
Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2024

Proving Non-regularity
Lecture 6
Thursday, September 12, 2024

LATEXed: October 4, 2024 23:10

1 / 51

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2024

6.1
Not all languages are regular
FLNAME:6.1.0.0 ZZZ:6.1.0.0 Not all languages are regular

2 / 51

Regular Languages, DFAs, NFAs

Theorem 6.1.
Languages accepted by DFAs, NFAs, and regular expressions are the same.

Question: Is every language a regular language? No.

▶ Each DFA M can be represented as a string over a finite alphabet Σ by
appropriate encoding

▶ Hence number of regular languages is countably infinite

▶ Number of languages is uncountably infinite

▶ Hence there must be a non-regular language!

3 / 51

A direct proof

L =
{
0i1i

∣∣ i ≥ 0
}
= {ϵ, 01, 0011, 000111, · · · , }

Theorem 6.2.
L is not regular.

4 / 51

A Simple and Canonical Non-regular Language

L =
{
0i1i

∣∣ i ≥ 0
}
= {ϵ, 01, 0011, 000111, · · · , }

Theorem 6.3.
L is not regular.

Question: Proof?

Intuition: Any program to recognize L seems to require counting number of zeros in
input which cannot be done with fixed memory.

How do we formalize intuition and come up with a formal proof?

5 / 51

Proof by Contradiction

▶ Suppose L is regular. Then there is a DFA M such that L(M) = L.
▶ Let M = (Q, {0, 1}, δ, s,A) where |Q| = n.

Consider strings ϵ, 0, 00, 000, · · · , 0n total of n + 1 strings.

What states does M reach on the above strings? Let qi = δ∗(s, 0i).

By pigeon hole principle qi = qj for some 0 ≤ i < j ≤ n.
That is, M is in the same state after reading 0i and 0j where i ̸= j .

M should accept 0i1i but then it will also accept 0j1i where i ̸= j .
This contradicts the fact that M accepts L. Thus, there is no DFA for L.

6 / 51

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2024

6.2
When two states are equivalent?
FLNAME:6.2.0.0 ZZZ:6.2.0.0 When two states are equivalent?

7 / 51

Equivalence between states

Definition 6.1.
M = (Q,Σ, δ, s,A): DFA.
Two states p, q ∈ Q are equivalent if for all strings w ∈ Σ∗, we have that

δ∗(p,w) ∈ A ⇐⇒ δ∗(q,w) ∈ A.

One can merge any two states that are equivalent into a single state.

8 / 51

Distinguishing between states

Definition 6.2.
M = (Q,Σ, δ, s,A): DFA.
Two states p, q ∈ Q are distinguishable if there exists a string w ∈ Σ∗, such that

δ∗(p,w) ∈ A and δ∗(q,w) /∈ A.

or
δ∗(p,w) /∈ A and δ∗(q,w) ∈ A.

9 / 51

Distinguishable prefixes

M = (Q,Σ, δ, s,A): DFA
Idea: Every string w ∈ Σ∗ defines a state ∇w = δ∗(s,w).

Definition 6.3.
Two strings u,w ∈ Σ∗ are distinguishable for M (or L(M)) if ∇u and ∇w are
distinguishable.

Definition 6.4 (Direct restatement).
Two prefixes u,w ∈ Σ∗ are distinguishable for a language L if there exists a string x ,
such that ux ∈ L and wx /∈ L (or ux /∈ L and wx ∈ L).

10 / 51

Distinguishable means different states

Lemma 6.5.
L: regular language.
M = (Q,Σ, δ, s,A): DFA for L.
If x, y ∈ Σ∗ are distinguishable, then ∇x ̸= ∇y .

Reminder: ∇x = δ∗(s, x) ∈ Q and ∇y = δ∗(s, y) ∈ Q

11 / 51

Proof by a figure
Possible Not possible

s

δ*(s,xw)δ*(s,x)x

δ*(s,y)

y

w

δ*(s,yw)
w

s

δ*(s,xw)

δ*(s,x) = δ*(s,y)
x

y

w

δ*(s,yw)

w

12 / 51

Distinguishable strings means different states: Proof

Lemma 6.6.
L: regular language.
M = (Q,Σ, δ, s,A): DFA for L.
If x, y ∈ Σ∗ are distinguishable, then ∇x ̸= ∇y .

