Intro. Algorithms & Models of Computation CS/ECE 374A, Fall 2024

Halting, Undecidability, and Maybe Some Complexity

Lecture 9 Tuesday, September 24, 2024

LATEXed: August 25, 2024 14:22

Quote

"Young man, in mathematics you don't understand things. You just get used to them." – John von Neumann.

Intro. Algorithms & Models of Computation CS/ECE 374A, Fall 2024

9.1 Cantor's diagonalization argument

You can not count the real numbers

I = (0, 1). $\mathbb{N} = \{1, 2, 3, \ldots\}$ the integer numbers

Claim 9.1 (Cantor).

 $|\mathbb{N}| \neq |\boldsymbol{l}|$

Claim 9.2 (Warm-up). $|\mathbb{N}| \leq |I|$

Proof.

 $|\mathbb{N}| \leq |I|$ exists a one-to-one mapping from \mathbb{N} to I. One such mapping is f(i) = 1/i, which readily implies the claim.

You can not count the real numbers

I = (0, 1). $\mathbb{N} = \{1, 2, 3, \ldots\}$ the integer numbers

Claim 9.1 (Cantor).

 $|\mathbb{N}| \neq |\mathbf{I}|$

```
Claim 9.2 (Warm-up). |\mathbb{N}| \leq |I|
```

Proof.

 $|\mathbb{N}| \leq |I|$ exists a one-to-one mapping from \mathbb{N} to I. One such mapping is f(i) = 1/i, which readily implies the claim.

You can not count the real numbers II

```
I = (0, 1), \mathbb{N} = \{1, 2, 3, \ldots\}.
```

Claim 9.3 (Cantor).

 $|\mathbb{N}| \neq |I|$, where I = (0, 1).

Proof.

You can not count the real numbers II

```
I = (0, 1), \mathbb{N} = \{1, 2, 3, \ldots\}.
```

Claim 9.3 (Cantor).

 $|\mathbb{N}| \neq |I|$, where I = (0, 1).

Proof.

	f(1)	f(2)	f(3)	f(4)	
1	1	1	0	0	
2	0	1	0	1	
3	1	0	1	1	
4	0	1	0	0	
÷	÷	÷	÷	÷	$\gamma_{i,j}$

	f(1)	f(2)	f(3)	f(4)	
1	$\beta_1 = 1$	1	0	0	
2	0	$\beta_2 = 1$	0	1	
3	1	0	$\beta_3 = 1$	1	
4	0	1	0	$\beta_4 = 0$	
:		÷	÷	÷	$\gamma_{i,j}$

 $d_i = \text{ any number in } \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\} \setminus \{d_{i-1}, \beta_i\}$

	f(1)	f(2)	f(3)	f(4)	
1	1	1	0	0	
2	0	1	0	1	
3	1	0	1	1	
4	0	1	0	0	
÷	÷	÷	÷	÷	$\gamma_{i,j}$

 $\begin{array}{l} d_i = \text{ any number in } \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\} \setminus \{d_{i-1}, \beta_i\} \\ \Longrightarrow \forall i \ \beta_i \neq d_i. \end{array}$

	f(1)	f(2)	f(3)	f(4)	
1	1	1	0	0	
2	0	1	0	1	
3	1	0	1	1	
4	0	1	0	0	
:	÷	÷	÷	÷	14. 1

 $d_i = \text{ any number in } \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\} \setminus \{d_{i-1}, \beta_i\}$ $\implies \forall i \ \beta_i \neq d_i.$ D = 0.23232323...

D can not be the *i* column, because $\beta_i \neq d_i$.

	f(1)	f(2)	f(3)	f(4)	
1	1	1	0	0	
2	0	1	0	1	
3	1	0	1	1	
4	0	1	0	0	
:		÷	÷	:	$\gamma_{i,j}$

 $\begin{array}{l} d_i = \text{ any number in } \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\} \setminus \{d_{i-1}, \beta_i\} \\ \Longrightarrow \forall i \ \beta_i \neq d_i. \\ D = 0.23232323... \\ D \text{ can not be the } i \text{ column, because } \beta_i \neq d_i. \end{array}$

But **D** can not be in the matrix...

