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7.1
Outputting a random balanced strings
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Outputting a random balanced string
function		S()
				r	=	rand(1:5)
				if		r	==	1
								S()
								S()
				elseif		r	∈	2:4
								print("(")
								S()
								print(")")
				end
end

S()
println(	"\n"	)
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7.2
A fluffy introduction to context free
languages, push down automatas
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What stack got to do with it?
What’s a stack but a second hand memory?

1. DFA/NFA/Regular expressions.
≡ constant memory computation.

2. NFA + stack
≡ context free grammars (CFG).

3. Turing machines DFA/NFA + unbounded memory.
≡ a standard computer/program.
≡ NFA with two stacks.

5 / 61



Context Free Languages and Grammars

▶ Programming Language Specification

▶ Parsing

▶ Natural language understanding

▶ Generative model giving structure

▶ . . .

6 / 61



Programming Languages
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Natural Language Processing
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Models of Growth

▶ L-systems

▶ http://www.kevs3d.co.uk/dev/lsystems/
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Kolam drawing generated by grammar
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7.3
Formal definition of convex-free languages
(CFGs)
FLNAME:7.3.0.0 ZZZ:7.3.0.0 Formal definition of convex-free languages (CFGs)
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Context Free Grammar (CFG) Definition

Definition 7.1.
A CFG is a quadruple G = (V ,T ,P, S)
▶ V is a finite set of non-terminal symbols

▶ T is a finite set of terminal symbols (alphabet)

▶ P is a finite set of productions, each of the form
A → α
where A ∈ V and α is a string in (V ∪ T )∗.
Formally, P ⊂ V × (V ∪ T )∗.

▶ S ∈ V is a start symbol

G =
(

Variables, Terminals, Productions, Start var
)
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Example

▶ V = {S}
▶ T = {a, b}
▶ P = {S → ϵ | a | b | aSa | bSb}

(abbrev. for S → ϵ, S → a, S → b, S → aSa, S → bSb)

S ⇝ aSa ⇝ abSba ⇝ abbSbba ⇝ abb b bba

What strings can S generate like this?
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Example formally...

▶ V = {S}
▶ T = {a, b}
▶ P = {S → ϵ | a | b | aSa | bSb}

(abbrev. for S → ϵ, S → a, S → b, S → aSa, S → bSb)

G =

{S}, {a, b},


S → ϵ,
S → a,
S → b

S → aSa
S → bSb

 S
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Palindromes

▶ Madam in Eden I’m Adam

▶ Dog doo? Good God!

▶ Dogma: I am God.

▶ A man, a plan, a canal, Panama

▶ Are we not drawn onward, we few, drawn onward to new era?

▶ Doc, note: I dissent. A fast never prevents a fatness. I diet on cod.

▶ http://www.palindromelist.net
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Examples

L = {0n1n | n ≥ 0}

S → ϵ | 0S1
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Notation and Convention

Let G = (V ,T ,P, S) then

▶ a, b, c, d , . . . , in T (terminals)

▶ A,B,C ,D, . . . , in V (non-terminals)

▶ u, v ,w , x, y , . . . in T ∗ for strings of terminals

▶ α, β, γ, . . . in (V ∪ T )∗

▶ X ,Y ,X in V ∪ T
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“Derives” relation

Formalism for how strings are derived/generated

Definition 7.2 (derive).

Let G = (V ,T ,P, S) be a CFG. For strings α1, α2 ∈ (V ∪ T )∗: α1 derives α2

denoted by α1 ⇝G α2 if there exist strings β, γ, δ in (V ∪ T )∗ such that

▶ α1 = βAδ

▶ α2 = βγδ

▶ A → γ is in P.

Example 7.3.
For S → ϵ | 0S1
S ⇝ ϵ, S ⇝ 0S1, 0S1 ⇝ 00S11, 0S1 ⇝ 01.
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“Derives” relation continued

Definition 7.4.
For integer k ≥ 0, α1 ⇝k α2 inductive defined:

▶ α1 ⇝0 α2 if α1 = α2

▶ α1 ⇝k α2 if α1 ⇝ β1 and β1 ⇝k−1 α2.

