Intro. Algorithms & Models of Computation CS/ECE 374A, Fall 2024

Proving Non-regularity

Lecture 6 Thursday, September 12, 2024

^LATEXed: October 4, 2024 23:10

Intro. Algorithms & Models of Computation CS/ECE 374A, Fall 2024

6.1 Not all languages are regular

Regular Languages, DFAs, NFAs

Theorem 6.1.

Languages accepted by DFAs, NFAs, and regular expressions are the same.

Question: Is every language a regular language? No.

- \triangleright Each DFA *M* can be represented as a string over a finite alphabet **Σ** by appropriate encoding
- ▶ Hence number of regular languages is countably infinite
- Number of languages is uncountably infinite
- \blacktriangleright Hence there must be a non-regular language!

A direct proof $L = \{0^i1^i \mid i \geq 0\} = \{\epsilon, 01, 0011, 000111, \cdots, \}$

Theorem 6.2.

L is not regular.

A Simple and Canonical Non-regular Language $L = \{0^i1^i \mid i \geq 0\} = \{\epsilon, 01, 0011, 000111, \cdots, \}$

Theorem 6.3.

L is not regular.

Question: Proof?

Intuition: Any program to recognize L seems to require counting number of zeros in input which cannot be done with fixed memory.

How do we formalize intuition and come up with a formal proof?

Proof by Contradiction

▶ Suppose L is regular. Then there is a DFA M such that $L(M) = L$. ▶ Let $M = (Q, \{0, 1\}, \delta, s, A)$ where $|Q| = n$. Consider strings ϵ , 0, 00, 000, \cdots , 0ⁿ total of $n+1$ strings.

What states does M reach on the above strings? Let $q_i = \delta^*(s, \pmb{0}^i).$

By pigeon hole principle $q_i=q_j$ for some $0\leq i< j\leq n.$ That is, M is in the same state after reading $\boldsymbol{0}^i$ and $\boldsymbol{0}^j$ where $i\neq j$.

M should accept 0^i1^i but then it will also accept 0^j1^i where $i \neq j$. This contradicts the fact that M accepts L . Thus, there is no DFA for L . Intro. Algorithms & Models of Computation CS/ECE 374A, Fall 2024

6.2 When two states are equivalent?

Equivalence between states

Definition 6.1. $M = (Q, \Sigma, \delta, s, A)$: DFA. Two states $p, q \in Q$ are equivalent if for all strings $w \in \Sigma^*$, we have that

 $\delta^*(p, w) \in A \iff \delta^*(q, w) \in A.$

One can merge any two states that are equivalent into a single state.

Distinguishing between states

Definition 6.2. $M = (Q, \Sigma, \delta, s, A)$: DFA. Two states $p, q \in Q$ are distinguishable if there exists a string $w \in \Sigma^*$, such that

$$
\delta^*(p, w) \in A \quad \text{and} \quad \delta^*(q, w) \notin A.
$$

$$
\delta^*(p, w) \notin A \quad \text{and} \quad \delta^*(q, w) \in A.
$$

or

Distinguishable prefixes

 $M = (Q, \Sigma, \delta, s, A)$: DFA **Idea:** Every string $w \in \Sigma^*$ defines a state $\nabla w = \delta^*(s, w)$.

Definition 6.3.

Two strings $u, w \in \Sigma^*$ are distinguishable for M (or $L(M)$) if ∇u and ∇w are distinguishable.

Definition 6.4 (Direct restatement).

Two prefixes $u, w \in \Sigma^*$ are distinguishable for a language L if there exists a string x, such that $ux \in L$ and $wx \notin L$ (or $ux \notin L$ and $wx \in L$).

Distinguishable means different states

Lemma 6.5.

L: regular language. $M = (Q, \Sigma, \delta, s, A)$: DFA for L. If $x, y \in \Sigma^*$ are distinguishable, then $\nabla x \neq \nabla y$.

Reminder: $\nabla x = \delta^*(s, x) \in Q$ and $\nabla y = \delta^*(s, y) \in Q$

Proof by a figure

Distinguishable strings means different states: Proof

Lemma 6.6.

