
Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2024

NFAs continued, Closure Properties
of Regular Languages
Lecture 5
Tuesday, September 10, 2024

LATEXed: October 8, 2024 20:53

1 / 38

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2024

5.1
Equivalence of NFAs and DFAs
FLNAME:5.1.0.0 ZZZ:5.1.0.0 Equivalence of NFAs and DFAs

2 / 38

Regular Languages, DFAs, NFAs

Theorem 5.1.
Languages accepted by DFAs, NFAs, and regular expressions are the same.

▶ DFAs are special cases of NFAs (easy)

▶ NFAs accept regular expressions (seen)

▶ DFAs accept languages accepted by NFAs (shortly)

▶ Regular expressions for languages accepted by DFAs (later in the course)

3 / 38

Equivalence of NFAs and DFAs

Theorem 5.2.
For every NFA N there is a DFA M such that L(M) = L(N).

4 / 38

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2024

5.1.1
The idea of the conversion of NFA to
DFA
FLNAME:5.1.1.0 ZZZ:5.1.1.0 The idea of the conversion of NFA to DFA

5 / 38

DFAs are memoryless...

1. DFA knows only its current state.

2. The state is the memory.

3. To design a DFA, answer the question:
What minimal info needed to solve problem.

6 / 38

Simulating NFA
Example the first revisited

Previous lecture.. Ran NFA
(N1) A B C D E

a,b

a b a b

a,b

on input ababa.

t = 0:

A B C D E

a,b

a b a b

a,b

→

t = 1:

A B C D E

a,b

a b a b

a,b

→

t = 2:

A B C D E

a,b

a b a b

a,b

→

t = 3:

A B C D E

a,b

a b a b

a,b

→

t = 4:

A B C D E

a,b

a b a b

a,b

→

t = 5:

A B C D E

a,b

a b a b

a,b

7 / 38

The state of the NFA
It is easy to state that the state of the automata is the states that it might be situated at.

(N1) A B C D E

a,b

a b a b

a,b

configuration: A set of states the automata might be in.
Possible configurations: ∅, {A}, {A,B}...
Big idea: Build a DFA on the configurations.

8 / 38

Example: Subset construction

DFA:

q0 q1

 0,1

 1

 0,1
=⇒

NFA:

{q0}

{q0,q1} 0,1

{} 0,1 {q1} 0,1

 1

 0

active thread in a particular state. Thus, to simulate the NFA, the DFA only needs to maintain the current
set of states of the NFA.

The formal construction based on the above idea is as follows. Consider an NFA N = (Q,⌃, �, s, A).
Define the DFA det(N) = (Q0,⌃, �0, s0, A0) as follows.

• Q0 = P(Q)

• s0 = �⇤N (s, ✏)

• A0 = {X ✓ Q | X \ A 6= ;}

• �0({q1, q2, . . . qk}, a) = �⇤N (q1, a) [�⇤N (q2, a) [· · · [�⇤N (qk, a) or more concisely,

�0(X, a) =
[

q2X

�⇤N (q, a)

An example NFA is shown in Figure 4 along with the DFA det(N) in Figure 5.

q0 q1

0, 1

1

0, 1

Figure 4: NFA N

{q0} {q0, q1}

{q1} {}

0
0, 1

0, 10, 1

1

Figure 5: DFA det(N) equivalent to N

We will now prove that the DFA defined above is correct. That is

Lemma 4. L(N) = L(det(N))

Proof. Need to show
8w 2 ⌃⇤. det(N) accepts w i↵ N accepts w
8w 2 ⌃⇤. �⇤det(N)(s

0, w) 2 A0 i↵ �⇤N (s, w) \ A 6= ;
8w 2 ⌃⇤. �⇤det(N)(s

0, w) \ A 6= ; i↵ �⇤N (s, w) \ A 6= ;
Again for the induction proof to go through we need to strengthen the claim as follows.

8w 2 ⌃⇤. �⇤det(N)(s
0, w) = �⇤N (s, w)

In other words, this says that the state of the DFA after reading some string is exactly the set of states the
NFA could be in after reading the same string.

The proof of the strengthened statement is by induction on |w|.

Base Case If |w| = 0 then w = ✏. Now

�⇤det(N)(s
0, ✏) = s0 = �⇤N (s, ✏) by the defn. of �⇤det(N) and defn. of s0

7

9 / 38

Simulating an NFA by a DFA

▶ Think of a program with fixed memory that needs to simulate NFA N on input w .

▶ What does it need to store after seeing a prefix x of w?