▶ Alternative definition: α1 ⇝k α2 if α1 ⇝k−1 β1 and β1 ⇝ α2

⇝∗ is the reflexive and transitive closure of ⇝.

α1 ⇝∗ α2 if α1 ⇝k α2 for some k .

Example 7.5.
For S → ϵ | 0S1
=⇒ S ⇝∗ ϵ, 0S1 ⇝∗ 0000011111.
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Context Free Languages

Definition 7.6.
The language generated by CFG G = (V ,T ,P, S) is denoted by L(G) where
L(G) = {w ∈ T ∗ | S ⇝∗ w}.

Definition 7.7.
A language L is context free (CFL) if it is generated by a context free grammar. That
is, there is a CFG G such that L = L(G).
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Example

L = {0n1n | n ≥ 0}

S → ϵ | 0S1

L = {0n1m | m > n}

L =
{
w ∈

{
(, )

}∗
∣∣∣ w is properly nested string of parenthesis

}
.
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7.4
Converting regular languages into CFL
FLNAME:7.4.0.0 ZZZ:7.4.0.0 Converting regular languages into CFL
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Converting regular languages into CFL

M = (Q,Σ, δ, s,A): DFA for regular language L.

G =
( Variables︷︸︸︷

Q ,

Terminals︷︸︸︷
Σ ,

Productions︷ ︸︸ ︷
{q → aδ(q, a) | q ∈ Q, a ∈ Σ}

∪ {q → ε | q ∈ A} ,

Start var︷︸︸︷
s

)

CA B D E

a, b a, b

a ab b

23 / 61



Conversion continued...

CA B D E

a, b a, b

a ab b

G =

{A,B,C ,D,E}, {a, b},


A → aA,A → bA,A → aB,

B → bC ,
C → aD,
D → bE ,

E → aE ,E → bE ,E → ε

 ,A
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The result...

Lemma 7.1.
For an regular language L, there is a context-free grammar (CFG) that generates it.
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7.5
CFL as a python program
FLNAME:7.5.0.0 ZZZ:7.5.0.0 CFL as a python program
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0n1n

The grammar G :
S → ε | 0S1

Can be translated into the python program:
#! /bin/python3

import random

# S → epsilon | 0 S 1

def S():

match random.randrange(10):

case 0:

return # epsilon

case _:

print( "0", end='' )

S()

print( "1", end='' )

S()

print( "" )

L(G) = any string that this program might output.
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Balanced parenthesis expression

The grammar G :
S → ε | (S) | SS

Can be translated into the python program:
#! /bin/python3

import random

# S → epsilon | ( S ) | S S

def S():

match random.randrange(3):

case 0: # epsilon

return

case 1: # ( S )

print( "(", end='' )

S()

print( ")", end='' )

case _: # SS

S()

S()

S()

print( "" )

L(G) = any string that this program might output.
28 / 61



Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2024

7.6
Some properties of CFLs
FLNAME:7.6.0.0 ZZZ:7.6.0.0 Some properties of CFLs
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7.6.1
Closure properties of CFLs
FLNAME:7.6.1.0 ZZZ:7.6.1.0 Closure properties of CFLs
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Bad news: Canonical non-CFL

Theorem 7.1.
L = {anbncn | n ≥ 0} is not context-free.

Proof based on pumping lemma for CFLs. See supplemental for the proof.
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More bad news: CFL not closed under intersection

Theorem 7.2.
CFLs are not closed under intersection.
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Closure Properties of CFLs

G1 = (V1,T ,P1, S1) and G2 = (V2,T ,P2, S2)
Assumption: V1 ∩ V2 = ∅, that is, non-terminals are not shared

Theorem 7.3.
CFLs are closed under union. L1, L2 CFLs implies L1 ∪ L2 is a CFL.

