Intro. Algorithms & Models of Computation

CS/ECE 374A, Fall 2024

Divide & conquer: Kartsuba's Algorithm and Linear Time Selection

Lecture 11 Thursday, October 3, 2024

LATEXed: October 8, 2024 20:53

Intro. Algorithms & Models of Computation

CS/ECE 374A, Fall 2024

11.1

Problem statement: Multiplying numbers + a slow algorithm

The Problem: Multiplying numbers

Given two large positive integer numbers b and c, with n digits, compute the number b * c.

Rhind Mathematical Papyrus

Roughly 3870 years ago

"Accurate reckoning for inquiring into things, and the knowledge of all things, mysteries ... all secrets"

76	35	
76	34 + 1	76
76	34	
152	17	
152	16 + 1	152
152	16	
304	8	
608	4	
1216	2	
2432	1	2432
		2660

76	35	
76	34 + 1	76
76	34	
152	17	
152	16 + 1	152
152	16	
304	8	
608	4	
1216	2	
2432	1	2432
		2660
2432	1	

76 76	35 34 + 1	76
76	34	
152	17	
152	16 + 1	152
152	16	
304	8	
608	4	
1216	2	
2432	1	2432
		2660

76	35	
76	34 + 1	76
76	34	
152	17	
152	16 + 1	152
152	16	
304	8	
608	4	
1216	2	
2432	1	2432
		2660

76	35	
76	34 + 1	76
76	34	
152	17	
152	16 + 1	152
152	16	
304	8	
608	4	
1216	2	
2432	1	2432
		2660

76	35	
76	34 + 1	76
76	34	
152	17	
152	16 + 1	152
152	16	
304	8	
608	4	
1216	2	
2432	1	2432
		2660

76	35	
76	34 + 1	76
76	34	
152	17	
152	16 + 1	152
152	16	
304	8	
608	4	
1216	2	
2432	1	2432
		2660

76	35	
76	34 + 1	76
76	34	
152	17	
152	16 + 1	152
152	16	
304	8	
608	4	
1216	2	
2432	1	2432
		2660

76	35	
76	34 + 1	76
76	34	
152	17	
152	16 + 1	152
152	16	
304	8	
608	4	
1216	2	
2432	1	2432
		2660
		2000

76	35	
76	34 + 1	76
76	34	
152	17	
152	16 + 1	152
152	16	
304	8	
608	4	
1216	2	
2432	1	2432
		2660

76	35	
76	34 + 1	76
76	34	
152	17	
152	16 + 1	152
152	16	
304	8	
608	4	
1216	2	
2432	1	2432
		2660

The problem: Multiplying Numbers

Problem Given two n-digit numbers x and y, compute their product.

Grade School Multiplication

Compute "partial product" by multiplying each digit of y with x and adding the partial products.

 $\begin{array}{r}
 3141 \\
 \times 2718 \\
 \hline
 25128
 \end{array}$

3141

21987

<u>6282</u>

8537238

Time Analysis of Grade School Multiplication

- 1. Each partial product: $\Theta(n)$
- 2. Number of partial products: $\Theta(n)$
- 3. Addition of partial products: $\Theta(n^2)$
- 4. Total time: $\Theta(n^2)$

Intro. Algorithms & Models of Computation

CS/ECE 374A, Fall 2024

11.2

Multiplication using Divide and Conquer

Divide and Conquer

Assume n is a power of 2 for simplicity and numbers are in decimal.

Split each number into two numbers with equal number of digits

1.
$$b = b_{n-1}b_{n-2} \dots b_0$$
 and $c = c_{n-1}c_{n-2} \dots c_0$

2.
$$b = b_{n-1} \dots b_{n/2} \dots 0 + b_{n/2-1} \dots b_0$$

3.
$$b(x) = b_L x + b_R$$
, where $x = 10^{n/2}$, $b_L = b_{n-1} \dots b_{n/2}$ and $b_R = b_{n/2-1} \dots b_0$

4. Similarly
$$c(x) = c_L x + c_R$$
 where $c_L = c_{n-1} \dots c_{n/2}$ and $c_R = c_{n/2-1} \dots c_0$

Example

$$1234 \times 5678 = (12x + 34) \times (56x + 78)$$
 for $x = 100$.
= $12 \cdot 56 \cdot x^2 + (12 \cdot 78 + 34 \cdot 56)x + 34 \cdot 78$.

$$1234 \times 5678 = (100 \times 12 + 34) \times (100 \times 56 + 78)$$

$$= 10000 \times 12 \times 56$$

$$+100 \times (12 \times 78 + 34 \times 56)$$

$$+34 \times 78$$

Divide and Conquer for multiplication

Assume n is a power of 2 for simplicity and numbers are in decimal.

