
Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2024

Backtracking and Memoization
Lecture 12
Tuesday, October 8, 2024

LATEXed: October 10, 2024 21:53

1 / 39

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2024

12.1
On different techniques for recursive
algorithms
FLNAME:12.1.0.0 ZZZ:12.1.0.0 On different techniques for recursive algorithms

2 / 39

Recursion

Reduction:
Reduce one problem to another

Recursion
A special case of reduction

1. reduce problem to a smaller instance of itself

2. self-reduction

1. Problem instance of size n is reduced to one or more instances of size n − 1 or less.

2. For termination, problem instances of small size are solved by some other method
as base cases.

3 / 39

Recursion in Algorithm Design

1. Tail Recursion: problem reduced to a single recursive call after some work. Easy
to convert algorithm into iterative or greedy algorithms. Examples: Interval
scheduling, MST algorithms, etc.

2. Divide and Conquer: Problem reduced to multiple independent sub-problems
that are solved separately. Conquer step puts together solution for bigger problem.

Examples: Closest pair, deterministic median selection, quick sort.

3. Backtracking: Refinement of brute force search. Build solution incrementally by
invoking recursion to try all possibilities for the decision in each step.

4. Dynamic Programming: problem reduced to multiple (typically) dependent or
overlapping sub-problems. Use memoization to avoid recomputation of common
solutions leading to iterative bottom-up algorithm.

4 / 39

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2024

12.2
Search trees and backtracking
FLNAME:12.2.0.0 ZZZ:12.2.0.0 Search trees and backtracking

5 / 39

The queens problem

6 / 39

The queens problem

6 / 39

The queens problem

6 / 39

The queens problem

6 / 39

The queens problem

6 / 39

The queens problem

6 / 39

The queens problem

6 / 39

The queens problem

Q: How many queens can one place on the board?
Q: Can one place 8 queens on the board?

6 / 39

The eight queens puzzle

Problem published in 1848, solved in 1850.

Q: How to solve problem for general n?

7 / 39

The eight queens puzzle

Problem published in 1848, solved in 1850.

Q: How to solve problem for general n?

7 / 39

Strategy: Search tree

8 / 39

8 queens in Julia

function		is_valid(A,	k)::Bool
				for	i	∈	1:k-1,	j	∈	i+1:k
								if		(abs(A[i]	-	A[j])	==	(j	-	i))		||		(A[i]	==	A[j])
												return		false
								end
				end
				return		true;
end

function		print_board(A)
				n	=	length(A);
				for		i	∈	1:n
								for	j	∈	1:n
												print((A[i]	==	j)	?	'1'	:	'0')
								end
								print("\n");
				end
				println("\n");
end

function		queens(A,	k)
				if	k	>	length(A)
								print_board(A)
								return
				end
				for		p	∈	1:length(A);
								A[k]	=	p;
								if		is_valid(A,	k)
												queens(A,	k+1)
								end
				end
end

n	=	8
queens(zeros(Int64,	n),	1);

9 / 39

Search tree for 5 queens

s

1 2 3 4 5

13 14 15

135

1352

13524

142

1425

14253

152

24 25

241

2413

24135

251 253

2514 2531

25314

31 35

314

3142

31425

352

3524

35241

41 42

413 415

4135

41352

4152

425

4253

42531

51 52 53

514 524

5241

52413

531

5314

53142

10 / 39

Backtracking: Informal definition

Recursive search over an implicit tree, where we “backtrack” if certain possibilities do
not work.

11 / 39

n queens C++ code
void generate_permutations(int * permut, int row, int n)
{
 if (row == n) {
 print_board(permut, n);
 return;
 }

 for (int val = 1; val <= n; val++)
 if (isValid(permut, row, val)) {
 permut[row] = val;
 generate_permutations(permut, row + 1, n);
 }
}

generate_permutations(permut, 0, 8);

12 / 39

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2024

12.3
Brute Force Search, Recursion and
Backtracking
FLNAME:12.3.0.0 ZZZ:12.3.0.0 Brute Force Search, Recursion and Backtracking

13 / 39

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2024

12.3.1
Naive algorithm for Max Independent Set in
a Graph
FLNAME:12.3.1.0 ZZZ:12.3.1.0 Naive algorithm for Max Independent Set in a Graph

14 / 39

Maximum Independent Set in a Graph

Definition 12.1.
Given undirected graph G = (V ,E) a subset of nodes S ⊆ V is an independent set
(also called a stable set) if for there are no edges between nodes in S . That is, if
u, v ∈ S then (u, v) ̸∈ E .

