NFAs continued, Closure Properties of Regular Languages

Lecture 5 Tuesday, September 10, 2024

LATEXed: October 8, 2024 20:53

5.1 Equivalence of NFAs and DFAs

Regular Languages, DFAs, NFAs

Theorem 5.1.

Languages accepted by DFAs, NFAs, and regular expressions are the same.

- ▶ DFAs are special cases of NFAs (easy)
- NFAs accept regular expressions (seen)
- DFAs accept languages accepted by NFAs (shortly)
- Regular expressions for languages accepted by DFAs (later in the course)

Equivalence of NFAs and DFAs

Theorem 5.2.

For every NFA N there is a DFA M such that L(M) = L(N).

5.1.1 The idea of the conversion of NFA to DFA

DFAs are memoryless...

- 1. DFA knows only its current state.
- 2. The state is the memory.
- 3. To design a DFA, answer the question: What minimal info needed to solve problem.

Simulating NFA

Example the first revisited

The state of the $\ensuremath{\mathrm{NFA}}$

It is easy to state that the state of the automata is the states that it might be situated at.

configuration: A set of states the automata might be in. Possible configurations: \emptyset , $\{A\}$, $\{A, B\}$... Big idea: Build a DFA on the configurations.

Example: Subset construction

Simulating an NFA by a DFA

- Think of a program with fixed memory that needs to simulate NFA N on input w.
- ▶ What does it need to store after seeing a prefix x of w?
- It needs to know at least δ*(s, x), the set of states that N could be in after reading x
- Is it sufficient? Yes, if it can compute δ*(s, xa) after seeing another symbol a in the input.
- When should the program accept a string w? If $\delta^*(s, w) \cap A \neq \emptyset$.

Key Observation: DFA M simulating N should know current configuration of N.

State space of the DFA is $\mathcal{P}(Q)$.

Example: DFA from NFA

Formal Tuple Notation for $\ensuremath{\operatorname{NFA}}$

Definition 5.3.

A non-deterministic finite automata (NFA) $N = (Q, \Sigma, \delta, s, A)$ is a five tuple where

- Q is a finite set whose elements are called states,
- **Σ** is a finite set called the input alphabet,
- δ: Q × Σ ∪ {ε} → P(Q) is the transition function (here P(Q) is the power set of Q),
- $s \in Q$ is the start state,
- $A \subseteq Q$ is the set of accepting/final states.

 $\delta(q,a)$ for $a\in \Sigma\cup\{\epsilon\}$ is a subset of Q — a set of states.

5.1.2 Algorithm for converting NFA to DFA

Recall I

Extending the transition function to strings

Definition 5.4. For NFA $N = (Q, \Sigma, \delta, s, A)$ and $q \in Q$ the $\epsilon \operatorname{reach}(q)$ is the set of all states that q can reach using only ϵ -transitions.

Definition 5.5.

Inductive definition of $\delta^* : Q \times \Sigma^* \to \mathcal{P}(Q)$:

• if $w = \varepsilon$, $\delta^*(q, w) = \epsilon \operatorname{reach}(q)$

• if
$$w = a$$
 where $a \in \Sigma$: $\delta^*(q, a) = \epsilon \operatorname{reach}(\bigcup_{q \in \operatorname{streach}(q)} \delta(p, a))$

• if w = ax: $\delta^*(q, w) = \epsilon$ reach

$$\operatorname{each}\left(\bigcup_{p \in \operatorname{creach}(q)} \bigcup_{r \in \delta^*(p,q)} \delta^*(r, q)\right)$$

x)

Recall II

Formal definition of language accepted by ${\bf N}$

Definition 5.6. A string w is accepted by NFA N if $\delta_N^*(s, w) \cap A \neq \emptyset$.

Definition 5.7.

The language L(N) accepted by a NFA $N = (Q, \Sigma, \delta, s, A)$ is

 $\{w \in \mathbf{\Sigma}^* \mid \delta^*(s, w) \cap A \neq \emptyset\}.$

Subset Construction

NFA $N = (Q, \Sigma, s, \delta, A)$. We create a DFA $D = (Q', \Sigma, \delta', s', A')$ as follows:

- $\blacktriangleright Q' = \mathcal{P}(Q)$
- $s' = \epsilon \operatorname{reach}(s) = \delta^*(s, \epsilon)$
- $\blacktriangleright A' = \{X \subseteq Q \mid X \cap A \neq \emptyset\}$
- $\blacktriangleright \ \delta'(X,a) = \cup_{q \in X} \delta^*(q,a) \text{ for each } X \subseteq Q, \ a \in \Sigma.$

Incremental construction

Only build states reachable from $s' = \epsilon \operatorname{reach}(s)$ the start state of **D**

An optimization: Incremental algorithm

- Build D beginning with start state $s' == \epsilon \operatorname{reach}(s)$
- For each existing state $X \subseteq Q$ consider each $a \in \Sigma$ and calculate the state $U = \delta'(X, a) = \bigcup_{q \in X} \delta^*(q, a)$ and add a transition.