1.
$$b = b_{n-1}b_{n-2}...b_0$$
 and $c = c_{n-1}c_{n-2}...c_0$

2.
$$b \equiv b(x) = b_L x + b_R$$

where $x = 10^{n/2}$, $b_L = b_{n-1} \dots b_{n/2}$ and $b_R = b_{n/2-1} \dots b_0$

3.
$$c \equiv c(x) = c_L x + c_R$$
 where $c_L = c_{n-1} \dots c_{n/2}$ and $c_R = c_{n/2-1} \dots c_0$

Therefore, for $x = 10^{n/2}$, we have

$$bc = b(x)c(x) = (b_L x + b_R)(c_L x + c_R)$$

$$= b_L c_L x^2 + (b_L c_R + b_R c_L)x + b_R c_R$$

$$= 10^n b_L c_L + 10^{n/2} (b_L c_R + b_R c_L) + b_R c_R$$

Divide and Conquer for multiplication

Assume n is a power of 2 for simplicity and numbers are in decimal.

1.
$$b = b_{n-1}b_{n-2}...b_0$$
 and $c = c_{n-1}c_{n-2}...c_0$

2.
$$b \equiv b(x) = b_L x + b_R$$

where $x = 10^{n/2}$, $b_L = b_{n-1} \dots b_{n/2}$ and $b_R = b_{n/2-1} \dots b_0$

3.
$$c \equiv c(x) = c_L x + c_R$$
 where $c_L = c_{n-1} \dots c_{n/2}$ and $c_R = c_{n/2-1} \dots c_0$

Therefore, for $x = 10^{n/2}$, we have

$$bc = b(x)c(x) = (b_L x + b_R)(c_L x + c_R)$$

= $b_L c_L x^2 + (b_L c_R + b_R c_L)x + b_R c_R$
= $10^n b_L c_L + 10^{n/2}(b_L c_R + b_R c_L) + b_R c_R$

Time Analysis

$$bc = 10^n b_L c_L + 10^{n/2} (b_L c_R + b_R c_L) + b_R c_R$$

4 recursive multiplications of number of size n/2 each plus 4 additions and left shifts (adding enough 0's to the right)

$$T(n) = 4T(n/2) + O(n)$$
 $T(1) = O(1)$

 $T(n) = \Theta(n^2)$. No better than grade school multiplication

Time Analysis

$$bc = 10^n b_L c_L + 10^{n/2} (b_L c_R + b_R c_L) + b_R c_R$$

4 recursive multiplications of number of size n/2 each plus 4 additions and left shifts (adding enough 0's to the right)

$$T(n) = 4T(n/2) + O(n)$$
 $T(1) = O(1)$

 $T(n) = \Theta(n^2)$. No better than grade school multiplication!

Time Analysis

$$bc = 10^n b_L c_L + 10^{n/2} (b_L c_R + b_R c_L) + b_R c_R$$

4 recursive multiplications of number of size n/2 each plus 4 additions and left shifts (adding enough 0's to the right)

$$T(n) = 4T(n/2) + O(n)$$
 $T(1) = O(1)$

 $T(n) = \Theta(n^2)$. No better than grade school multiplication!

Intro. Algorithms & Models of Computation

CS/ECE 374A, Fall 2024

11.3

Faster multiplication: Karatsuba's Algorithm

A Trick of Gauss

Carl Friedrich Gauss: 1777–1855 "Prince of Mathematicians"

Observation: Multiply two complex numbers: (a + bi) and (c + di)

$$(a+bi)(c+di) = ac - bd + (ad+bc)i$$

How many multiplications do we need?

Only 3! If we do extra additions and subtractions. Compute ac, bd, (a + b)(c + d). Then (ad + bc) = (a + b)(c + d) - ac - bd

A Trick of Gauss

Carl Friedrich Gauss: 1777-1855 "Prince of Mathematicians"

Observation: Multiply two complex numbers: (a + bi) and (c + di)

$$(a+bi)(c+di) = ac - bd + (ad+bc)i$$

How many multiplications do we need?

Only 3! If we do extra additions and subtractions. Compute ac, bd, (a + b)(c + d). Then (ad + bc) = (a + b)(c + d) - ac - bd

A Trick of Gauss

Carl Friedrich Gauss: 1777-1855 "Prince of Mathematicians"

Observation: Multiply two complex numbers: (a + bi) and (c + di)

$$(a+bi)(c+di) = ac - bd + (ad+bc)i$$

How many multiplications do we need?

Only 3! If we do extra additions and subtractions.

Compute
$$ac, bd, (a+b)(c+d)$$
. Then $(ad+bc) = (a+b)(c+d) - ac - bd$

Gauss technique for polynomials

$$p(x) = ax + b$$
 and $q(x) = cx + d$.
$$p(x)q(x) = acx^{2} + (ad + bc)x + bd$$
.

$$p(x)q(x) = acx^2 + ((a+b)(c+d) - ac - bd)x + bd.$$

Gauss technique for polynomials

$$p(x) = ax + b$$
 and $q(x) = cx + d$.
$$p(x)q(x) = acx^{2} + (ad + bc)x + bd$$
.