Theorem 7.4.
CFLs are closed under concatenation. L1, L2 CFLs implies L1·L2 is a CFL.

Theorem 7.5.
CFLs are closed under Kleene star.
If L is a CFL =⇒ L∗ is a CFL.
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Closure Properties of CFLs
Union

G1 = (V1,T ,P1, S1) and G2 = (V2,T ,P2, S2)
Assumption: V1 ∩ V2 = ∅, that is, non-terminals are not shared.

Theorem 7.6.
CFLs are closed under union. L1, L2 CFLs implies L1 ∪ L2 is a CFL.
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Closure Properties of CFLs
Concatenation

Theorem 7.7.
CFLs are closed under concatenation. L1, L2 CFLs implies L1·L2 is a CFL.
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Closure Properties of CFLs
Stardom (i.e, Kleene star)

Theorem 7.8.
CFLs are closed under Kleene star.
If L is a CFL =⇒ L∗ is a CFL.
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Exercise

▶ Prove that every regular language is context-free using previous closure properties.

▶ Prove the set of regular expressions over an alphabet Σ forms a non-regular
language which is context-free.
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Even more bad news: CFL not closed under complement

Theorem 7.9.
CFLs are not closed under complement.
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Good news: Closure Properties of CFLs continued

Theorem 7.10.
If L1 is a CFL and L2 is regular then L1 ∩ L2 is a CFL.
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7.6.2
Parse trees and ambiguity
FLNAME:7.6.2.0 ZZZ:7.6.2.0 Parse trees and ambiguity
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Parse Trees or Derivation Trees

A tree to represent the derivation S ⇝∗ w .

▶ Rooted tree with root labeled S
▶ Non-terminals at each internal node of tree

▶ Terminals at leaves

▶ Children of internal node indicate how non-terminal was expanded using a
production rule

A picture is worth a thousand words
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Example

S	à aSb | bSa | SS	| ab| ba |	ε

S è aSb è abSab è abSSab è abbaSab è abbaab

A corresponding derivation of abbaab

S

S ba

S ab

S S

b a ε

A derivation tree for abbaab
(also called “parse tree”)
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Ambiguity in CFLs

Definition 7.11.
A CFG G is ambiguous if there is a string w ∈ L(G) with two different parse trees. If
there is no such string then G is unambiguous.

Example: S → S − S | 1 | 2 | 3

S

S

S

S– – SS

–S S–S S3

2 1 3 2

1

3–(2–1) (3–2)–1 
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Ambiguity in CFLs

▶ Original grammar: S → S − S | 1 | 2 | 3
▶ Unambiguous grammar:

S → S − C | 1 | 2 | 3
C → 1 | 2 | 3

S

S – C

–S C

3 2

1

(3–2)–1 

The grammar forces a parse 
corresponding to  left-to-right 
evaluation.
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Inherently ambiguous languages

Definition 7.12.
A CFL L is inherently ambiguous if there is no unambiguous CFG G such that
L = L(G).

▶ There exist inherently ambiguous CFLs.
Example: L = {anbmck | n = m or m = k}

▶ Given a grammar G it is undecidable to check whether L(G) is inherently
ambiguous. No algorithm!
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7.7
CFGs; Proving a grammar generate a
specific language
FLNAME:7.7.0.0 ZZZ:7.7.0.0 CFGs; Proving a grammar generate a specific language
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Inductive proofs for CFGs

Question: How do we formally prove that a CFG L(G) = L?

Example: S → ϵ | a | b | aSa | bSb

Theorem 7.1.
L(G) = {palindromes} = {w | w = wR}

Two directions:

▶ L(G) ⊆ L, that is, S ⇝∗ w then w = wR

▶ L ⊆ L(G), that is, w = wR then S ⇝∗ w
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L(G) ⊆ L

Show that if S ⇝∗ w then w = wR

By induction on length of derivation, meaning
For all k ≥ 1, S ⇝∗k w implies w = wR .

▶ If S ⇝1 w then w = ϵ or w = a or w = b. Each case w = wR .