- The Hitchhiker Guide to the Galaxy
- 1. The liar's paradox: This sentence is false.
- 2. Related to Russell's paradox.
- 3. Omnipotence paradox: Can [an omnipotent being] create a stone so heavy that it cannot lift it?

- The Hitchhiker Guide to the Galaxy
- 1. The liar's paradox: This sentence is false.
- 2. Related to Russell's paradox.
- Omnipotence paradox: Can [an omnipotent being] create a stone so heavy that it cannot lift it?

- The Hitchhiker Guide to the Galaxy
- 1. The liar's paradox: This sentence is false.
- 2. Related to Russell's paradox.
- 3. Omnipotence paradox: Can [an omnipotent being] create a stone so heavy that it cannot lift it?

- The Hitchhiker Guide to the Galaxy
- 1. The liar's paradox: This sentence is false.
- 2. Related to Russell's paradox.
- 3. Omnipotence paradox: Can [an omnipotent being] create a stone so heavy that it cannot lift it?

Intro. Algorithms & Models of Computation CS/ECE 374A, Fall 2024

9.2 Introduction to the halting theorem

The halting problem

Halting problem: Given a program Q, if we run it would it stop?

Q: Can one build a program **P**, that always stops, and solves the halting problem.

Theorem 9.1 ("Halting theorem").

There is no program that always stops and solves the halting problem.

The halting problem

Halting problem: Given a program Q, if we run it would it stop? Q: Can one build a program P, that always stops, and solves the halting problem.

Theorem 9.1 ("Halting theorem").

There is no program that always stops and solves the halting problem.

Definition 9.2.

An integer number **n** is a **weird number** if

• the sum of the proper divisors (including 1 but not itself) of n the number is > n,

no subset of those divisors sums to the number itself.

70 is weird. Its divisors are 1, 2, 5, 7, 10, 14, 35.

1 + 2 + 5 + 7 + 10 + 14 + 35 = 74. No subset of them adds up to 70.

Open question: Are there are any odd weird numbers?

Write a program *P* that tries all odd numbers in order, and check if they are weird. The programs stops if it found such number.

Definition 9.2.

An integer number **n** is a **weird number** if

• the sum of the proper divisors (including 1 but not itself) of n the number is > n,

no subset of those divisors sums to the number itself.

70 is weird. Its divisors are 1, 2, 5, 7, 10, 14, 35. 1 + 2 + 5 + 7 + 10 + 14 + 35 = 74. No subset of them adds up to 70. **Open question:** Are there are any odd weird numbers?

Write a program *P* that tries all odd numbers in order, and check if they are weird. The programs stops if it found such number.

Definition 9.2.

An integer number **n** is a **weird number** if

• the sum of the proper divisors (including 1 but not itself) of n the number is > n,

no subset of those divisors sums to the number itself.

70 is weird. Its divisors are 1, 2, 5, 7, 10, 14, 35.

1 + 2 + 5 + 7 + 10 + 14 + 35 = 74. No subset of them adds up to 70.

Open question: Are there are any odd weird numbers?

Write a program *P* that tries all odd numbers in order, and check if they are weird. The programs stops if it found such number.

Definition 9.2.

An integer number **n** is a **weird number** if

• the sum of the proper divisors (including 1 but not itself) of n the number is > n,

no subset of those divisors sums to the number itself.

70 is weird. Its divisors are 1, 2, 5, 7, 10, 14, 35.

1 + 2 + 5 + 7 + 10 + 14 + 35 = 74. No subset of them adds up to 70.

Open question: Are there are any odd weird numbers?

Write a program *P* that tries all odd numbers in order, and check if they are weird. The programs stops if it found such number.