Proof.
Assume for the sake of contradiction that ∇x = ∇y .
By assumption ∃w ∈ Σ∗ such that ∇xw ∈ A and ∇yw /∈ A.
=⇒ A ∋ ∇xw = δ∗(s, xw) = δ∗(∇x,w)= δ∗(∇y ,w)
= δ∗(s, yw) = ∇yw /∈ A.
=⇒ A ∋ ∇yw /∈ A. Impossible!
Assumption that ∇x = ∇y is false.

13 / 51

Review questions...

1. Prove for any i ̸= j then 0i and 0j are distinguishable for the language{
0k1k ∣∣ k ≥ 0

}
.

2. Let L be a regular language, and let w1, . . . ,wk be strings that are all pairwise
distinguishable for L. Prove that any DFA for L must have at least k states.

3. Prove that
{
0k1k ∣∣ k ≥ 0

}
is not regular.

14 / 51

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2024

6.3
Fooling sets: Proving non-regularity
FLNAME:6.3.0.0 ZZZ:6.3.0.0 Fooling sets: Proving non-regularity

15 / 51

Fooling Sets

Definition 6.1.
For a language L over Σ a set of strings F (could be infinite) is a fooling set or
distinguishing set for L if every two distinct strings x, y ∈ F are distinguishable.

Example: F = {0i | i ≥ 0} is a fooling set for the language L = {0k1k | k ≥ 0}.

Theorem 6.2.
Suppose F is a fooling set for L. If F is finite then there is no DFA M that accepts L
with less than |F | states.

16 / 51

Recall

Already proved the following lemma:

Lemma 6.3.
L: regular language.
M = (Q,Σ, δ, s,A): DFA for L.
If x, y ∈ Σ∗ are distinguishable, then ∇x ̸= ∇y .

Reminder: ∇x = δ∗(s, x).

17 / 51

Proof of theorem

Theorem 6.4 (Reworded.).
L: A language
F : a fooling set for L.
If F is finite then any DFA M that accepts L has at least |F | states.

Proof.
Let F = {w1,w2, . . . ,wm) be the fooling set.
Let M = (Q,Σ, δ, s,A) be any DFA that accepts L.
Let qi = ∇wi = δ∗(s, xi).
By lemma qi ̸= qj for all i ̸= j .
As such, |Q| ≥ |{q1, . . . , qm}| = |{w1, . . . ,wm}| = |F |.

18 / 51

Infinite Fooling Sets

Corollary 6.5.
If L has an infinite fooling set F then L is not regular.

Proof.
Let w1,w2, . . . ⊆ F be an infinite sequence of strings such that every pair of them are
distinguishable.
Assume for contradiction that ∃ M a DFA for L.
Let Fi = {w1, . . . ,wi}.
By theorem, # states of M ≥ |Fi | = i , for all i .
As such, number of states in M is infinite.

Contradiction: DFA = deterministic finite automata. But M not finite.

19 / 51

Examples

▶ {0k1k | k ≥ 0}
▶ {bitstrings with equal number of 0s and 1s}
▶ {0k1ℓ | k ̸= ℓ}

20 / 51

Harder example: The language of squares is not regular

{0k2 | k ≥ 0}

21 / 51

Really hard: Primes are not regular
An exercise left for your enjoyment{
0k
∣∣ k is a prime number

}
Hints:

1. Probably easier to prove directly on the automata.

2. There are infinite number of prime numbers.

3. For every n > 0, observe that n!, n! + 1, . . . , n! + n are all composite – there
are arbitrarily big gaps between prime numbers.