$$p(x)q(x) = acx^2 + ((a+b)(c+d) - ac - bd)x + bd.$$

$$bc = b(x)c(x) = (b_L x + b_R)(c_L x + c_R)$$

$$bc = b(x)c(x) = (b_L x + b_R)(c_L x + c_R)$$

= $b_L c_L x^2 + (b_L c_R + b_R c_L)x + b_R c_R$

$$bc = b(x)c(x) = (b_L x + b_R)(c_L x + c_R)$$

$$= b_L c_L x^2 + (b_L c_R + b_R c_L)x + b_R c_R$$

$$= (b_L * c_L)x^2 + ((b_L + b_R) * (c_L + c_R) - b_L * c_L - b_R * c_R)x + b_R * c_R$$

$$bc = b(x)c(x) = (b_L x + b_R)(c_L x + c_R)$$

$$= b_L c_L x^2 + (b_L c_R + b_R c_L)x + b_R c_R$$

$$= (b_L * c_L)x^2 + ((b_L + b_R) * (c_L + c_R) - b_L * c_L - b_R * c_R)x + b_R * c_R$$

Recursively compute only $b_L c_L$, $b_R c_R$, $(b_L + b_R)(c_L + c_R)$.

$$bc = b(x)c(x) = (b_L x + b_R)(c_L x + c_R)$$

$$= b_L c_L x^2 + (b_L c_R + b_R c_L)x + b_R c_R$$

$$= (b_L * c_L)x^2 + ((b_L + b_R) * (c_L + c_R) - b_L * c_L - b_R * c_R)x + b_R * c_R$$

Recursively compute only $b_L c_L$, $b_R c_R$, $(b_L + b_R)(c_L + c_R)$.

Time Analysis

Running time is given by

$$T(n) = 3T(n/2) + O(n)$$
 $T(1) = O(1)$

which means $T(n) = O(n^{\log_2 3}) = O(n^{1.585})$

State of the Art

Schönhage-Strassen 1971: $O(n \log n \log \log n)$ time using Fast-Fourier-Transform (FFT)

Martin Fürer 2007: $O(n \log n2^{O(\log^* n)})$ time

Conjecture

There is an $O(n \log n)$ time algorithm.

Intro. Algorithms & Models of Computation

CS/ECE 374A, Fall 2024

11.3.1

Solving the recurrences for fast multiplication

Analyzing the Recurrences

- 1. Basic divide and conquer: T(n) = 4T(n/2) + O(n), T(1) = 1. Claim: $T(n) = \Theta(n^2)$.
- 2. Saving a multiplication: T(n) = 3T(n/2) + O(n), T(1) = 1. Claim: $T(n) = \Theta(n^{1+\log 1.5})$

Use recursion tree method

- 1. In both cases, depth of recursion $L = \log n$
- 2. Work at depth i is $4^{i}n/2^{i}$ and $3^{i}n/2^{i}$ respectively: number of children at depth i times the work at each child
- 3. Total work is therefore $n \sum_{i=0}^{L} 2^{i}$ and $n \sum_{i=0}^{L} (3/2)^{i}$ respectively.

Analyzing the Recurrences

- 1. Basic divide and conquer: T(n) = 4T(n/2) + O(n), T(1) = 1. Claim: $T(n) = \Theta(n^2)$.
- 2. Saving a multiplication: T(n) = 3T(n/2) + O(n), T(1) = 1. Claim: $T(n) = \Theta(n^{1+\log 1.5})$

Use recursion tree method:

- 1. In both cases, depth of recursion $L = \log n$.
- 2. Work at depth i is $4^{i}n/2^{i}$ and $3^{i}n/2^{i}$ respectively: number of children at depth i times the work at each child
- 3. Total work is therefore $n \sum_{i=0}^{L} 2^{i}$ and $n \sum_{i=0}^{L} (3/2)^{i}$ respectively.

Analyzing the recurrence with four recursive calls

$$T(n) = 4T(n/2) + O(n), T(1) = 1$$

Analyzing the recurrence with three recursive calls

$$T(n) = 3T(n/2) + O(n), T(1) = 1$$

Analyzing the recurrence with two recursive calls

$$T(n) = 2T(n/2) + O(n), T(1) = 1$$

Intro. Algorithms & Models of Computation

CS/ECE 374A, Fall 2024

11.4

Selecting in Unsorted Lists

Intro. Algorithms & Models of Computation

CS/ECE 374A, Fall 2024

11.4.1

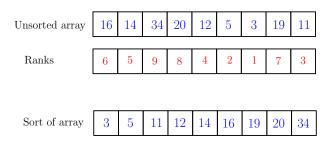
Problem definition and basic algorithm

Rank of element in an array

A: an unsorted array of **n** integers

Definition 11.1.

For $1 \le j \le n$, element of rank j is the jth smallest element in A.