To compute $Z_{q,a} = \delta^*(q, a)$ - set of all states reached from q on character a

- Compute $X_1 = \epsilon \operatorname{reach}(q)$
- Compute $Y_1 = \bigcup_{p \in X_1} \delta(p, a)$
- Compute $Z_{q,a} = \epsilon \operatorname{reach}(Y) = \bigcup_{r \in Y_1} \epsilon \operatorname{reach}(r)$

If U is a new state add it to reachable states that need to be explored.

5.1.3 Proof of correctness of conversion of NFA to DFA

Proof of Correctness

Theorem 5.8.

Let $N = (Q, \Sigma, s, \delta, A)$ be a NFA and let $D = (Q', \Sigma, \delta', s', A')$ be a DFA constructed from N via the subset construction. Then L(N) = L(D).

Stronger claim:

Lemma 5.9.

For every string w, $\delta_N^*(s, w) = \delta_D^*(s', w)$.

Proof by induction on |w|.

Proof continued I

Lemma 5.10.

For every string w, $\delta_N^*(s, w) = \delta_D^*(s', w)$.

Proof:

Base case: $w = \epsilon$. $\delta_N^*(s, \epsilon) = \epsilon \operatorname{reach}(s)$. $\delta_D^*(s', \epsilon) = s' = \epsilon \operatorname{reach}(s)$ by definition of s'.

Proof continued II

Inductive hypothesis: $\forall w \in \Sigma^*$, $|w| \leq k$: $\delta^*_N(s, w) = \delta^*_D(s', w)$.

Reminder: For a state $Y \subseteq Q(N)$ of the DFA D, we have (by definition):

 $\delta_D(Y,a) = \cup_{q \in Y} \delta_N^*(q,a)$

Proof continued III

Lemma 5.11.

For every string w, $\delta_N^*(s, w) = \delta_D^*(s', w)$.

Inductive step: Consider any $w \in \Sigma^{k+1}$. w = xa (Note: suffix definition of strings) $\delta_N^*(s, xa) = \bigcup_{p \in \delta_N^*(s,x)} \delta_N^*(p, a)$ by recursive definition of δ_N^* $\delta_D^*(s', xa) = \delta_D(\delta_D^*(s', x), a)$ by recursive definition of δ_D^*

By inductive hypothesis: $Y = \delta_N^*(s, x) = \delta_D^*(s', x)$.

 $\implies \delta^*_N(s, xa) = \cup_{p \in Y} \delta^*_N(p, a) \quad \text{and} \quad \delta^*_D(s', xa) = \delta_D(Y, a).$

By definition of δ_D : $\delta_D(Y, a) = \bigcup_{q \in Y} \delta_N^*(q, a)$.

$$\implies \delta_N^*(s, xa) = \cup_{p \in Y} \delta_N^*(p, a) = \delta_D(Y, a) = \delta_D^*(s', xa).$$

5.2 Closure Properties of Regular Languages

Regular Languages

Regular languages have three different characterizations

- Inductive definition via base cases and closure under union, concatenation and Kleene star
- Languages accepted by DFAs
- Languages accepted by NFAs

Regular language closed under many operations:

- union, concatenation, Kleene star via inductive definition or NFAs
- complement, union, intersection via DFAs
- homomorphism, inverse homomorphism, reverse, ...

Different representations allow for flexibility in proofs.

Example: PREFIX

Let \boldsymbol{L} be a language over $\boldsymbol{\Sigma}$.

Definition 5.1. PREFIX(L) = { $w \mid wx \in L, x \in \Sigma^*$ }

Theorem 5.2.

If L is regular then PREFIX(L) is regular.

Let $M = (Q, \Sigma, \delta, s, A)$ be a DFA that recognizes L $X = \{q \in Q \mid s \text{ can reach } q \text{ in } M\}$ $Y = \{q \in Q \mid q \text{ can reach some state in } A\}$ $Z = X \cap Y$ Create new DFA $M' = (Q, \Sigma, \delta, s, Z)$ Claim: L(M') = PREFIX(L).

Exercise: SUFFIX

Let \boldsymbol{L} be a language over $\boldsymbol{\Sigma}$.

Definition 5.3. SUFFIX(L) = $\{w \mid xw \in L, x \in \Sigma^*\}$

Prove the following:

Theorem 5.4. If *L* is regular then PREFIX(*L*) is regular.

Exercise: SUFFIX

An alternative "proof" using a figure

5.3

Algorithm for converting NFA into regular expression

Stage 0: Input

Stage 2: Remove state A

Stage 4: Redrawn without old edges

Stage 4: Removing B

Stage 6: Removing C

Stage 8: Extract regular expression

Thus, this automata is equivalent to the regular expression

 $(ab^*a + b)(a + b)^*$.