▶ Assume that for all k < n, that if S →k w then w = wR

▶ Let S ⇝n w (with n > 1). Wlog w begin with a.
▶ Then S → aSa ⇝k−1 aua where w = aua.
▶ And S ⇝n−1 u and hence IH, u = uR .
▶ Therefore w r = (aua)R = (ua)Ra = auRa = aua = w .
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L ⊆ L(G)

Show that if w = wR then S ⇝∗ w .

By induction on |w |
That is, for all k ≥ 0, |w | = k and w = wR implies S ⇝∗ w .

Exercise: Fill in proof.
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Mutual Induction

Situation is more complicated with grammars that have multiple non-terminals.

See Section 5.3.2 of the notes for an example proof.
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7.8
CFGs normal form
FLNAME:7.8.0.0 ZZZ:7.8.0.0 CFGs normal form
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Normal Forms

Normal forms are a way to restrict form of production rules

Advantage: Simpler/more convenient algorithms and proofs

Two standard normal forms for CFGs

▶ Chomsky normal form

▶ Greibach normal form
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Normal Forms

Chomsky Normal Form:

▶ Productions are all of the form A → BC or A → a.
If ϵ ∈ L then S → ϵ is also allowed.

▶ Every CFG G can be converted into CNF form via an efficient algorithm

▶ Advantage: parse tree of constant degree.

Greibach Normal Form:

▶ Only productions of the form A → aβ are allowed.

▶ All CFLs without ϵ have a grammar in GNF. Efficient algorithm.

▶ Advantage: Every derivation adds exactly one terminal.
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7.9
Pushdown automatas
FLNAME:7.9.0.0 ZZZ:7.9.0.0 Pushdown automatas
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Things to know: Pushdown Automata

PDA: a NFA coupled with a stack

PDAs and CFGs are equivalent: both generate exactly CFLs.
PDA is a machine-centric view of CFLs.
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Pushdown automata by example

q0 q1 q2

[, ǫ → [ (, ǫ → (

), (→ ǫ], [→ ǫ

ǫ, ǫ → $ ǫ, $ → ǫ
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7.10
Supplemental: Why anbncn is not CFL
FLNAME:7.10.0.0 ZZZ:7.10.0.0 Supplemental: Why anbncn is not CFL
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You are bound to repeat yourself...

L = {anbncn | n ≥ 0}.
1. For the sake of contradiction assume that there exists a grammar:

G a CFG for L.
2. Ti : minimal parse tree in G for aibic i .

3. hi = height(Ti): Length of longest path from root to leaf in Ti .

4. For any integer t, there must exist an index j(t), such that hj(t) > t.

5. There an index j , such that hj >
(
2 ∗ # variables in G

)
.
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Repetition in the parse tree...

α

β
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Repetition in the parse tree...

α

β

α

x y z v w

β

xyzvw = ajbjc j
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Repetition in the parse tree...

α

x y z v w

β

α

x w

β

β′

y z v

y v

xyzvw = ajbjc j =⇒ xy 2zv 2w ∈ L
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Now for some case analysis...

▶ We know:
xyzvw = ajbjc j

|y | + |v | > 0.

▶ We proved that τ = xy 2zv 2w ∈ L.
▶ If y contains both a and b, then, τ = ...a...b...a...b....

Impossible, since τ ∈ L = {anbncn | n ≥ 0}.
▶ Similarly, not possible that y contains both b and c .
▶ Similarly, not possible that v contains both a and b.
▶ Similarly, not possible that v contains both b and c .
▶ If y contains only as, and v contains only bs, then... #a(τ ) ̸= #c(τ ).

Not possible.

▶ Similarly, not possible that y contains only as, and v contains only cs.
Similarly, not possible that y contains only bs, and v contains only cs.

▶ Must be that τ /∈ L. A contradiction.
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We conclude...

Lemma 7.1.
The language L = {anbncn | n ≥ 0} is not CFL (i.e., there is no CFG for it).
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