- 1. Consider any math claim C.
- 2. Prover algorithm **P**_C:
 - (A) Generate sequence of all possible proofs (sequence of strings) into a pipe/queue.
 - B) $\langle \boldsymbol{p} \rangle \leftarrow$ pop top of queue.
 - (C) Feed $\langle \boldsymbol{p} \rangle$ and $\langle \boldsymbol{C} \rangle$, into a proof verifier ("easy").
 - (D) If $\langle \boldsymbol{p} \rangle$ valid proof of $\langle \boldsymbol{C} \rangle$, then stop and accept.
 - (E) Go to (B
- 3. P_C halts $\iff C$ is true and has a proof.
- 4. If halting is decidable, then can decide if any claim in math is true.

- 1. Consider any math claim C.
- 2. Prover algorithm **P**_C:
 - (A) Generate sequence of all possible proofs (sequence of strings) into a pipe/queue.
 - (B) $\langle \boldsymbol{p} \rangle \leftarrow$ pop top of queue.
 - (C) Feed $\langle \boldsymbol{p} \rangle$ and $\langle \boldsymbol{C} \rangle$, into a proof verifier ("easy")
 - (D) If $\langle \boldsymbol{p} \rangle$ valid proof of $\langle \boldsymbol{C} \rangle$, then stop and accept.
 - (E) Go to (E
- 3. P_C halts $\iff C$ is true and has a proof.
- 4. If halting is decidable, then can decide if any claim in math is true.

- 1. Consider any math claim C.
- 2. Prover algorithm **P**_C:
 - (A) Generate sequence of all possible proofs (sequence of strings) into a pipe/queue.
 - (B) $\langle \boldsymbol{p} \rangle \leftarrow$ pop top of queue.
 - (C) Feed $\langle \boldsymbol{p} \rangle$ and $\langle \boldsymbol{C} \rangle$, into a proof verifier ("easy").
 - (D) If (*p*) valid proof of (*C*), then stop and accept.
 (E) Go to (B).
- 3. P_C halts $\iff C$ is true and has a proof.
- 4. If halting is decidable, then can decide if any claim in math is true.

- 1. Consider any math claim C.
- 2. Prover algorithm **P**_C:
 - (A) Generate sequence of all possible proofs (sequence of strings) into a pipe/queue.
 - (B) $\langle \boldsymbol{p} \rangle \leftarrow$ pop top of queue.
 - (C) Feed $\langle \boldsymbol{p} \rangle$ and $\langle \boldsymbol{C} \rangle$, into a proof verifier ("easy").
 - (D) If $\langle \boldsymbol{p} \rangle$ valid proof of $\langle \boldsymbol{C} \rangle$, then stop and accept.
 - (E) Go to (B).
- 3. P_C halts $\iff C$ is true and has a proof.
- 4. If halting is decidable, then can decide if any claim in math is true.

Intro. Algorithms & Models of Computation CS/ECE 374A, Fall 2024

9.3 The halting theorem

Encodings

M: Turing machine $\langle M \rangle$: a binary string uniquely describing M (i.e., it is a number. w: An input string.

 $\langle M, w \rangle$: A unique binary string encoding both M and input w.

 $\mathbf{A}_{\mathrm{TM}} = \left\{ \langle \boldsymbol{M}, \boldsymbol{w} \rangle \; \middle| \; \boldsymbol{M} \text{ is a TM and } \boldsymbol{M} \text{ accepts } \boldsymbol{w} \right\}.$

Encodings

M: Turing machine $\langle M \rangle$: a binary string uniquely describing *M* (i.e., it is a number. *w*: An input string.

 $\langle M, w \rangle$: A unique binary string encoding both M and input w.

 $\mathbf{A}_{\mathrm{TM}} = \left\{ \langle M, w
angle \; \middle| \; M ext{ is a TM and } M ext{ accepts } w
ight\}.$

Encodings

M: Turing machine $\langle M \rangle$: a binary string uniquely describing *M* (i.e., it is a number.

w: An input string.