Problem - Selection

Input Unsorted array A of n integers and integer jGoal Find the jth smallest number in A (rank j number)

Median:
$$j = \lfloor (n+1)/2 \rfloor$$

Simplifying assumption for sake of notation: elements of *A* are distinct

Problem - Selection

Input Unsorted array A of n integers and integer jGoal Find the jth smallest number in A (rank j number)

Median:
$$j = \lfloor (n+1)/2 \rfloor$$

Simplifying assumption for sake of notation: elements of \boldsymbol{A} are distinct

Algorithm I

- 1. Sort the elements in A
- 2. Pick jth element in sorted order

Time taken = $O(n \log n)$

Do we need to sort? Is there an O(n) time algorithm?

Algorithm I

- 1. Sort the elements in A
- 2. Pick jth element in sorted order

Time taken = $O(n \log n)$

Do we need to sort? Is there an O(n) time algorithm?

Algorithm II

If j is small or n - j is small then

- 1. Find j smallest/largest elements in A in O(jn) time. (How?)
- 2. Time to find median is $O(n^2)$.

Intro. Algorithms & Models of Computation

CS/ECE 374A, Fall 2024

11.4.2 Quick select

QuickSelect

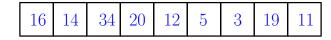
Divide and Conquer Approach

- 1. Pick a pivot element *a* from *A*
- 2. Partition **A** based on **a**.

$$A_{\mathrm{less}} = \{x \in A \mid x \leq a\} \text{ and } A_{\mathrm{greater}} = \{x \in A \mid x > a\}$$

- 3. $|\mathbf{A}_{\text{less}}| = \mathbf{j}$: return \mathbf{a}
- 4. $|A_{\rm less}| > j$: recursively find jth smallest element in $A_{\rm less}$
- 5. $|A_{\text{less}}| < j$: recursively find kth smallest element in A_{greater} where $k = j |A_{\text{less}}|$.

Example



Time Analysis

- 1. Partitioning step: O(n) time to scan A
- 2. How do we choose pivot? Recursive running time?

Suppose we always choose pivot to be A[1].

Say A is sorted in increasing order and j = n. Exercise: show that algorithm takes $\Omega(n^2)$ times

Time Analysis

- 1. Partitioning step: O(n) time to scan A
- 2. How do we choose pivot? Recursive running time?

Suppose we always choose pivot to be A[1].

Say A is sorted in increasing order and j = n. Exercise: show that algorithm takes $\Omega(n^2)$ time

Time Analysis

- 1. Partitioning step: O(n) time to scan A
- 2. How do we choose pivot? Recursive running time?

Suppose we always choose pivot to be A[1].

Say A is sorted in increasing order and j = n. Exercise: show that algorithm takes $\Omega(n^2)$ time

Suppose pivot is the ℓ th smallest element where $n/4 \le \ell \le 3n/4$. That is pivot is approximately in the middle of A. Then $n/4 \le |A_{less}| \le 3n/4$ and $n/4 \le |A_{greater}| \le 3n/4$. If we apply recursion,

$$T(n) \leq T(3n/4) + O(n)$$

Implies
$$T(n) = O(n)!$$

How do we find such a pivot? Randomly? In fact works! Analysis a little bit later.

Suppose pivot is the ℓ th smallest element where $n/4 \le \ell \le 3n/4$.

That is pivot is approximately in the middle of **A**

Then $n/4 \le |A_{less}| \le 3n/4$ and $n/4 \le |A_{greater}| \le 3n/4$. If we apply recursion,

$$T(n) \leq T(3n/4) + O(n)$$

Implies
$$T(n) = O(n)!$$

How do we find such a pivot? Randomly? In fact works! Analysis a little bit later.

Suppose pivot is the ℓ th smallest element where $n/4 \le \ell \le 3n/4$.

That is pivot is approximately in the middle of A

Then $n/4 \le |A_{less}| \le 3n/4$ and $n/4 \le |A_{greater}| \le 3n/4$. If we apply recursion,

$$T(n) \leq T(3n/4) + O(n)$$

Implies T(n) = O(n)!

How do we find such a pivot? Randomly? In fact works! Analysis a little bit later.

Suppose pivot is the ℓ th smallest element where $n/4 \le \ell \le 3n/4$.

That is pivot is <u>approximately</u> in the middle of **A**

Then $n/4 \le |A_{less}| \le 3n/4$ and $n/4 \le |A_{greater}| \le 3n/4$. If we apply recursion,

$$T(n) \leq T(3n/4) + O(n)$$

Implies T(n) = O(n)!

How do we find such a pivot? Randomly? In fact works! Analysis a little bit later.

Suppose pivot is the ℓ th smallest element where $n/4 \le \ell \le 3n/4$. That is pivot is approximately in the middle of A. Then $n/4 \le |A_{less}| \le 3n/4$ and $n/4 \le |A_{greater}| \le 3n/4$. If we apply recursion,

$$T(n) \leq T(3n/4) + O(n)$$

Implies
$$T(n) = O(n)!$$

How do we find such a pivot? Randomly? In fact works! Analysis a little bit later.

Suppose pivot is the ℓ th smallest element where $n/4 \le \ell \le 3n/4$.