▶ It needs to know at least δ∗(s, x), the set of states that N could be in after
reading x

▶ Is it sufficient? Yes, if it can compute δ∗(s, xa) after seeing another symbol a in
the input.

▶ When should the program accept a string w? If δ∗(s,w) ∩ A ̸= ∅.
Key Observation: DFA M simulating N should know current configuration of N .

State space of the DFA is P(Q).

10 / 38

Example: DFA from NFA

NFA:
(N1) A B C D E

a,b

a b a b

a,b

DFA:

A B C D E

a,b

a b a b

a,b

A B C D E

a,b

a b a b

a,b

A B C D E

a,b

a b a b

a,b

A B C D E

a,b

a b a b

a,b

A B C D E

a,b

a b a b

a,b

A B C D E

a,b

a b a b

a,b

A B C D E

a,b

a b a b

a,b

A B C D E

a,b

a b a b

a,b

A B C D E

a,b

a b a b

a,b

A B C D E

a,b

a b a b

a,b

A B C D E

a,b

a b a b

a,b

A B C D E

a,b

a b a b

a,b

A B C D E

a,b

a b a b

a,b

A B C D E

a,b

a b a b

a,b

A B C D E

a,b

a b a b

a,b

A B C D E

a,b

a b a b

a,b

b a

a b a

b

a

b

a

b

a

ba

b

a

b

b
a

a

b

ab

a

b

a
b

a
b

a

b

a

b

11 / 38

Formal Tuple Notation for NFA

Definition 5.3.
A non-deterministic finite automata (NFA) N = (Q,Σ, δ, s,A) is a five tuple where

▶ Q is a finite set whose elements are called states,

▶ Σ is a finite set called the input alphabet,

▶ δ : Q × Σ ∪ {ϵ} → P(Q) is the transition function (here P(Q) is the power
set of Q),

▶ s ∈ Q is the start state,

▶ A ⊆ Q is the set of accepting/final states.

δ(q, a) for a ∈ Σ ∪ {ϵ} is a subset of Q — a set of states.

12 / 38

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2024

5.1.2
Algorithm for converting NFA to DFA
FLNAME:5.1.2.0 ZZZ:5.1.2.0 Algorithm for converting NFA to DFA

13 / 38

Recall I
Extending the transition function to strings

Definition 5.4.
For NFA N = (Q,Σ, δ, s,A) and q ∈ Q the ϵreach(q) is the set of all states that q
can reach using only ϵ-transitions.

Definition 5.5.
Inductive definition of δ∗ : Q × Σ∗ → P(Q):

▶ if w = ε, δ∗(q,w) = ϵreach(q)

▶ if w = a where a ∈ Σ: δ∗(q, a) = ϵreach
(⋃

p∈ϵreach(q)

δ(p, a)
)

▶ if w = ax : δ∗(q,w) = ϵreach
(⋃

p∈ϵreach(q)

⋃

r∈δ∗(p,a)

δ∗(r , x)
)

14 / 38

Recall II
Formal definition of language accepted by N

Definition 5.6.
A string w is accepted by NFA N if δ∗

N(s,w) ∩ A ̸= ∅.

Definition 5.7.
The language L(N) accepted by a NFA N = (Q,Σ, δ, s,A) is

{w ∈ Σ∗ | δ∗(s,w) ∩ A ̸= ∅}.

15 / 38

Subset Construction

NFA N = (Q,Σ, s, δ,A). We create a DFA D = (Q′,Σ, δ′, s ′,A′) as follows:

▶ Q′ = P(Q)

▶ s ′ = ϵreach(s) = δ∗(s, ϵ)
▶ A′ = {X ⊆ Q | X ∩ A ̸= ∅}
▶ δ′(X , a) = ∪q∈Xδ

∗(q, a) for each X ⊆ Q, a ∈ Σ.

16 / 38

Incremental construction

Only build states reachable from s ′ = ϵreach(s) the start state of D

q0 q3

q1 ε

q2

 1

 0

 ε
{q0, q1}

{q2,q3}

{}

 0, 1

{q3}

 0, 1

 1

0

 0, 1

δ′(X , a) = ∪q∈Xδ
∗(q, a).

17 / 38

An optimization: Incremental algorithm

▶ Build D beginning with start state s ′ == ϵreach(s)
▶ For each existing state X ⊆ Q consider each a ∈ Σ and calculate the state

U = δ′(X , a) = ∪q∈Xδ
∗(q, a) and add a transition.

To compute Zq,a = δ∗(q, a) - set of all states reached from q on character a
▶ Compute X1 = ϵreach(q)
▶ Compute Y1 = ∪p∈X1δ(p, a)
▶ Compute Zq,a = ϵreach(Y) = ∪r∈Y1ϵreach(r)

▶ If U is a new state add it to reachable states that need to be explored.