 $\langle M, w \rangle$: A unique binary string encoding both M and input w.

$$\mathbf{A}_{\mathrm{TM}} = \left\{ \langle \boldsymbol{M}, \boldsymbol{w} \rangle \; \middle| \; \boldsymbol{M} \text{ is a TM and } \boldsymbol{M} \text{ accepts } \boldsymbol{w} \right\}.$$

Complexity classes

 \mathbf{A}_{TM} is TM recognizable...

$$\mathbf{A}_{\mathrm{TM}} = \left\{ \langle \boldsymbol{M}, \boldsymbol{w} \rangle \mid \boldsymbol{M} \text{ is a TM and } \boldsymbol{M} \text{ accepts } \boldsymbol{w} \right\}.$$

Lemma 9.1.

 \mathbf{A}_{TM} is Turing recognizable.

Proof.

Input: $\langle M, w \rangle$. Using UTM simulate running M on w. If M accepts w then accept, if M rejects then reject. Otherwise, the simulation runs forever. \mathbf{A}_{TM} is TM recognizable...

$$\mathbf{A}_{\mathrm{TM}} = \left\{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ accepts } w \right\}.$$

Lemma 9.1.

 \mathbf{A}_{TM} is Turing recognizable.

Proof.

Input: $\langle M, w \rangle$. Using UTM simulate running M on w. If M accepts w then accept, if M rejects then reject. Otherwise, the simulation runs forever. $\mathbf{A}_{\mathsf{TM}} \text{ is not TM decidable!} \\ \mathbf{A}_{\mathsf{TM}} = \left\{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ accepts } w \right\}.$

Theorem 9.2 (The halting theorem.). $A_{\rm TM}$ is not Turing decidable.

Proof: Assume $A_{\rm TM}$ is TM decidable... Halt: TM deciding $A_{\rm TM}$. Halt always halts, and works as follows:

 $\mathsf{Halt}(\langle M, w \rangle) = \begin{cases} \operatorname{accept} & M \operatorname{accepts} w \\ \operatorname{reject} & M \operatorname{does} \operatorname{not} \operatorname{accept} w. \end{cases}$

 $\mathbf{A}_{\mathsf{TM}} \text{ is not TM decidable!} \\ \mathbf{A}_{\mathsf{TM}} = \left\{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ accepts } w \right\}.$

Theorem 9.2 (The halting theorem.). A_{TM} *is not Turing decidable.*

Proof: Assume A_{TM} is TM decidable... Halt: TM deciding A_{TM} . Halt always halts, and works as follows:

 $\mathsf{Halt}(\langle M, w \rangle) = \begin{cases} \operatorname{accept} & M \operatorname{accepts} w \\ \operatorname{reject} & M \operatorname{does} \operatorname{not} \operatorname{accept} w. \end{cases}$

 $\mathbf{A}_{\mathsf{TM}} \text{ is not TM decidable!} \\ \mathbf{A}_{\mathsf{TM}} = \left\{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ accepts } w \right\}.$

Theorem 9.2 (The halting theorem.).

 \mathbf{A}_{TM} is not Turing decidable.

Proof: Assume A_{TM} is TM decidable... Halt: TM deciding A_{TM} . Halt always halts, and works as follows:

$$\mathsf{Halt}(\langle M, w \rangle) = \begin{cases} \operatorname{accept} & M \operatorname{accepts} w \\ \operatorname{reject} & M \operatorname{does not accept} w. \end{cases}$$

We build the following new function:

Flipper always stops:

 $\mathsf{Flipper}(\langle M \rangle) = \begin{cases} \mathsf{reject} & M \text{ accepts } \langle M \rangle \\ \mathsf{accept} & M \text{ does not accept } \langle M \rangle. \end{cases}$

