Fn−1 = φ.

2. Golden ratio: φ = (
√
5 + 1)/2 ≈ 1.618033.

3. For a > b > 0, φ = a+b
a = a

b . =⇒ φ+1
φ

= φ. =⇒ 0 = φ2 − φ− 1.

4. φ = 1±
√

1+4
2

since φ is not negative, so...

5. Fn = φn−(1−φ)n√
5

6. Golden ratio goes back to Euclid

7. Many applications of GR and Fibonacci numbers in nature, models (stock market),
art, etc...

62 / 65

Fibonacci numbers II

1. limn→∞ Fn/Fn−1 = φ.

2. Golden ratio: φ = (
√
5 + 1)/2 ≈ 1.618033.

3. For a > b > 0, φ = a+b
a = a

b . =⇒ φ+1
φ

= φ. =⇒ 0 = φ2 − φ− 1.

4. φ = 1±
√

1+4
2

since φ is not negative, so...

5. Fn = φn−(1−φ)n√
5

6. Golden ratio goes back to Euclid

7. Many applications of GR and Fibonacci numbers in nature, models (stock market),
art, etc...

62 / 65

Fibonacci numbers II

1. limn→∞ Fn/Fn−1 = φ.

2. Golden ratio: φ = (
√
5 + 1)/2 ≈ 1.618033.

3. For a > b > 0, φ = a+b
a = a

b . =⇒ φ+1
φ

= φ. =⇒ 0 = φ2 − φ− 1.

4. φ = 1±
√

1+4
2

since φ is not negative, so...

5. Fn = φn−(1−φ)n√
5

6. Golden ratio goes back to Euclid

is to as is to

7. Many applications of GR and Fibonacci numbers in nature, models (stock market),
art, etc...

62 / 65

Fibonacci numbers II

1. limn→∞ Fn/Fn−1 = φ.

2. Golden ratio: φ = (
√
5 + 1)/2 ≈ 1.618033.

3. For a > b > 0, φ = a+b
a = a

b . =⇒ φ+1
φ

= φ. =⇒ 0 = φ2 − φ− 1.

4. φ = 1±
√

1+4
2

since φ is not negative, so...

5. Fn = φn−(1−φ)n√
5

6. Golden ratio goes back to Euclid

is to as is to

7. Many applications of GR and Fibonacci numbers in nature, models (stock market),
art, etc...

62 / 65

Fibonacci numbers: Binet’s formula

1. φ = 1+
√

5
2

and ψ = 1−
√

5
2

= 1 − φ are solution to the equation:
x2 = x + 1.

2. As such, φ and ψ a solution to the equation: xn = xn−1 + xn−2.

3. Consider the sequence Un = Un−1 + Un−2.
For any α, β ∈ R, consider Un = αφn + βψn. A valid solution to the sequence.

Un = Un−1 + Un−2 = αφn−1 + βψn−1 + αφn−2 + βψn−2

63 / 65

Fibonacci numbers: Binet’s formula

1. φ = 1+
√

5
2

and ψ = 1−
√

5
2

= 1 − φ are solution to the equation:
x2 = x + 1.

2. As such, φ and ψ a solution to the equation: xn = xn−1 + xn−2.

3. Consider the sequence Un = Un−1 + Un−2.
For any α, β ∈ R, consider Un = αφn + βψn. A valid solution to the sequence.

Un = Un−1 + Un−2 = αφn−1 + βψn−1 + αφn−2 + βψn−2

63 / 65

Fibonacci numbers: Binet’s formula

1. φ = 1+
√

5
2

and ψ = 1−
√

5
2

= 1 − φ are solution to the equation:
x2 = x + 1.

2. As such, φ and ψ a solution to the equation: xn = xn−1 + xn−2.

3. Consider the sequence Un = Un−1 + Un−2.
For any α, β ∈ R, consider Un = αφn + βψn. A valid solution to the sequence.

Un = Un−1 + Un−2 = αφn−1 + βψn−1 + αφn−2 + βψn−2

63 / 65

Fibonacci numbers: Binet’s formula

1. φ = 1+
√

5
2

and ψ = 1−
√

5
2

= 1 − φ are solution to the equation:
x2 = x + 1.

