NFAs continued, Closure Properties of Regular Languages

Lecture 5 Tuesday, September 10, 2024

^LATEXed: October 8, 2024 20:53

5.1 Equivalence of NFAs and DFAs

Regular Languages, DFAs, NFAs

Theorem 5.1.

Languages accepted by DFAs, NFAs, and regular expressions are the same.

- \triangleright DFAs are special cases of NFAs (easy)
- \triangleright NFAs accept regular expressions (seen)
- \triangleright DFAs accept languages accepted by NFAs (shortly)
- ▶ Regular expressions for languages accepted by DFAs (later in the course)

Equivalence of NFAs and DFAs

Theorem 5.2.

For every NFA N there is a DFA M such that $L(M) = L(N)$.

5.1.1 The idea of the conversion of NFA to DFA

DFAs are memoryless...

- 1. DFA knows only its current state.
- 2. The state is the memory.
- 3. To design a DFA, answer the question: What minimal info needed to solve problem.

Simulating NFA

Example the first revisited

The state of the NFA

It is easy to state that the state of the automata is the states that it might be situated at.

configuration: A set of states the automata might be in. Possible configurations: \emptyset , $\{A\}$, $\{A, B\}$... Big idea: Build a DFA on the configurations.

Example: Subset construction

NFA:

DFA:

Simulating an NFA by a DFA

- \blacktriangleright Think of a program with fixed memory that needs to simulate NFA N on input w.
- \triangleright What does it need to store after seeing a prefix x of w?
- It needs to know at least $\delta^*(s, x)$, the set of states that N could be in after reading x
- In it sufficient? Yes, if it can compute $\delta^*(s, xa)$ after seeing another symbol a in the input.
- ▶ When should the program accept a string w? If $\delta^*(s, w) \cap A \neq \emptyset$.

Key Observation: DFA M simulating N should know current configuration of N.

State space of the DFA is $P(Q)$.

Example: DFA from NFA

Formal Tuple Notation for NFA

Definition 5.3.

A non-deterministic finite automata (NFA) $N = (Q, \Sigma, \delta, s, A)$ is a five tuple where

- \triangleright Q is a finite set whose elements are called states.
- \triangleright $\boldsymbol{\Sigma}$ is a finite set called the input alphabet.
- $\triangleright \delta: Q \times \Sigma \cup \{\epsilon\} \rightarrow \mathcal{P}(Q)$ is the transition function (here $\mathcal{P}(Q)$ is the power set of Q),
- ▶ $s \in Q$ is the start state,
- \blacktriangleright $A \subseteq Q$ is the set of accepting/final states.

 $\delta(q, a)$ for $a \in \Sigma \cup \{\epsilon\}$ is a subset of Q — a set of states.

5.1.2 Algorithm for converting NFA to DFA

Recall I

Extending the transition function to strings

Definition 5.4. For NFA $N = (Q, \Sigma, \delta, s, A)$ and $q \in Q$ the ϵ reach (q) is the set of all states that q can reach using only ϵ -transitions.

Definition 5.5.

Inductive definition of $\delta^*: Q \times \mathbf{\Sigma}^* \to \mathcal{P}(Q)$:

- if $w = \varepsilon$, $\delta^*(q, w) = \epsilon$ reach (q)
- ▶ if $w = a$ where $a \in \Sigma$: $\delta^*(q, a) = \epsilon$ reach $\begin{pmatrix} 1 & \delta(p, a) \end{pmatrix}$ $p \in$ ereach(q)

If $w = ax$: $\delta^*(q, w) = \epsilon$ reach $\begin{pmatrix} 1 \end{pmatrix}$

$$
p \in \text{recall}(q)
$$
 $r \in \delta^*(p,a)$

 $\overline{1}$

 $\delta^*(r, x)$

Recall II

Formal definition of language accepted by N

Definition 5.6. A string w is accepted by NFA N if δ^*_{N} $\chi_N^*(s, w) \cap A \neq \emptyset$.

Definition 5.7.

The language $L(N)$ accepted by a NFA $N = (Q, \Sigma, \delta, s, A)$ is

 $\{w \in \Sigma^* \mid \delta^*(s, w) \cap A \neq \emptyset\}.$

Subset Construction

NFA $N = (Q, \Sigma, s, \delta, A)$. We create a DFA $D = (Q', \Sigma, \delta', s', A')$ as follows:

- \triangleright Q' = P(Q)
- \blacktriangleright $s' = \epsilon$ reach $(s) = \delta^*(s, \epsilon)$
- \blacktriangleright A' = {X \cepsilon Q | X \cdot A \times 0}
- \blacktriangleright $\delta'(X, a) = \cup_{q \in X} \delta^*(q, a)$ for each $X \subseteq Q$, $a \in \Sigma$.

Incremental construction

Only build states reachable from $s' = \epsilon$ reach (s) the start state of D

An optimization: Incremental algorithm

- Build D beginning with start state $s' == \epsilon$ reach(s)
- **►** For each existing state $X \subseteq Q$ consider each $a \in \Sigma$ and calculate the state $U = \delta'(X, a) = \bigcup_{q \in X} \delta^*(q, a)$ and add a transition.