L: regular language. $M = (Q, \Sigma, \delta, s, A)$: DFA for L. If $x, y \in \Sigma^*$ are distinguishable, then $\nabla x \neq \nabla y$.

Proof.

Assume for the sake of contradiction that $\nabla x = \nabla y$. By assumption $\exists w \in \mathsf{\Sigma}^*$ such that $\nabla xw \in A$ and $\nabla yw \notin A$. $\implies A \ni \nabla xw = \delta^*(s, xw) = \delta^*(\nabla x, w) = \delta^*(\nabla y, w)$ $=\delta^*(s, yw) = \nabla yw \notin A$. \implies A \Rightarrow $\nabla yw \notin A$. Impossible! Assumption that $\nabla x = \nabla y$ is false.

Review questions...

- 1. Prove for any $i \neq j$ then 0^i and 0^j are distinguishable for the language $\{0^k1^k \mid k \geq 0\}.$
- 2. Let L be a regular language, and let w_1, \ldots, w_k be strings that are all pairwise distinguishable for L . Prove that any DFA for L must have at least k states.
- 3. Prove that $\{0^k1^k \mid k \geq 0\}$ is not regular.

Intro. Algorithms & Models of Computation CS/ECE 374A, Fall 2024

6.3 Fooling sets: Proving non-regularity

Fooling Sets

Definition 6.1.

For a language L over Σ a set of strings F (could be infinite) is a fooling set or distinguishing set for L if every two distinct strings $x, y \in F$ are distinguishable.

Example: $F = \{0^i \mid i \ge 0\}$ is a fooling set for the language $L = \{0^k 1^k \mid k \ge 0\}$.

Theorem 6.2.

Suppose F is a fooling set for L. If F is finite then there is no DFA M that accepts L with less than $|F|$ states.

Recall

Already proved the following lemma:

Lemma 6.3.

L: regular language. $M = (Q, \Sigma, \delta, s, A)$: DFA for L. If $x, y \in \Sigma^*$ are distinguishable, then $\nabla x \neq \nabla y$.

Reminder: $\nabla x = \delta^*(s, x)$.

Proof of theorem

Theorem 6.4 (Reworded.).

L: A language F: a fooling set for L. If F is finite then any DFA M that accepts L has at least $|F|$ states.

Proof.

Let $F = \{w_1, w_2, \ldots, w_m\}$ be the fooling set. Let $M = (Q, \Sigma, \delta, s, A)$ be any DFA that accepts L. Let $q_i = \nabla w_i = \delta^*(s, x_i)$. By lemma $q_i \neq q_j$ for all $i \neq j$. As such, $|Q| \geq |\{q_1, \ldots, q_m\}| = |\{w_1, \ldots, w_m\}| = |F|$.

Infinite Fooling Sets

Corollary 6.5.

If L has an infinite fooling set F then L is not regular.

Proof.

Let $w_1, w_2, \ldots \subset F$ be an infinite sequence of strings such that every pair of them are distinguishable. Assume for contradiction that $\exists M$ a DFA for L. Let $F_i = \{w_1, \ldots, w_i\}$. By theorem, $\#$ states of $M > |F_i| = i$, for all *i*. As such, number of states in M is infinite. Contradiction: $DFA =$ deterministic **finite** automata. But M not finite.

Examples

- ▶ ${0^k1^k | k \ge 0}$
- ▶ { bitstrings with equal number of 0s and 1s}
- $\blacktriangleright \{0^k1^\ell \mid k \neq \ell\}$

Harder example: The language of squares is not regular ${0^{k^2} | k \ge 0}$

Really hard: Primes are not regular

An exercise left for your enjoyment

```
\{0^k | k is a prime number\}Hints:
```
- 1. Probably easier to prove directly on the automata.
- 2. There are infinite number of prime numbers.
- 3. For every $n > 0$, observe that $n!$, $n! + 1, ..., n! + n$ are all composite there are arbitrarily big gaps between prime numbers.