2. As such, φ and ψ a solution to the equation: xn = xn−1 + xn−2.

3. Consider the sequence Un = Un−1 + Un−2.
For any α, β ∈ R, consider Un = αφn + βψn. A valid solution to the sequence.

Un = Un−1 + Un−2 = αφn−1 + βψn−1 + αφn−2 + βψn−2

=
(
αφn−1 + αφn−2

)
+
(
βψn−1 + βψn−2

)

63 / 65

Fibonacci numbers: Binet’s formula

1. φ = 1+
√

5
2

and ψ = 1−
√

5
2

= 1 − φ are solution to the equation:
x2 = x + 1.

2. As such, φ and ψ a solution to the equation: xn = xn−1 + xn−2.

3. Consider the sequence Un = Un−1 + Un−2.
For any α, β ∈ R, consider Un = αφn + βψn. A valid solution to the sequence.

Un = Un−1 + Un−2 = αφn−1 + βψn−1 + αφn−2 + βψn−2

=
(
αφn−1 + αφn−2

)
+
(
βψn−1 + βψn−2

)
= Un−1 + Un−2.

63 / 65

Fibonacci numbers: Binet’s formula

1. φ = 1+
√

5
2

and ψ = 1−
√

5
2

= 1 − φ are solution to the equation:
x2 = x + 1.

2. As such, φ and ψ a solution to the equation: xn = xn−1 + xn−2.

3. Consider the sequence Un = Un−1 + Un−2.
For any α, β ∈ R, consider Un = αφn + βψn. A valid solution to the sequence.

Un = Un−1 + Un−2 = αφn−1 + βψn−1 + αφn−2 + βψn−2

=
(
αφn−1 + αφn−2

)
+
(
βψn−1 + βψn−2

)
= Un−1 + Un−2.

4. Solve the system
U0 = 0 and U1 = 1 ⇐⇒ αφ0 + βψ0 = 0 and αφ1 + βψ1 = 1

63 / 65

Fibonacci numbers: Binet’s formula

1. φ = 1+
√

5
2

and ψ = 1−
√

5
2

= 1 − φ are solution to the equation:
x2 = x + 1.

2. As such, φ and ψ a solution to the equation: xn = xn−1 + xn−2.

3. Consider the sequence Un = Un−1 + Un−2.
For any α, β ∈ R, consider Un = αφn + βψn. A valid solution to the sequence.

Un = Un−1 + Un−2 = αφn−1 + βψn−1 + αφn−2 + βψn−2

=
(
αφn−1 + αφn−2

)
+
(
βψn−1 + βψn−2

)
= Un−1 + Un−2.

4. Solve the system
U0 = 0 and U1 = 1 ⇐⇒ αφ0 + βψ0 = 0 and αφ1 + βψ1 = 1 =⇒
β = −α

63 / 65

Fibonacci numbers: Binet’s formula

1. φ = 1+
√

5
2

and ψ = 1−
√

5
2

= 1 − φ are solution to the equation:
x2 = x + 1.

2. As such, φ and ψ a solution to the equation: xn = xn−1 + xn−2.

3. Consider the sequence Un = Un−1 + Un−2.
For any α, β ∈ R, consider Un = αφn + βψn. A valid solution to the sequence.

Un = Un−1 + Un−2 = αφn−1 + βψn−1 + αφn−2 + βψn−2

=
(
αφn−1 + αφn−2

)
+
(
βψn−1 + βψn−2

)
= Un−1 + Un−2.

4. Solve the system
U0 = 0 and U1 = 1 ⇐⇒ αφ0 + βψ0 = 0 and αφ1 + βψ1 = 1 =⇒
β = −α =⇒ φ− ψ = 1/α

63 / 65

Fibonacci numbers: Binet’s formula

1. φ = 1+
√

5
2

and ψ = 1−
√

5
2

= 1 − φ are solution to the equation:
x2 = x + 1.