We build the following new function:

$$\mathsf{Flipper}(\langle M \rangle) = \begin{cases} \mathsf{reject} & M \text{ accepts } \langle M \rangle \\ \mathsf{accept} & M \text{ does not accept } \langle M \rangle. \end{cases}$$

Flipper is a TM (duh!), and as such it has an encoding \langle **Flipper** \rangle . Run **Flipper** on itself:

$$\mathsf{Flipper}(\langle \mathsf{Flipper} \rangle) = \begin{cases} \mathsf{reject} & \mathsf{Flipper} \ \mathsf{accepts} \ \langle \mathsf{Flipper} \rangle \\ \mathsf{accept} & \mathsf{Flipper} \ \mathsf{does} \ \mathsf{not} \ \mathsf{accept} \ \langle \mathsf{Flipper} \rangle \end{cases}$$

This is absurd. Ridiculous even! Assumption that **Halt** exists is false. \implies **A**_{TM} is not TM decidable.

$$\mathsf{Flipper}(\langle M \rangle) = \begin{cases} \mathsf{reject} & M \text{ accepts } \langle M \rangle \\ \mathsf{accept} & M \text{ does not accept } \langle M \rangle. \end{cases}$$

Flipper is a TM (duh!), and as such it has an encoding \langle **Flipper** \rangle . Run **Flipper** on itself:

$$\mathsf{Flipper}(\langle \mathsf{Flipper} \rangle) = \begin{cases} \mathsf{reject} & \mathsf{Flipper} \ \mathsf{accepts} \ \langle \mathsf{Flipper} \rangle \\ \mathsf{accept} & \mathsf{Flipper} \ \mathsf{does} \ \mathsf{not} \ \mathsf{accept} \ \langle \mathsf{Flipper} \rangle \end{cases}$$

This is absurd. Ridiculous even!

Assumption that Halt exists is false. \implies \mathbf{A}_{TM} is not TM decidable.

$$\mathsf{Flipper}(\langle M \rangle) = \begin{cases} \mathsf{reject} & M \text{ accepts } \langle M \rangle \\ \mathsf{accept} & M \text{ does not accept } \langle M \rangle. \end{cases}$$

Flipper is a TM (duh!), and as such it has an encoding \langle **Flipper** \rangle . Run **Flipper** on itself:

$$\mathsf{Flipper}(\langle \mathsf{Flipper} \rangle) = \begin{cases} \mathsf{reject} & \mathsf{Flipper} \ \mathsf{accepts} \ \langle \mathsf{Flipper} \rangle \\ \mathsf{accept} & \mathsf{Flipper} \ \mathsf{does} \ \mathsf{not} \ \mathsf{accept} \ \langle \mathsf{Flipper} \rangle \end{cases}$$

This is absurd. Ridiculous even! Assumption that Halt exists is false. \implies A_{TM} is not TM decidable.

But where is the diagonalization argument????

	$\langle M_1 \rangle$	$\langle M_2 \rangle$	$\langle M_3 \rangle$	$\langle M_4 \rangle$	
M_1	rej	асс	rej	rej	
M_2	rej	acc	rej	асс	
<i>M</i> ₃	асс	асс	acc	rej	
M_4	rej	асс	асс	rej	
÷	÷	÷	:	:	$\gamma_{i,j}$

Intro. Algorithms & Models of Computation CS/ECE 374A, Fall 2024

9.4 Unrecognizable

Definition 9.1.

Language L is TM <u>decidable</u> if there exists M that always stops, such that L(M) = L.

Definition 9.2

Language L is TM recognizable if there exists M that stops on some inputs, such that L(M) = L.

Theorem 9.3 (Halting).

 $\mathbf{A}_{\mathrm{TM}} = \left\{ \langle \boldsymbol{M}, \boldsymbol{w} \rangle \mid \boldsymbol{M} \text{ is a TM and } \boldsymbol{M} \text{ accepts } \boldsymbol{w} \right\}. \text{ is TM recognizable, but not decidable.}$

Definition 9.1.