To compute $Z_{q,a} = \delta^*(q,a)$ - set of all states reached from q on character a

- ▶ Compute $X_1 = \epsilon$ reach (q)
- ▶ Compute $Y_1 = \bigcup_{p \in X_1} \delta(p, a)$
- ▶ Compute $Z_{q,a} = \epsilon$ reach $(Y) = \cup_{r \in Y_1} \epsilon$ reach (r)

 \blacktriangleright If U is a new state add it to reachable states that need to be explored.

5.1.3 Proof of correctness of conversion of NFA to DFA

Proof of Correctness

Theorem 5.8.

Let $N = (Q, \Sigma, s, \delta, A)$ be a NFA and let $D = (Q', \Sigma, \delta', s', A')$ be a DFA constructed from N via the subset construction. Then $L(N) = L(D)$.

Stronger claim:

Lemma 5.9.

For every string w , δ_{Λ}^* $\chi^*_{N}(s, w) = \delta^*_{L}$ $_D^*(s',w)$.

Proof by induction on $|w|$.

Proof continued I

Lemma 5.10.

For every string w , δ_{Λ}^* $N^*(s, w) = \delta^*_L$ $_D^*(s',w)$.

Proof:

Base case: $w = \epsilon$. δ^*_{Λ} $N^*(s, \epsilon) = \epsilon$ reach(s). δ^*_L $S_D^*(s', \epsilon) = s' = \epsilon$ reach(s) by definition of s'.

Proof continued II

Inductive hypothesis: $\forall w \in \mathsf{\Sigma}^*, |w| \leq k$: δ^*_h $N^*(s, w) = \delta_L^*$ $_D^*(s',w)$.

Reminder: For a state $Y \subseteq Q(N)$ of the DFA D, we have (by definition):

 $\delta_D(Y, a) = \cup_{q \in Y} \delta_N^*$ $\stackrel{*}{\scriptscriptstyle{N}}(q,a)$

Proof continued III

Lemma 5.11.

For every string w , δ_{Λ}^* $N^*(s, w) = \delta^*_L$ $_D^*(s',w)$.

Inductive step: Consider any $w \in \Sigma^{k+1}$. $w = xa$ (Note: suffix definition of strings) δ^*_{Λ} $N^*(s, xa) = \cup_{p \in \delta_N^*(s, x)} \delta_N^*$ $N^*_{N}(\rho,a)$ by recursive definition of δ^*_{N} N δ^*_L $\delta_D^*(s', xa) = \delta_D(\delta_D^*)$ $_D^*(s', x), a$) by recursive definition of δ_L^* D

By inductive hypothesis: $Y = \delta^*_{\Lambda}$ $N^*(s, x) = \delta_L^*$ $_D^*(s',x)$.

> $\implies \delta^*_{\Lambda}$ $\phi_N^*(s, xa) = \cup_{p \in Y} \delta_N^*$ $\delta_L^*(p, a)$ and δ_L^* $D_D^*(s', xa) = \delta_D(Y, a).$

By definition of δ_D : $\delta_D(\boldsymbol{Y}, a) = \bigcup_{q \in \boldsymbol{Y}} \delta_N^*$ $N^*(q, a).$

$$
\implies \delta_N^*(s, xa) = \cup_{p \in Y} \delta_N^*(p, a) = \delta_D(Y, a) = \delta_D^*(s', xa).
$$

5.2 Closure Properties of Regular Languages

Regular Languages

Regular languages have three different characterizations

- ▶ Inductive definition via base cases and closure under union, concatenation and Kleene star
- ▶ Languages accepted by DFAs
- ▶ Languages accepted by NFAs

Regular language closed under many operations:

- ▶ union, concatenation, Kleene star via inductive definition or NFAs
- \triangleright complement, union, intersection via DFAs
- \blacktriangleright homomorphism, inverse homomorphism, reverse, \dots

Different representations allow for flexibility in proofs.

Example: PREFIX

Let L be a language over Σ .

Definition 5.1. $PREFIX(L) = \{w \mid wx \in L, x \in \Sigma^*\}$

Theorem 5.2.

If L is regular then PREFIX(L) is regular.

Let $M = (Q, \Sigma, \delta, s, A)$ be a DFA that recognizes L $X = \{q \in Q \mid s$ can reach q in M $Y = \{q \in Q \mid q \text{ can reach some state in } A\}$ $Z = X \cap Y$ Create new DFA $M' = (Q, \Sigma, \delta, s, Z)$

Claim: $L(M') = \text{PREFIX}(L)$.

Exercise: SUFFIX

Let L be a language over Σ .

Definition 5.3. $SUFFIX(L) = \{w \mid xw \in L, x \in \Sigma^*\}$

Prove the following:

Theorem 5.4.

If L is regular then PREFIX (L) is regular.

Exercise: SUFFIX

An alternative "proof" using a figure

5.3 Algorithm for converting NFA into regular expression

Stage 0: Input

Stage 2: Remove state A

Stage 4: Redrawn without old edges

Stage 4: Removing B

Stage 6: Removing C

Stage 8: Extract regular expression

Thus, this automata is equivalent to the regular expression

 $(ab^*a + b)(a + b)^*.$