That is pivot is approximately in the middle of **A**

Then $n/4 \le |A_{less}| \le 3n/4$ and $n/4 \le |A_{greater}| \le 3n/4$. If we apply recursion,

$$T(n) \leq T(3n/4) + O(n)$$

Implies T(n) = O(n)!

How do we find such a pivot? Randomly? In fact works! Analysis a little bit later.

Intro. Algorithms & Models of Computation

CS/ECE 374A, Fall 2024

11.4.3

Median of Medians

Divide and Conquer Approach

A game of medians

Idea

- 1. Break input **A** into many subarrays: $L_1, \ldots L_k$.
- 2. Find median m_i in each subarray L_i .
- 3. Find the median x of the medians m_1, \ldots, m_k .
- 4. Intuition: The median x should be close to being a good median of all the numbers in A.
- 5. Use x as pivot in previous algorithm.

The input:

75	31	13	26	83	110	60	120	63	30	3	41	44	107	30	23	91	17	6	110
68	24	41	26	58	57	61	20	52	45	13	79	86	91	55	66	13	103	36	60
19	40	45	111	56	74	17	95	96	77	29	65	36	96	93	119	9	61	3	9
100	3	88	47	115	107	79	39	109	20	59	25	92	81	36	10	30	113	73	116
72	58	24	16	12	69	40	24	19	92	7	65	75	41	43	117	103	38	8	20

Compute median of the medians (recursive call):

```
72 74 13 66
31 60 65 30
41 39 75 61
26 63 91 8
58 45 43 60
```

After partition (pivot **60**)

```
| 19 | 3 | 13 | 16 | 12 | 57 | 17 | 20 | 19 | 20 | 3 | 25 | 92 | 109 | 96 | 79 | 110 | 69 | 83 | 75 |
| 14 | 24 | 24 | 25 | 56 | 17 | 40 | 24 | 52 | 30 | 7 | 60 | 77 | 81 | 63 | 61 | 107 | 115 | 111 | 72 |
| 20 | 31 | 41 | 26 | 58 | 30 | 60 | 39 | 36 | 45 | 13 | 65 | 75 | 91 | 120 | 66 | 74 | 61 | 88 | 68 |
| 9 | 40 | 45 | 47 | 3 | 13 | 23 | 55 | 30 | 44 | 29 | 65 | 86 | 99 | 95 | 117 | 91 | 103 | 100 | 110 |
| 36 | 58 | 8 | 6 | 38 | 9 | 10 | 43 | 41 | 36 | 59 | 79 | 20 | 107 | 93 | 119 | 103 | 113 | 73 | 116 |
```

```
        19
        3
        13
        16
        12
        57
        17
        20
        19
        20
        3
        25
        41
        24
        24
        26
        56
        17
        40
        24
        52
        30
        7
        20
        31
        41
        26
        58
        30
        60
        39
        36
        45
        13
        3
        55
        30
        44
        29
        36
        58
        7
        3
        13
        23
        55
        30
        44
        29
        36
        58
        8
        6
        38
        9
        10
        43
        41
        36
        59
        9
```

The input:

75	31	13	26	83	110	60	120	63	30	3	41	44	107	30	23	91	17	6	110
68	24	41	26	58	57	61	20	52	45	13	79	86	91	55	66	13	103	36	60
19	40	45	111	56	74	17	95	96	77	29	65	36	96	93	119	9	61	3	9
100	3	88	47	115	107	79	39	109	20	59	25	92	81	36	10	30	113	73	116
72	58	24	16	12	69	40	24	19	92	7	65	75	41	43	117	103	38	8	20

Compute median of the medians (recursive call):

72	74	13	66
31	60	65	30
41	39	75	61
26	63	91	8
58	45	43	60

After partition (pivot **60**)

```
        19
        3
        13
        16
        12
        57
        7
        20
        19
        20
        3
        25
        92
        109
        96
        79
        110
        69
        83
        75

        41
        24
        24
        55
        17
        0
        24
        52
        30
        7
        60
        77
        81
        63
        61
        107
        115
        111
        72

        20
        31
        41
        26
        58
        30
        60
        39
        36
        45
        13
        65
        75
        91
        120
        66
        74
        61
        88
        68

        9
        40
        47
        3
        13
        23
        55
        30
        42
        26
        56
        76
        96
        14
        61
        88
        68

        9
        40
        45
        47
        3
        33
        25
        53
        30
        42
        20
        56
        76
        96
        17
        91
        103
        101
        34
        14
        36
        59
```

The input:

75	31	13	26	83	110	60	120	63	30	3	41	44	107	30	23	91	17	6	110
68	24	41	26	58	57	61	20	52	45	13	79	86	91	55	66	13	103	36	60
19	40	45	111	56	74	17	95	96	77	29	65	36	96	93	119	9	61	3	9
100	3	88	47	115	107	79	39	109	20	59	25	92	81	36	10	30	113	73	116
72	58	24	16	12	69	40	24	19	92	7	65	75	41	43	117	103	38	8	20

Compute median of the medians (recursive call):

		•	
72	74	13	66
31	60	65	30
41	39	75	61
26	63	91	8
58	45	43	60

After partition (pivot **60**):