Intro. Algorithms & Models of Computation CS/ECE 374A, Fall 2024

6.3.1

Exponential gap in number of states between DFA and NFA sizes

Exponential gap between NFA and DFA size

 $L_4 = \{w \in \{0,1\}^* \mid w \text{ has a 1 located 4 positions from the end}\}\$

Exponential gap between NFA and DFA size

 $L_k = \{w \in \{0,1\}^* \mid w \text{ has a } 1 \text{ } k \text{ positions from the end}\}\$ Recall that L_k is accepted by a NFA N with $k + 1$ states.

Theorem 6.6.

Every DFA that accepts L_k has at least 2^k states.

Claim 6.7.

 $\mathcal{F} = \{w \in \{0,1\}^* : |w| = k\}$ is a fooling set of size 2^k for L_k .

Why?

- ▶ Suppose $a_1a_2... a_k$ and $b_1b_2... b_k$ are two distinct bitstrings of length k
- \triangleright Let *i* be first index where $a_i \neq b_i$
- ▶ $y = 0^{k-i-1}$ is a distinguishing suffix for the two strings

How to pick a fooling set

How do we pick a fooling set F ?

- If x, y are in F and $x \neq y$ they should be distinguishable! Of course.
- \triangleright All strings in F except maybe one should be prefixes of strings in the language L. For example if $L = \{0^k1^k \mid k \geq 0\}$ do not pick 1 and 10 (say). Why?

Intro. Algorithms & Models of Computation CS/ECE 374A, Fall 2024

6.4 Closure properties: Proving non-regularity

Non-regularity via closure properties $H = \{$ bitstrings with equal number of 0s and 1s $\}$

 $H' = \{0^k 1^k \mid k \geq 0\}$

Suppose we have already shown that H' is non-regular. Can we show that L is non-regular without using the fooling set argument from scratch?

$H' = H \cap L(0^*1^*)$

Claim: The above and the fact that L' is non-regular implies H is non-regular. Why?

Suppose H is regular. Then since $L(0^*1^*)$ is regular, and regular languages are closed under intersection, H' also would be regular. But we know H' is not regular, a contradiction.

Non-regularity via closure properties

General recipe:

Proving non-regularity: Summary

- \triangleright Method of distinguishing suffixes. To prove that L is non-regular find an infinite fooling set.
- ▶ Closure properties. Use existing non-regular languages and regular languages to prove that some new language is non-regular.
- ▶ Pumping lemma. We did not cover it but it is sometimes an easier proof technique to apply, but not as general as the fooling set technique.

Intro. Algorithms & Models of Computation CS/ECE 374A, Fall 2024

6.5 Myhill-Nerode Theorem

One automata to rule them all

"Myhill-Nerode Theorem": A regular language L has a unique (up to naming) minimal automata, and it can be computed efficiently once any DFA is given for L .

Intro. Algorithms & Models of Computation CS/ECE 374A, Fall 2024

6.5.1 Myhill-Nerode Theorem: Equivalence between strings

Indistinguishability

Recall:

Definition 6.1.

For a language L over Σ and two strings $x, y \in \Sigma^*$ we say that x and y are distinguishable with respect to L if there is a string $w \in \mathsf{\Sigma}^*$ such that exactly one of xw , yw is in L. x, y are indistinguishable with respect to L if there is no such w.

Given language L over $\boldsymbol{\Sigma}$ define a relation \equiv_L over strings in $\boldsymbol{\Sigma}^*$ as follows: $\boldsymbol{\mathsf{x}} \equiv_L \boldsymbol{\mathsf{y}}$ iff x and y are indistinguishable with respect to L .

Definition 6.2.

 $x \equiv_L y$ means that $\forall w \in \mathsf{\Sigma}^* \colon xw \in L \iff yw \in L$. In words: x is equivalent to y under L .

Example: Equivalence classes

Indistinguishability

Claim 6.3.

 \equiv_{L} is an equivalence relation over $\mathbf{\Sigma}^*$.

Proof.