A

B

C

DE

F

Some independent sets in graph above: {D}, {A,C}, {B,E ,F}

15 / 39

Maximum Independent Set Problem

Input Graph G = (V ,E)

Goal Find maximum sized independent set in G

A

B

C

DE

F

16 / 39

Maximum Weight Independent Set Problem

Input Graph G = (V ,E), weights w(v) ≥ 0 for v ∈ V
Goal Find maximum weight independent set in G

A

B

C

DE

F

17 / 39

Maximum Weight Independent Set Problem

1. No one knows an efficient (polynomial time) algorithm for this problem

2. Problem is NP-Complete and it is believed that there is no polynomial time
algorithm

Brute-force algorithm:
Try all subsets of vertices.

18 / 39

Brute-force enumeration

Algorithm to find the size of the maximum weight independent set.

MaxIndSet(G = (V ,E)):
max = 0
for each subset S ⊆ V do

check if S is an independent set

if S is an independent set and w(S) > max then
max = w(S)

Output max

Running time: suppose G has n vertices and m edges

1. 2n subsets of V
2. checking each subset S takes O(m) time

3. total time is O(m2n)

19 / 39

Brute-force enumeration

Algorithm to find the size of the maximum weight independent set.

MaxIndSet(G = (V ,E)):
max = 0
for each subset S ⊆ V do

check if S is an independent set

if S is an independent set and w(S) > max then
max = w(S)

Output max

Running time: suppose G has n vertices and m edges

1. 2n subsets of V
2. checking each subset S takes O(m) time

3. total time is O(m2n)

19 / 39

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2024

12.3.2
A recursive algorithm for Max Independent
Set in a Graph
FLNAME:12.3.2.0 ZZZ:12.3.2.0 A recursive algorithm for Max Independent Set in a Graph

20 / 39

A Recursive Algorithm

Let V = {v1, v2, . . . , vn}.
For a vertex u let N(u) be its neighbors.

Observation 12.2.
v1: vertex in the graph.
One of the following two cases is true

Case 1 v1 is in some maximum independent set.

Case 2 v1 is in no maximum independent set.

We can try both cases to “reduce” the size of the problem

21 / 39

A Recursive Algorithm

Let V = {v1, v2, . . . , vn}.
For a vertex u let N(u) be its neighbors.

Observation 12.2.
v1: vertex in the graph.
One of the following two cases is true

Case 1 v1 is in some maximum independent set.

Case 2 v1 is in no maximum independent set.

We can try both cases to “reduce” the size of the problem

21 / 39

Removing a vertex (say 5)
Because it is NOT in the independent set

1 2 3

4 5 6

7 8
9

1210
11

6

22 / 39

Removing a vertex (say 5)
Because it is NOT in the independent set

1 2 3

4 5 6

7 8
9

1210
11

6

1 2 3

4 6

7 8
9

1210
11

6

22 / 39

Removing a vertex (say 5) and its neighbors
Because it is in the independent set

1

4 5

8
9

10
11

2 3

7

12

6

23 / 39

Removing a vertex (say 5) and its neighbors
Because it is in the independent set

1

4 5

8
9

10
11

2 3

7

12

6

1

4

8
9

10
11

23 / 39

A Recursive Algorithm: The two possibilities

G1 = G − v1 obtained by removing v1 and incident edges from G
G2 = G − v1 − N(v1) obtained by removing N(v1) ∪ v1 from G

MIS(G) = max{MIS(G1),MIS(G2) + w(v1)}

24 / 39

A Recursive Algorithm

RecursiveMIS(G):

if G is empty then Output 0
a = RecursiveMIS(G − v1)
b = w(v1) + RecursiveMIS(G − v1 − N(vn))
Output max(a, b)

25 / 39

Example

26 / 39

Recursive Algorithms
..for Maximum Independent Set

Running time:

T (n) = T (n − 1) + T
(
n − 1 − deg(v1)

)
+ O(1 + deg(v1))

where deg(v1) is the degree of v1. T (0) = T (1) = 1 is base case.