19	3	13	16	12	57	17	20	19	20	3	25	92	109	96	79	110	69	83	75
41	24	24	26	56	17	40	24	52	30	7	60	77	81	63	61	107	115	111	72
20	31	41	26	58	30	60	39	36	45	13	65	75	91	120	66	74	61	88	68
9	40	45	47	3												91			110
36	58	8	6	38	9	10	43	41	36	59	79	92	107	93	119	103	113	73	116

```
        19
        3
        13
        16
        12
        57
        17
        20
        19
        20
        3
        25

        41
        24
        24
        26
        56
        17
        40
        24
        52
        30
        7

        20
        31
        41
        26
        58
        30
        60
        39
        36
        45
        13

        9
        40
        45
        47
        3
        13
        23
        55
        30
        44
        29

        36
        58
        8
        6
        38
        9
        10
        43
        41
        36
        59
```

The input:

75	31	13	26	83	110	60	120	63	30	3	41	44	107	30	23	91	17	6	110
68	24	41	26	58	57	61	20	52	45	13	79	86	91	55	66	13	103	36	60
19	40	45	111	56	74	17	95	96	77	29	65	36	96	93	119	9	61	3	9
100	3	88	47	115	107	79	39	109	20	59	25	92	81	36	10	30	113	73	116
72	58	24	16	12	69	40	24	19	92	7	65	75	41	43	117	103	38	8	20

Compute median of the medians (recursive call):

		•	
72	74	13	66
31	60	65	30
41	39	75	61
26	63	91	8
58	45	43	60

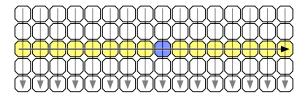
After partition (pivot **60**):

19	3	13	16	12	57	17	20	19	20	3	25	92	109	96	79	110	69	83	75
41	24	24	26	56	17	40	24	52	30	7	60	77	81	63	61	107	115	111	72
20	31	41	26	58	30	60	39	36	45	13	65	75	91	120	66	74	61	88	68
9	40	45	47	3												91			110
36	58	8	6	38	9	10	43	41	36	59	79	92	107	93	119	103	113	73	116

	19									20		25
ſ	41									30		
ſ	20	31	41	26	58	30	60	39	36	45	13	
Ì	9	40								44		
ĺ	36	58	8	6	38	9	10	43	41	36	59	

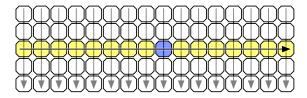
Example

11	7	3	42	174	310	1	92	87	12	19	15
----	---	---	----	-----	-----	---	----	----	----	----	----



Example

11	7	3	42	174	310	1	92	87	12	19	15
----	---	---	----	-----	-----	---	----	----	----	----	----



Choosing the pivot

A clash of medians

1. Partition array **A** into $\lceil n/5 \rceil$ lists of **5** items each.

$$L_1 = \{A[1], A[2], \dots, A[5]\}, L_2 = \{A[6], \dots, A[10]\}, \dots, L_i = \{A[5i+1], \dots, A[5i-4]\}, \dots, L_{\lceil n/5 \rceil} = \{A[5\lceil n/5 \rceil - 4, \dots, A[n]\}.$$

- 2. For each i find median b_i of L_i using brute-force in O(1) time. Total O(n) time
- 3. Let $B = \{b_1, b_2, \dots, b_{\lceil n/5 \rceil}\}$
- 4. Find median **b** of **B**

Lemma 11.2.

Median of B is an approximate median of A. That is, if b is used a pivot to partition A, then $|A_{less}| \leq 7n/10 + 6$ and $|A_{greater}| \leq 7n/10 + 6$.

Choosing the pivot

A clash of medians

1. Partition array **A** into $\lceil n/5 \rceil$ lists of **5** items each.

$$L_1 = \{A[1], A[2], \ldots, A[5]\}, L_2 = \{A[6], \ldots, A[10]\}, \ldots, L_i = \{A[5i+1], \ldots, A[5i-4]\}, \ldots, L_{\lceil n/5 \rceil} = \{A[5\lceil n/5 \rceil - 4, \ldots, A[n]\}.$$

- 2. For each i find median b_i of L_i using brute-force in O(1) time. Total O(n) time
- 3. Let $B = \{b_1, b_2, \dots, b_{\lceil n/5 \rceil}\}$
- 4. Find median **b** of **B**

Lemma 11.2.

Median of B is an approximate median of A. That is, if b is used a pivot to partition A, then $|A_{less}| \leq 7n/10 + 6$ and $|A_{greater}| \leq 7n/10 + 6$.