22 / 51

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2024

6.3.1
Exponential gap in number of states
between DFA and NFA sizes
FLNAME:6.3.1.0 ZZZ:6.3.1.0 Exponential gap in number of states between DFA and NFA sizes

23 / 51

Exponential gap between NFA and DFA size

L4 = {w ∈ {0, 1}∗ | w has a 1 located 4 positions from the end}

DFA:

q
q1000

 0

q0001

 1

q1001
q0010 0

q0011

 1

q1100

 0 1

q1101

q1010 0

q1011 1

q0100 0

q0101 1

q0110 0
q0111

 1

q1110

 0

 1

q1111
 0

 1

 0

 1

 0

 1

 0

 1
 0

 1

 0

 1
 0

 1

 0

 1

 0

 1

NFA:

q q4

 0,1

q1 1 q2 0, 1 q3 0, 1 0, 1

24 / 51

Exponential gap between NFA and DFA size

Lk = {w ∈ {0, 1}∗ | w has a 1 k positions from the end}
Recall that Lk is accepted by a NFA N with k + 1 states.

Theorem 6.6.
Every DFA that accepts Lk has at least 2k states.

Claim 6.7.
F = {w ∈ {0, 1}∗ : |w | = k} is a fooling set of size 2k for Lk .

Why?

▶ Suppose a1a2 . . . ak and b1b2 . . . bk are two distinct bitstrings of length k
▶ Let i be first index where ai ̸= bi

▶ y = 0k−i−1 is a distinguishing suffix for the two strings

25 / 51

How to pick a fooling set

How do we pick a fooling set F?

▶ If x, y are in F and x ̸= y they should be distinguishable! Of course.

▶ All strings in F except maybe one should be prefixes of strings in the language L.
For example if L = {0k1k | k ≥ 0} do not pick 1 and 10 (say). Why?

26 / 51

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2024

6.4
Closure properties: Proving non-regularity
FLNAME:6.4.0.0 ZZZ:6.4.0.0 Closure properties: Proving non-regularity

27 / 51

Non-regularity via closure properties

H = {bitstrings with equal number of 0s and 1s}

H ′ = {0k1k | k ≥ 0}

Suppose we have already shown that H ′ is non-regular. Can we show that L is
non-regular without using the fooling set argument from scratch?

H ′ = H ∩ L(0∗1∗)
Claim: The above and the fact that L′ is non-regular implies H is non-regular. Why?

Suppose H is regular. Then since L(0∗1∗) is regular, and regular languages are closed
under intersection, H ′ also would be regular. But we know H ′ is not regular, a
contradiction.

28 / 51

Non-regularity via closure properties

General recipe:

Apply
closure
properties

L1

L2

Ln

L?

Lnon-regular
KNOWN
REGULAR

UNKNOWN

29 / 51

Proving non-regularity: Summary

▶ Method of distinguishing suffixes. To prove that L is non-regular find an infinite
fooling set.

▶ Closure properties. Use existing non-regular languages and regular languages to
prove that some new language is non-regular.

▶ Pumping lemma. We did not cover it but it is sometimes an easier proof technique
to apply, but not as general as the fooling set technique.

30 / 51

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2024

6.5
Myhill-Nerode Theorem
FLNAME:6.5.0.0 ZZZ:6.5.0.0 Myhill-Nerode Theorem

31 / 51

One automata to rule them all

“Myhill-Nerode Theorem”: A regular language L has a unique (up to naming) minimal
automata, and it can be computed efficiently once any DFA is given for L.

32 / 51

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2024

6.5.1
Myhill-Nerode Theorem: Equivalence
between strings
FLNAME:6.5.1.0 ZZZ:6.5.1.0 Myhill-Nerode Theorem: Equivalence between strings

33 / 51

Indistinguishability

Recall:

Definition 6.1.
For a language L over Σ and two strings x, y ∈ Σ∗ we say that x and y are
distinguishable with respect to L if there is a string w ∈ Σ∗ such that exactly one of
xw , yw is in L. x, y are indistinguishable with respect to L if there is no such w .

Given language L over Σ define a relation ≡L over strings in Σ∗ as follows: x ≡L y iff
x and y are indistinguishable with respect to L.

Definition 6.2.
x ≡L y means that ∀w ∈ Σ∗: xw ∈ L ⇐⇒ yw ∈ L.
In words: x is equivalent to y under L.