Worst case is when deg(v1) = 0 when the recurrence becomes

T (n) = 2T (n − 1) + O(1)

Solution to this is T (n) = O(2n).

27 / 39

Backtrack Search via Recursion

1. Recursive algorithm generates a tree of computation where each node is a smaller
problem (subproblem)

2. Simple recursive algorithm computes/explores the whole tree blindly in some order.

3. Backtrack search is a way to explore the tree intelligently to prune the search space

3.1 Some subproblems may be so simple that we can stop the recursive algorithm and
solve it directly by some other method

3.2 Memoization to avoid recomputing same problem
3.3 Stop the recursion at a subproblem if it is clear that there is no need to explore

further.
3.4 Leads to a number of heuristics that are widely used in practice although the worst

case running time may still be exponential.

28 / 39

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2024

12.4
Longest Increasing Subsequence
FLNAME:12.4.0.0 ZZZ:12.4.0.0 Longest Increasing Subsequence

29 / 39

Sequences

Definition 12.1.
Sequence: an ordered list a1, a2, . . . , an. Length of a sequence is number of elements
in the list.

Definition 12.2.
ai1, . . . , aik is a subsequence of a1, . . . , an if 1 ≤ i1 < i2 < . . . < ik ≤ n.

Definition 12.3.
A sequence is increasing if a1 < a2 < . . . < an. It is non-decreasing if
a1 ≤ a2 ≤ . . . ≤ an. Similarly decreasing and non-increasing.

30 / 39

Sequences
Example...

Example 12.4.
1. Sequence: 6, 3, 5, 2, 7, 8, 1, 9

2. Subsequence of above sequence: 5, 2, 1

3. Increasing sequence: 3, 5, 9, 17, 54

4. Decreasing sequence: 34, 21, 7, 5, 1

5. Increasing subsequence of the first sequence: 2, 7, 9.

31 / 39

Longest Increasing Subsequence Problem

Input A sequence of numbers a1, a2, . . . , an

Goal Find an increasing subsequence ai1, ai2, . . . , aik of maximum length

Example 12.5.
1. Sequence: 6, 3, 5, 2, 7, 8, 1

2. Increasing subsequences: 6, 7, 8 and 3, 5, 7, 8 and 2, 7 etc

3. Longest increasing subsequence: 3, 5, 7, 8

32 / 39

Longest Increasing Subsequence Problem

Input A sequence of numbers a1, a2, . . . , an

Goal Find an increasing subsequence ai1, ai2, . . . , aik of maximum length

Example 12.5.
1. Sequence: 6, 3, 5, 2, 7, 8, 1

2. Increasing subsequences: 6, 7, 8 and 3, 5, 7, 8 and 2, 7 etc

3. Longest increasing subsequence: 3, 5, 7, 8

32 / 39

Näıve Enumeration

Assume a1, a2, . . . , an is contained in an array A
algLISNaive(A[1..n]):

max = 0
for each subsequence B of A do

if B is increasing and |B| > max then
max = |B|

Output max

Running time: O(n2n).
2n subsequences of a sequence of length n and O(n) time to check if a given sequence
is increasing.

33 / 39

Näıve Enumeration

Assume a1, a2, . . . , an is contained in an array A
algLISNaive(A[1..n]):

max = 0
for each subsequence B of A do

if B is increasing and |B| > max then
max = |B|

Output max

Running time: O(n2n).
2n subsequences of a sequence of length n and O(n) time to check if a given sequence
is increasing.

33 / 39

Näıve Enumeration

Assume a1, a2, . . . , an is contained in an array A
algLISNaive(A[1..n]):

max = 0
for each subsequence B of A do

if B is increasing and |B| > max then
max = |B|

Output max

Running time: O(n2n).
2n subsequences of a sequence of length n and O(n) time to check if a given sequence
is increasing.

33 / 39

Recursive Approach: Take 1
LIS: Longest increasing subsequence

Can we find a recursive algorithm for LIS?