A storm of medians

```
 \begin{array}{l} \text{select}(A,\,j): \\ \text{Form lists } L_1,L_2,\ldots,L_{\lceil n/5\rceil} \text{ where } L_i = \{A[5i-4],\ldots,A[5i]\} \\ \text{Find median } b_i \text{ of each } L_i \text{ using brute-force} \\ \text{Find median } b \text{ of } B = \{b_1,b_2,\ldots,b_{\lceil n/5\rceil}\} \\ \text{Partition } A \text{ into } A_{\text{less}} \text{ and } A_{\text{greater}} \text{ using } b \text{ as pivot} \\ \text{if } (|A_{\text{less}}|) = j \text{ return } b \\ \text{else if } (|A_{\text{less}}|) > j) \\ \text{return select}(A_{\text{less}},\,j) \\ \text{else} \\ \text{return select}(A_{\text{greater}},\,j-|A_{\text{less}}|) \\ \end{array}
```

How do we find median of B?

A storm of medians

```
 \begin{array}{l} \text{select}(A,\ j): \\ & \text{Form lists } L_1, L_2, \dots, L_{\lceil n/5 \rceil} \text{ where } L_i = \{A[5i-4], \dots, A[5i]\} \\ & \text{Find median } b_i \text{ of each } L_i \text{ using brute-force} \\ & \text{Find median } b \text{ of } B = \{b_1, b_2, \dots, b_{\lceil n/5 \rceil}\} \\ & \text{Partition } A \text{ into } A_{\text{less}} \text{ and } A_{\text{greater}} \text{ using } b \text{ as pivot} \\ & \text{if } (|A_{\text{less}}|) = j \text{ return } b \\ & \text{else if } (|A_{\text{less}}|) > j) \\ & \text{return select}(A_{\text{less}},\ j) \\ & \text{else} \\ & \text{return select}(A_{\text{greater}},\ j - |A_{\text{less}}|) \\ \end{array}
```

How do we find median of **B**? Recursively!

A storm of medians

```
 \begin{array}{l} \textbf{select}(A,\,j) : \\ & \textbf{Form lists}\,\, L_1, L_2, \dots, L_{\lceil n/5 \rceil} \,\, \textbf{where}\,\, L_i = \{A[5i-4], \dots, A[5i]\} \\ & \textbf{Find median}\,\, b_i \,\, \textbf{of each}\,\, L_i \,\, \textbf{using brute-force} \\ & \textbf{Find median}\,\, b \,\, \textbf{of}\,\, B = \{b_1, b_2, \dots, b_{\lceil n/5 \rceil}\} \\ & \textbf{Partition}\,\, A \,\, \textbf{into}\,\, A_{\text{less}} \,\, \textbf{and}\,\, A_{\text{greater}} \,\, \textbf{using}\,\, b \,\, \textbf{as pivot} \\ & \textbf{if}\,\, (|A_{\text{less}}|) = j \,\, \textbf{return}\,\, b \\ & \textbf{else}\,\, \textbf{if}\,\, (|A_{\text{less}}|) > j) \\ & \textbf{return select}(A_{\text{less}},\,j) \\ & \textbf{else} \\ & \textbf{return select}(A_{\text{greater}},\,j - |A_{\text{less}}|) \\ \end{array}
```

How do we find median of **B**? Recursively!

A storm of medians

```
 \begin{array}{l} \textbf{select}(A,\ j): \\ & \textbf{Form lists}\ L_1, L_2, \dots, L_{\lceil n/5 \rceil} \ \text{where}\ L_i = \{A[5i-4], \dots, A[5i]\} \\ & \textbf{Find median}\ b_i \ \text{of each}\ L_i \ \text{using brute-force} \\ & B = [b_1, b_2, \dots, b_{\lceil n/5 \rceil}] \\ & b = \textbf{select}(B,\ \lceil n/10 \rceil) \\ & \textbf{Partition}\ A \ \text{into}\ A_{\text{less}} \ \text{and}\ A_{\text{greater}} \ \text{using}\ b \ \text{as pivot} \\ & \textbf{if}\ (|A_{\text{less}}|) = j \ \text{return}\ b \\ & \textbf{else}\ \textbf{if}\ (|A_{\text{less}}|) > j) \\ & \textbf{return select}(A_{\text{less}},\ j) \\ & \textbf{else} \\ & \textbf{return select}(A_{\text{greater}},\ j - |A_{\text{less}}|) \end{array}
```

Intro. Algorithms & Models of Computation

CS/ECE 374A, Fall 2024

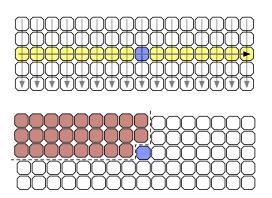
11.4.4

Median of medians is a good median

Median of Medians: Proof of Lemma

Proposition 11.3.

There are at least 3n/10 - 6 elements smaller than the median of medians **b**.



Median of Medians: Proof of Lemma

Proposition 11.4.

There are at least 3n/10 - 6 elements smaller than the median of medians **b**.

Proof.

At least half of the $\lfloor n/5 \rfloor$ groups have at least 3 elements smaller than b, except for the group containing b which has 2 elements smaller than b. Hence number of elements smaller than b is:

$$3\lfloor \frac{\lfloor n/5\rfloor + 1}{2} \rfloor - 1 \geq 3n/10 - 6$$

Median of Medians: Proof of Lemma

Proposition 11.5.