34 / 51

Example: Equivalence classes

q0

q1 0

q2

 0

 0

35 / 51

Indistinguishability

Claim 6.3.
≡L is an equivalence relation over Σ∗.

Proof.
1. Reflexive: ∀x ∈ Σ∗: ∀w ∈ Σ∗: xw ∈ L ⇐⇒ xw ∈ L. =⇒ x ≡L x .
2. Symmetry: x ≡L y then ∀w ∈ Σ∗: xw ∈ L ⇐⇒ yw ∈ L

∀w ∈ Σ∗: yw ∈ L ⇐⇒ xw ∈ L =⇒ y ≡L x .

3. Transitivity: x ≡L y and y ≡L z
∀w ∈ Σ∗: xw ∈ L ⇐⇒ yw ∈ L and ∀w ∈ Σ∗: yw ∈ L ⇐⇒ zw ∈ L
=⇒ ∀w ∈ Σ∗: xw ∈ L ⇐⇒ zw ∈ L
=⇒ x ≡L z .

36 / 51

Equivalences over automatas...

Claim 6.4 (Just proved.).
≡L is an equivalence relation over Σ∗.

Therefore, ≡L partitions Σ∗ into a collection of equivalence classes.

Definition 6.5.
L: A language For a string x ∈ Σ∗, let

[x] = [x]L = {y ∈ Σ∗ | x ≡L y}
be the equivalence class of x according to L.

Definition 6.6.
[L] = {[x]L | x ∈ Σ∗} is the set of equivalence classes of L.

37 / 51

Strings in the same equivalence class are indistinguishable

Lemma 6.7.
Let x, y be two distinct strings.
x ≡L y ⇐⇒ x, y are indistinguishable for L.

Proof.
x ≡L y =⇒ ∀w ∈ Σ∗: xw ∈ L ⇐⇒ yw ∈ L
x and y are indistinguishable for L.
x ≢L y =⇒ ∃w ∈ Σ∗: xw ∈ L and yw ̸∈ L
=⇒ x and y are distinguishable for L.

38 / 51

All strings arriving at a state are in the same class

Lemma 6.8.
M = (Q,Σ, δ, s,A) a DFA for a language L.
For any q ∈ A, let Lq = {w ∈ Σ∗ | ∇w = δ∗(s,w) = q}.
Then, there exists a string x , such that Lq ⊆ [x]L.

39 / 51

An inefficient automata

q0

q1 0 q3 q4
 0

q2 0 0

q5

 0

 0

40 / 51

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2024

6.5.2
Stating and proving the Myhill-Nerode
Theorem
FLNAME:6.5.2.0 ZZZ:6.5.2.0 Stating and proving the Myhill-Nerode Theorem

41 / 51

Equivalences over automatas...

Claim 6.9 (Just proved).
Let x, y be two distinct strings.
x ≡L y ⇐⇒ x, y are indistinguishable for L.

Corollary 6.10.
If ≡L is finite with n equivalence classes then there is a fooling set F of size n for L.

Corollary 6.11.
If ≡L has infinite number of equivalence classes =⇒ ∃ infinite fooling set for L.
=⇒ L is not regular.

42 / 51

Equivalence classes as automata

Lemma 6.12.
For all x, y ∈ Σ∗, if [x]L = [y]L, then for any a ∈ Σ, we have [xa]L = [ya]L.

Proof.
[x] = [y] =⇒ ∀w ∈ Σ∗: xw ∈ L ⇐⇒ yw ∈ L
=⇒ ∀w ′ ∈ Σ∗: xaw ′ ∈ L ⇐⇒ yaw ′ ∈ L // w = aw ′

=⇒ [xa]L = [ya]L.

43 / 51

Set of equivalence classes

Lemma 6.13.
If L has n distinct equivalence classes, then there is a DFA that accepts it using n
states.