Language L is TM <u>decidable</u> if there exists M that always stops, such that L(M) = L.

Definition 9.2.

Language L is TM recognizable if there exists M that stops on some inputs, such that L(M) = L.

Theorem 9.3 (Halting).

 $\mathbf{A}_{\mathrm{TM}} = \left\{ \langle \boldsymbol{M}, \boldsymbol{w} \rangle \mid \boldsymbol{M} \text{ is a TM and } \boldsymbol{M} \text{ accepts } \boldsymbol{w} \right\}. \text{ is TM recognizable, but not decidable.}$

Definition 9.1.

Language L is TM <u>decidable</u> if there exists M that always stops, such that L(M) = L.

Definition 9.2.

Language L is TM recognizable if there exists M that stops on some inputs, such that L(M) = L.

Theorem 9.3 (Halting).

 $\mathbf{A}_{\mathrm{TM}} = \left\{ \langle \boldsymbol{M}, \boldsymbol{w} \rangle \mid \boldsymbol{M} \text{ is a TM and } \boldsymbol{M} \text{ accepts } \boldsymbol{w} \right\}. \text{ is TM recognizable, but not decidable.}$

Lemma 9.4.

If L and $\overline{L} = \Sigma^* \setminus L$ are both TM recognizable, then L and \overline{L} are decidable.

Proof.

M: TM recognizing *L*. M_c : TM recognizing \overline{L} . Given input *x*, using UTM simulating running *M* and M_c on *x* in parallel. One of them must stop and accept. Return result.

Lemma 9.4.

If L and $\overline{L} = \Sigma^* \setminus L$ are both TM recognizable, then L and \overline{L} are decidable.

Proof.

M: TM recognizing *L*. M_c : TM recognizing \overline{L} . Given input *x*, using UTM simulating running *M* and M_c on *x* in parallel. One of them must stop and accept. Return result. $\implies L$ is decidable.

Complement language for \mathbf{A}_{TM}

$\overline{\mathbf{A}_{\mathrm{TM}}} = \mathbf{\Sigma}^* \setminus \left\{ \langle \boldsymbol{M}, \boldsymbol{w} \rangle \; \middle| \; \boldsymbol{M} \text{ is a } \mathbf{TM} \text{ and } \boldsymbol{M} \text{ accepts } \boldsymbol{w} \right\}.$

But don't really care about invalid inputs. So, really:

 $\overline{\mathbf{A}_{\mathrm{TM}}} = \left\{ \langle \boldsymbol{M}, \boldsymbol{w} \rangle \mid \boldsymbol{M} \text{ is a TM and } \boldsymbol{M} \text{ does not accept } \boldsymbol{w} \right\}.$

Complement language for A_{TM}

$$\overline{\mathbf{A}_{\mathrm{TM}}} = \boldsymbol{\Sigma}^* \setminus \left\{ \langle \boldsymbol{M}, \boldsymbol{w} \rangle \; \middle| \; \boldsymbol{M} \text{ is a TM and } \boldsymbol{M} \text{ accepts } \boldsymbol{w} \right\}.$$

But don't really care about invalid inputs. So, really:

 $\overline{\mathbf{A}_{\mathrm{TM}}} = \left\{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ does not accept } w \right\}.$

Complement language for \mathbf{A}_{TM} is not TM-recognizable

Theorem 9.5.

The language

$$\overline{\mathbf{A}_{\mathrm{TM}}} = \left\{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ does not accept } w \right\}$$

is not TM recognizable.

Proof.

 $\begin{array}{l} \mathbf{A}_{\mathrm{TM}} \text{ is TM-recognizable.} \\ \text{If } \overline{\mathbf{A}_{\mathrm{TM}}} \text{ is TM-recognizable} \\ \implies \text{(by Lemma)} \\ \mathbf{A}_{\mathrm{TM}} \text{ is decidable. A contradiction.} \end{array}$

Complement language for \mathbf{A}_{TM} is not TM-recognizable

Theorem 9.5.