- 1. Reflexive: $\forall x \in \Sigma^*$: $\forall w \in \Sigma^*$: $xw \in L \iff xw \in L$. $\implies x \equiv_L x$.
- 2. Symmetry: $x \equiv_L y$ then $\forall w \in \Sigma^*$: $xw \in L \iff yw \in L$ $\forall w \in \mathsf{\Sigma}^*$: yw $\in L \iff xw \in L \implies y \equiv_L x$.
- 3. Transitivity: $x \equiv_1 y$ and $y \equiv_1 z$ $\forall w \in \mathsf{\Sigma}^* \colon xw \in \mathsf{\mathcal{L}} \iff yw \in \mathsf{\mathcal{L}} \text{ and } \forall w \in \mathsf{\Sigma}^* \colon yw \in \mathsf{\mathcal{L}} \iff zw \in \mathsf{\mathcal{L}}$ \implies $\forall w \in \mathsf{\Sigma}^*$: $xw \in \mathsf{\mathcal{L}} \iff zw \in \mathsf{\mathcal{L}}$ $\implies x \equiv_1 z$.

Equivalences over automatas...

Claim 6.4 (Just proved.).

 \equiv_{L} is an equivalence relation over $\bm{\Sigma}^*$.

Therefore, \equiv_{L} partitions $\bm{\Sigma}^*$ into a collection of equivalence classes.

Definition 6.5.

L: A language For a string
$$
x \in \Sigma^*
$$
, let
\n
$$
[x] = [x]_L = \{y \in \Sigma^* \mid x \equiv_L y\}
$$
\nbe the **equivalence class** of x according to L.

Definition 6.6. $[L] = \{ [x]_L | x \in \Sigma^* \}$ is the set of equivalence classes of L.

Strings in the same equivalence class are indistinguishable

Lemma 6.7.

Let x, y be two distinct strings. $x \equiv_L y \iff x, y$ are indistinguishable for **L**.

Proof.

$$
x \equiv_L y \implies \forall w \in \Sigma^* \colon xw \in L \iff yw \in L
$$

 x and y are indistinguishable for L .

$x \not\equiv_L y \implies \exists w \in \mathsf{\Sigma}^* : xw \in \mathsf{\mathcal{L}}$ and $yw \not\in \mathsf{\mathcal{L}}$

 \implies x and y are distinguishable for L.

All strings arriving at a state are in the same class

Lemma 6.8.

 $M = (Q, \Sigma, \delta, s, A)$ a DFA for a language L. For any $q \in A$, let $L_q = \{ w \in \Sigma^* \mid \nabla w = \delta^*(s, w) = q \}.$ Then, there exists a string x, such that $L_q \subseteq [x]_L$.

An inefficient automata

Intro. Algorithms & Models of Computation CS/ECE 374A, Fall 2024

6.5.2

Stating and proving the Myhill-Nerode Theorem

Equivalences over automatas...

Claim 6.9 (Just proved).

Let x, y be two distinct strings. $x \equiv_1 y \iff x, y$ are indistinguishable for **L**.

Corollary 6.10.

If \equiv _L is finite with n equivalence classes then there is a fooling set F of size n for L.

Corollary 6.11.

If \equiv , has infinite number of equivalence classes $\implies \exists$ infinite fooling set for L. \implies L is not regular.

Equivalence classes as automata

Lemma 6.12. For all $x, y \in \Sigma^*$, if $[x]_L = [y]_L$, then for any $a \in \Sigma$, we have $[xa]_L = [ya]_L$.

Proof.
\n
$$
[x] = [y] \implies \forall w \in \Sigma^* : xw \in L \iff yw \in L
$$
\n
$$
\implies \forall w' \in \Sigma^* : xaw' \in L \iff yaw' \in L
$$
\n
$$
\implies [xa]_L = [ya]_L.
$$

Set of equivalence classes

Lemma 6.13.

If L has n distinct equivalence classes, then there is a DFA that accepts it using n states.

Proof.

Set of states: $Q = [L]$ Start state: $s = [\varepsilon]_l$. Accept states: $A = \{ [x]_1 | x \in L \}.$ Transition function: $\delta([x]_L, a) = [xa]_L$. $M = (Q, \Sigma, \delta, s, A)$: The resulting DFA. Clearly, M is a DFA with n states, and it accepts L .