Proof.
Set of states: Q = [L]
Start state: s = [ε]L.
Accept states: A = {[x]L | x ∈ L}.
Transition function: δ([x]L, a) = [xa]L.
M = (Q,Σ, δ, s,A): The resulting DFA.
Clearly, M is a DFA with n states, and it accepts L.

44 / 51

Myhill-Nerode Theorem

Theorem 6.14 (Myhill-Nerode).
L is regular ⇐⇒ ≡L has a finite number of equivalence classes.
If ≡L is finite with n equivalence classes then there is a DFA M accepting L with
exactly n states and this is the minimum possible.

Corollary 6.15.
A language L is non-regular if and only if there is an infinite fooling set F for L.

Algorithmic implication: For every DFA M one can find in polynomial time a DFA
M ′ such that L(M) = L(M ′) and M ′ has the fewest possible states among all such
DFAs.

45 / 51

What was that all about

Summary: A regular language L has a unique (up to naming) minimal automata, and it
can be computed efficiently once any DFA is given for L.

46 / 51

Exercise

1. Given two DFAs M1,M2 describe an efficient algorithm to decide if
L(M1) = L(M2).

2. Given DFA M , and two states q, q′ of M , show an efficient algorithm to decide if
q and q′ are distinguishable. (Hint: Use the first part.)

3. Given a DFA M for a language L, describe an efficient algorithm for computing
the minimal automata (as far as the number of states) that accepts L.

47 / 51

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2024

6.6
Roads not taken: Non-regularity via
pumping lemma
FLNAME:6.6.0.0 ZZZ:6.6.0.0 Roads not taken: Non-regularity via pumping lemma

48 / 51

Non-regularity via “looping”

Claim 6.1.
The language L = {anbn | n ≥ 0} is not regular.

Proof: Assume for contradiction L is regular.
=⇒ ∃ DFA M = (Q,Σ, δ, q0,F) for L. That is L = L(M).
n = |Q|: number of states of M .
Consider the string anbn. Let pτ = δ∗(q0, aτ), for τ = 0, . . . , n.
p0p1 . . . pn: n + 1 states. M has n states.
By pigeon hole principle, must be i < j , such that pi = pj .
=⇒ δ∗(pi .aj−i) = pi (its a loop!).
For x = ai , y = aj−i , z = an−jbn, we have

δ∗(q0, an+j−ibn) = δ∗(q0, xyyz) = δ∗

(
δ∗
(
δ∗(δ∗(q0, x), y

)
, y
)
, z

)

49 / 51

Proof continued
Non-regularity via “looping”

We have: pi = δ∗(q0, ai) and δ∗(pi .aj−) = pi .

δ∗(q0, an+j−ibn) = δ∗

(
δ∗
(
δ∗(δ∗(q0, ai), aj−i), aj−i

)
, an−jbn

)

= δ∗

(
δ∗

(
δ∗
(
δ∗(pi , aj−i), aj−i

)
, an−jbn

)

= δ∗

(
δ∗

(
δ∗
(
δ∗(q0, ai), aj−i

)
, an−jbn

)

= δ∗

(
δ∗

(
δ∗
(
pi , aj−i

)
, an−jbn

)
= δ∗(q0, anbn) ∈ A.

=⇒ an+j−ibn ∈ L, which is false. Contradiction.
50 / 51

The pumping lemma

The previous argument implies that any regular language must suffer from loops (we
omit the proof):

Theorem 6.2 (Pumping Lemma.).

Let L be a regular language. Then there exists an integer p (the “pumping length”)
such that for any string w ∈ L with |w | ≥ p, w can be written as xyz with the
following properties:

▶ |xy | ≤ p.
▶ |y | ≥ 1 (i.e. y is not the empty string).

▶ xy kz ∈ L for every k ≥ 0.

51 / 51

	Not all languages are regular
	When two states are equivalent?
	Fooling sets: Proving non-regularity
	Exponential gap in number of states between DFA and NFA sizes

	Closure properties: Proving non-regularity
	Myhill-Nerode Theorem
	Myhill-Nerode Theorem: Equivalence between strings
	Stating and proving the Myhill-Nerode Theorem

	Roads not taken: Non-regularity via pumping lemma