The language

$$\overline{\mathbf{A}_{\mathrm{TM}}} = \left\{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ does not accept } w \right\}$$

is not TM recognizable.

 Proof.

 A_{TM} is TM-recognizable.

 If $\overline{A_{TM}}$ is TM-recognizable

 \implies (by Lemma)

 A_{TM} is decidable. A contradiction.

Complement language for \mathbf{A}_{TM} is not TM-recognizable

Theorem 9.5.

The language

$$\overline{\mathbf{A}_{\mathrm{TM}}} = \left\{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ does not accept } w \right\}$$

is not TM recognizable.

Proof. A_{TM} is TM-recognizable.If $\overline{A_{TM}}$ is TM-recognizable \implies (by Lemma) A_{TM} is decidable. A contradiction.

Intro. Algorithms & Models of Computation CS/ECE 374A, Fall 2024

9.5 Turing complete

Equivalent to a program

Definition 9.1.

A system is **Turing complete** if one can simulate a Turing machine using it.

- 1. Programming languages (yey!).
- 2. C++ templates system (boo).
- 3. John Conway's game of life.
- 4. Many games (Minesweeper).
- 5. Post's correspondence problem.

Equivalent to a program

Definition 9.1.

A system is **Turing complete** if one can simulate a Turing machine using it.

- 1. Programming languages (yey!).
- 2. C++ templates system (boo).
- 3. John Conway's game of life.
- 4. Many games (Minesweeper).
- 5. Post's correspondence problem.

Post's correspondence problem

S: set of domino tiles.

domino piece a string at the top and a string at the bottom.

Example:

abb

bc

$$S = \left\{ \begin{matrix} b \\ ca \end{matrix}, \begin{matrix} a \\ ab \end{matrix}, \begin{matrix} ca \\ a \end{matrix}, \begin{matrix} abc \\ c \end{matrix} \right\}.$$

Matching dominos

$$S = \left\{ \begin{bmatrix} b \\ ca \end{bmatrix}, \begin{bmatrix} a \\ ab \end{bmatrix}, \begin{bmatrix} ca \\ a \end{bmatrix}, \begin{bmatrix} abc \\ c \end{bmatrix} \right\}.$$

<u>match</u> for S: ordered list of dominos from S, such that top strings make same string as bottom strings. Example:

а	b	са	а	abc	
ab	са	а	ab	С	•

(1) Can use same domino more than once.(2) Do not have to use all pieces of *S*.

Matching dominos

$$S = \left\{ \begin{array}{c} b \\ ca \end{array}, \begin{array}{c} a \\ ab \end{array}, \begin{array}{c} ca \\ a \end{array}, \begin{array}{c} abc \\ c \end{array} \right\}.$$

<u>match</u> for S: ordered list of dominos from S, such that top strings make same string as bottom strings. Example:

а	b	са	а	abc	
ab	са	а	ab	С	•

(1) Can use same domino more than once.(2) Do not have to use all pieces of *S*.

Matching dominos

$$S = \left\{ \begin{bmatrix} b \\ ca \end{bmatrix}, \begin{bmatrix} a \\ ab \end{bmatrix}, \begin{bmatrix} ca \\ a \end{bmatrix}, \begin{bmatrix} abc \\ c \end{bmatrix} \right\}.$$

<u>match</u> for S: ordered list of dominos from S, such that top strings make same string as bottom strings. Example:

(1) Can use same domino more than once.
 (2) Do not have to use all pieces of *S*.

Post's Correspondence Problem

Post's Correspondence Problem (PCP) is deciding whether a set of dominos has a match or not.

modified Post's Correspondence Problem (MPCP): PCP + a special tile.

Matches for MPCP have to start with the special tile.

Theorem 9.2. *The* MPCP *problem is undecidable.*