Myhill-Nerode Theorem

Theorem 6.14 (Myhill-Nerode).

L is regular $\iff \equiv_1$ has a finite number of equivalence classes. If \equiv , is finite with n equivalence classes then there is a DFA M accepting L with exactly **n** states and this is the minimum possible.

Corollary 6.15.

A language L is non-regular if and only if there is an infinite fooling set F for L .

Algorithmic implication: For every DFA M one can find in polynomial time a DFA M' such that $L(M) = L(M')$ and M' has the fewest possible states among all such DFAs.

What was that all about

Summary: A regular language L has a unique (up to naming) minimal automata, and it can be computed efficiently once any DFA is given for L .

Exercise

- 1. Given two DFAs M_1 , M_2 describe an efficient algorithm to decide if $L(M_1) = L(M_2)$.
- 2. Given DFA M, and two states $\boldsymbol{q}, \boldsymbol{q}'$ of M, show an efficient algorithm to decide if q and q' are distinguishable. (Hint: Use the first part.)
- 3. Given a DFA M for a language L, describe an efficient algorithm for computing the minimal automata (as far as the number of states) that accepts L .

Intro. Algorithms & Models of Computation CS/ECE 374A, Fall 2024

6.6

Roads not taken: Non-regularity via pumping lemma

Non-regularity via "looping"

Claim 6.1.

The language $L = \{a^n b^n \mid n \ge 0\}$ is not regular.

Proof: Assume for contradiction L is regular. $\implies \exists$ DFA $M = (Q, \Sigma, \delta, q_0, F)$ for L. That is $L = L(M)$. $n = |Q|$: number of states of M. Consider the string $a^n b^n$. Let $p_\tau = \delta^*(q_0, a^\tau)$, for $\tau = 0, \ldots, n$. $p_0p_1 \ldots p_n$: $n+1$ states. M has n states. By pigeon hole principle, must be $i < j$, such that $p_i = p_j$. $\implies \delta^*(p_i.a^{j-i}) = p_i$ (its a loop!). For $x = a^i$, $y = a^{j-i}$, $z = a^{n-j}b^n$, we have

$$
\delta^*(q_0, a^{n+j-i}b^n) = \delta^*(q_0, xyz) = \delta^*\bigg(\delta^*\big(\delta^*(q_0, x), y\big), y\bigg), z\bigg)
$$

Proof continued

Non-regularity via "looping"

We have: $p_i = \delta^*(q_0, a^i)$ and $\delta^*(p_i.a^{j-}) = p_i$.

$$
\delta^*(q_0, a^{n+j-i}b^n) = \delta^*\left(\delta^*\left(\delta^*(\delta^*(q_0, a^i), a^{j-i}), a^{j-i}\right), a^{n-j}b^n\right)
$$

$$
= \delta^*\left(\delta^*\left(\delta^*\left(\delta^*(\rho_i, a^{j-i}), a^{j-i}\right), a^{n-j}b^n\right)\right)
$$

$$
= \delta^*\left(\delta^*\left(\delta^*\left(\delta^*(q_0, a^i), a^{j-i}\right), a^{n-j}b^n\right)\right)
$$

$$
= \delta^*\left(\delta^*\left(\delta^*\left(p_i, a^{j-i}\right), a^{n-j}b^n\right)\right)
$$

$$
= \delta^*(q_0, a^n b^n) \in A.
$$

 \implies $a^{n+j-i}b^n \in L$, which is false. Contradiction.

The pumping lemma

The previous argument implies that any regular language must suffer from loops (we omit the proof):

Theorem 6.2 (Pumping Lemma.).

Let L be a regular language. Then there exists an integer p (the "pumping length") such that for any string $w \in L$ with $|w| > p$, w can be written as xyz with the following properties:

- \blacktriangleright $|xy| \leq p$.
- $|y| > 1$ (i.e. y is not the empty string).
- ▶ $xy^k z \in L$ for every $k > 0$.