2. As such, φ and ψ a solution to the equation: xn = xn−1 + xn−2.

3. Consider the sequence Un = Un−1 + Un−2.
For any α, β ∈ R, consider Un = αφn + βψn. A valid solution to the sequence.

Un = Un−1 + Un−2 = αφn−1 + βψn−1 + αφn−2 + βψn−2

=
(
αφn−1 + αφn−2

)
+
(
βψn−1 + βψn−2

)
= Un−1 + Un−2.

4. Solve the system
U0 = 0 and U1 = 1 ⇐⇒ αφ0 + βψ0 = 0 and αφ1 + βψ1 = 1 =⇒
β = −α =⇒ φ− ψ = 1/α =⇒ 1+

√
5

2
− 1−

√
5

2
= 1/α

63 / 65

Fibonacci numbers: Binet’s formula

1. φ = 1+
√

5
2

and ψ = 1−
√

5
2

= 1 − φ are solution to the equation:
x2 = x + 1.

2. As such, φ and ψ a solution to the equation: xn = xn−1 + xn−2.

3. Consider the sequence Un = Un−1 + Un−2.
For any α, β ∈ R, consider Un = αφn + βψn. A valid solution to the sequence.

Un = Un−1 + Un−2 = αφn−1 + βψn−1 + αφn−2 + βψn−2

=
(
αφn−1 + αφn−2

)
+
(
βψn−1 + βψn−2

)
= Un−1 + Un−2.

4. Solve the system
U0 = 0 and U1 = 1 ⇐⇒ αφ0 + βψ0 = 0 and αφ1 + βψ1 = 1 =⇒
β = −α =⇒ φ− ψ = 1/α =⇒ 1+

√
5

2
− 1−

√
5

2
= 1/α

=⇒ α = 1/
√
5

63 / 65

Fibonacci numbers: Binet’s formula

1. φ = 1+
√

5
2

and ψ = 1−
√

5
2

= 1 − φ are solution to the equation:
x2 = x + 1.

2. As such, φ and ψ a solution to the equation: xn = xn−1 + xn−2.

3. Consider the sequence Un = Un−1 + Un−2.
For any α, β ∈ R, consider Un = αφn + βψn. A valid solution to the sequence.

Un = Un−1 + Un−2 = αφn−1 + βψn−1 + αφn−2 + βψn−2

=
(
αφn−1 + αφn−2

)
+
(
βψn−1 + βψn−2

)
= Un−1 + Un−2.

4. Solve the system
U0 = 0 and U1 = 1 ⇐⇒ αφ0 + βψ0 = 0 and αφ1 + βψ1 = 1 =⇒
β = −α =⇒ φ− ψ = 1/α =⇒ 1+

√
5

2
− 1−

√
5

2
= 1/α

=⇒ α = 1/
√
5 =⇒ Fn = Un = αφn + βψn = φn−(1−φ)n√

5

63 / 65

Fibonacci numbers really fast

(
y

x + y

)
=

(
0 1
1 1

)(
x
y

)
.

As such, (
Fn−1

Fn

)
=

(
0 1
1 1

)(
Fn−2

Fn−1

)
=

(
0 1
1 1

)2(Fn−3

Fn−2

)
=

(
0 1
1 1

)n−3(F2

F1

)
.

64 / 65

More on fast Fibonacci numbers
Continued

Thus, computing the nth Fibonacci number can be done by computing

(
0 1
1 1

)n−3

.

Which can be done in O(log n) time (how?). What is wrong?

65 / 65

	Recursion and Memoization
	Fibonacci Numbers
	Automatic/implicit memoization

	Dynamic programming
	Fibonacci numbers are big – corrected running time analysis

	Checking if a string is in L*
	Longest Increasing Subsequence Revisited
	Longest Increasing Subsequence

	Dynamic programming via DAGs
	How to come up with dynamic programming algorithm: summary
	Supplemental: Some experiments with memoization
	Tangential: Fibonacci and his numbers