There are at least 3n/10 - 6 elements smaller than the median of medians **b**.

Corollary 11.6.

 $|A_{greater}| \leq 7n/10 + 6$.

Via symmetric argument,

Corollary 11.7.

 $|A_{less}| < 7n/10 + 6.$

Intro. Algorithms & Models of Computation

CS/ECE 374A, Fall 2024

11.4.5

Running time of deterministic median selection

Running time of deterministic median selection

A dance with recurrences

$$T(n) \le T(\lceil n/5 \rceil) + \max\{T(|A_{less}|), T(|A_{greater})|\} + O(n)$$

From Lemma,

$$T(n) \leq T(\lceil n/5 \rceil) + T(\lfloor 7n/10 + 6 \rfloor) + O(n)$$

and

$$T(n) = O(1) \qquad n < 10$$

Exercise: show that T(n) = O(n)

Running time of deterministic median selection

A dance with recurrences

$$T(n) \le T(\lceil n/5 \rceil) + \max\{T(|A_{less}|), T(|A_{greater})|\} + O(n)$$

From Lemma,

$$T(n) \leq T(\lceil n/5 \rceil) + T(\lfloor 7n/10 + 6 \rfloor) + O(n)$$

and

$$T(n) = O(1) \qquad n < 10$$

Exercise: show that T(n) = O(n)

Running time of deterministic median selection

A dance with recurrences

$$T(n) \le T(\lceil n/5 \rceil) + \max\{T(|A_{less}|), T(|A_{greater})|\} + O(n)$$

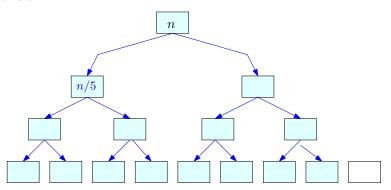
From Lemma,

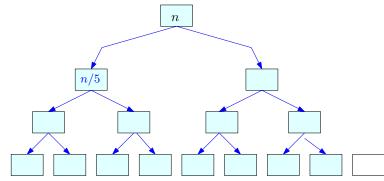
$$T(n) \leq T(\lceil n/5 \rceil) + T(\lfloor 7n/10 + 6 \rfloor) + O(n)$$

and

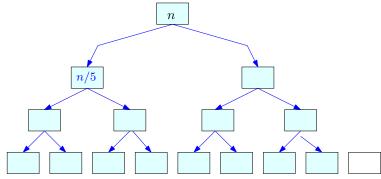
$$T(n) = O(1) \qquad n < 10$$

Exercise: show that T(n) = O(n)

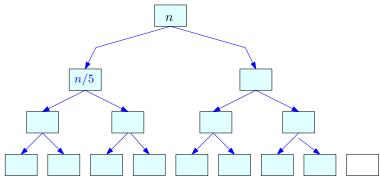




(1/5)n, (7/10)n



(1/25)n, (7/50)n, (7/50)n, (49/100)n



(1/125)n, (7/250)n, (7/250)n, (49/500)n, (7/250)n, (49/500)n, (49/500)n, (343/1000)n

Intro. Algorithms & Models of Computation

CS/ECE 374A, Fall 2024

11.4.6

Epilogue: On selection in linear time

Summary: Selection in linear time

Theorem 11.8.

The algorithm select(A[1 ... n], k) computes in O(n) deterministic time the kth smallest element in A.

On the other hand, we have:

Lemma 11.9.

The algorithm QuickSelect(A[1 ... n], k) computes the kth smallest element in A. The running time of QuickSelect is $\Theta(n^2)$ in the worst case.

Questions to ponder

- 1. Why did we choose lists of size **5**? Will lists of size **3** work?
- 2. Write a recurrence to analyze the algorithm's running time if we choose a list of size k.

Median of Medians Algorithm

Due to:

M. Blum, R. Floyd, D. Knuth, V. Pratt, R. Rivest, and R. Tarjan.

"Time bounds for selection".

Journal of Computer System Sciences (JCSS), 1973.

How many Turing Award winners in the author list? All except Vaughn Pratt!

Median of Medians Algorithm

Due to:

M. Blum, R. Floyd, D. Knuth, V. Pratt, R. Rivest, and R. Tarjan.

"Time bounds for selection".

Journal of Computer System Sciences (JCSS), 1973.

How many Turing Award winners in the author list?

All except Vaughn Pratt

Median of Medians Algorithm

Due to:

M. Blum, R. Floyd, D. Knuth, V. Pratt, R. Rivest, and R. Tarjan.

"Time bounds for selection".

Journal of Computer System Sciences (JCSS), 1973.

How many Turing Award winners in the author list? All except Vaughn Pratt!

Takeaway Points

- 1. Recursion tree method and guess and verify are the most reliable methods to analyze recursions in algorithms.
- 2. Recursive algorithms naturally lead to recurrences.
- 3. Some times one can look for certain type of recursive algorithms (reverse engineering) by understanding recurrences and their behavior.