LIS(A[1..n]):
1. Case 1: Does not contain A[n] in which case

LIS(A[1..n]) = LIS(A[1..(n − 1)])

2. Case 2: contains A[n] in which case LIS(A[1..n]) is not so clear.

Observation 12.6.
For second case we want to find a subsequence in A[1..(n − 1)] that is restricted to
numbers less than A[n]. This suggests that a more general problem is
LIS smaller(A[1..n], x) which gives the longest increasing subsequence in A where
each number in the sequence is less than x .

34 / 39

Recursive Approach: Take 1
LIS: Longest increasing subsequence

Can we find a recursive algorithm for LIS?

LIS(A[1..n]):
1. Case 1: Does not contain A[n] in which case

LIS(A[1..n]) = LIS(A[1..(n − 1)])

2. Case 2: contains A[n] in which case LIS(A[1..n]) is not so clear.

Observation 12.6.
For second case we want to find a subsequence in A[1..(n − 1)] that is restricted to
numbers less than A[n]. This suggests that a more general problem is
LIS smaller(A[1..n], x) which gives the longest increasing subsequence in A where
each number in the sequence is less than x .

34 / 39

Recursive Approach: Take 1
LIS: Longest increasing subsequence

Can we find a recursive algorithm for LIS?

LIS(A[1..n]):
1. Case 1: Does not contain A[n] in which case

LIS(A[1..n]) = LIS(A[1..(n − 1)])

2. Case 2: contains A[n] in which case LIS(A[1..n]) is not so clear.

Observation 12.6.
For second case we want to find a subsequence in A[1..(n − 1)] that is restricted to
numbers less than A[n]. This suggests that a more general problem is
LIS smaller(A[1..n], x) which gives the longest increasing subsequence in A where
each number in the sequence is less than x .

34 / 39

Recursive Approach: Take 1
LIS: Longest increasing subsequence

Can we find a recursive algorithm for LIS?

LIS(A[1..n]):
1. Case 1: Does not contain A[n] in which case

LIS(A[1..n]) = LIS(A[1..(n − 1)])

2. Case 2: contains A[n] in which case LIS(A[1..n]) is not so clear.

Observation 12.6.
For second case we want to find a subsequence in A[1..(n − 1)] that is restricted to
numbers less than A[n]. This suggests that a more general problem is
LIS smaller(A[1..n], x) which gives the longest increasing subsequence in A where
each number in the sequence is less than x .

34 / 39

Recursive Approach

LIS smaller(A[1..n], x) : length of longest increasing subsequence in A[1..n] with all
numbers in subsequence less than x

LIS smaller(A[1..n], x):
if (n = 0) then return 0
m = LIS smaller(A[1..(n − 1)], x)
if (A[n] < x) then

m = max(m, 1 + LIS smaller(A[1..(n − 1)],A[n]))
Output m

LIS(A[1..n]):
return LIS smaller(A[1..n],∞)

35 / 39

Example

Sequence: A[1..7] = 6, 3, 5, 2, 7, 8, 1

36 / 39

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2024

12.4.1
Running time analysis
FLNAME:12.4.1.0 ZZZ:12.4.1.0 Running time analysis

37 / 39

Running time of LIS([1..n])

LIS smaller(A[1..n], x):
if (n = 0) then return 0
m = LIS smaller(A[1..(n − 1)], x)
if (A[n] < x) then

m = max(m, 1 + LIS smaller(A[1..(n − 1)],A[n]))
Output m

LIS(A[1..n]):
return LIS smaller(A[1..n],∞)

38 / 39

Running time of LIS([1..n])

Lemma 12.7.
LIS smaller runs in O(2n) time.

Improvement: From O(n2n) to O(2n).
....one can do much better using memoization!

39 / 39

Running time of LIS([1..n])

Lemma 12.7.
LIS smaller runs in O(2n) time.

Improvement: From O(n2n) to O(2n).
....one can do much better using memoization!

39 / 39

Running time of LIS([1..n])

Lemma 12.7.
LIS smaller runs in O(2n) time.

Improvement: From O(n2n) to O(2n).
....one can do much better using memoization!

39 / 39

	On different techniques for recursive algorithms
	Search trees and backtracking
	Brute Force Search, Recursion and Backtracking
	Naive algorithm for Max Independent Set in a Graph
	A recursive algorithm for Max Independent Set in a Graph

	Longest Increasing Subsequence
	Running time analysis