18 / 38

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2024

5.1.3
Proof of correctness of conversion of NFA
to DFA
FLNAME:5.1.3.0 ZZZ:5.1.3.0 Proof of correctness of conversion of NFA to DFA

19 / 38

Proof of Correctness

Theorem 5.8.
Let N = (Q,Σ, s, δ,A) be a NFA and let D = (Q′,Σ, δ′, s ′,A′) be a DFA
constructed from N via the subset construction. Then L(N) = L(D).

Stronger claim:

Lemma 5.9.
For every string w , δ∗

N(s,w) = δ∗
D(s

′,w).

Proof by induction on |w |.

20 / 38

Proof continued I

Lemma 5.10.
For every string w , δ∗

N(s,w) = δ∗
D(s

′,w).

Proof:
Base case: w = ϵ.
δ∗

N(s, ϵ) = ϵreach(s).
δ∗

D(s
′, ϵ) = s ′ = ϵreach(s) by definition of s ′.

21 / 38

Proof continued II

Inductive hypothesis: ∀w ∈ Σ∗, |w | ≤ k : δ∗
N(s,w) = δ∗

D(s
′,w).

Reminder: For a state Y ⊆ Q(N) of the DFA D, we have (by definition):

δD(Y , a) = ∪q∈Y δ
∗
N(q, a)

22 / 38

Proof continued III

Lemma 5.11.
For every string w , δ∗

N(s,w) = δ∗
D(s

′,w).

Inductive step: Consider any w ∈ Σk+1. w = xa (Note: suffix definition of strings)

δ∗
N(s, xa) = ∪p∈δ∗N(s,x)δ

∗
N(p, a) by recursive definition of δ∗

N

δ∗
D(s

′, xa) = δD(δ∗
D(s

′, x), a) by recursive definition of δ∗
D

By inductive hypothesis: Y = δ∗
N(s, x) = δ∗

D(s
′, x).

=⇒ δ∗
N(s, xa) = ∪p∈Y δ

∗
N(p, a) and δ∗

D(s
′, xa) = δD(Y , a).

By definition of δD : δD(Y , a) = ∪q∈Y δ
∗
N(q, a).

=⇒ δ∗
N(s, xa) = ∪p∈Y δ

∗
N(p, a) = δD(Y , a) = δ∗

D(s
′, xa).

23 / 38

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2024

5.2
Closure Properties of Regular Languages
FLNAME:5.2.0.0 ZZZ:5.2.0.0 Closure Properties of Regular Languages

24 / 38

Regular Languages

Regular languages have three different characterizations

▶ Inductive definition via base cases and closure under union, concatenation and
Kleene star

▶ Languages accepted by DFAs

▶ Languages accepted by NFAs

Regular language closed under many operations:

▶ union, concatenation, Kleene star via inductive definition or NFAs

▶ complement, union, intersection via DFAs

▶ homomorphism, inverse homomorphism, reverse, . . .

Different representations allow for flexibility in proofs.

25 / 38

Example: PREFIX

Let L be a language over Σ.

Definition 5.1.
PREFIX(L) = {w | wx ∈ L, x ∈ Σ∗}

Theorem 5.2.
If L is regular then PREFIX(L) is regular.

Let M = (Q,Σ, δ, s,A) be a DFA that recognizes L
X = {q ∈ Q | s can reach q in M} Y = {q ∈ Q | q can reach some state in A}
Z = X ∩ Y
Create new DFA M ′ = (Q,Σ, δ, s,Z)
Claim: L(M ′) = PREFIX(L).

26 / 38

Exercise: SUFFIX

Let L be a language over Σ.

Definition 5.3.
SUFFIX(L) = {w | xw ∈ L, x ∈ Σ∗}

Prove the following:

Theorem 5.4.
If L is regular then PREFIX(L) is regular.

27 / 38

Exercise: SUFFIX
An alternative “proof” using a figure

28 / 38

Intro. Algorithms & Models of Computation
CS/ECE 374A, Fall 2024

5.3
Algorithm for converting NFA into regular
expression
FLNAME:5.3.0.0 ZZZ:5.3.0.0 Algorithm for converting NFA into regular expression

29 / 38

Stage 0: Input

A B

C

a

b
a

a, b

b

30 / 38

Stage 1: Normalizing

A B

C

a

b
a

a, b

b

=⇒

init A B

C AC

ǫ a
b

a

a+ b

b

ǫ

31 / 38

Stage 2: Remove state A

init A B

C AC

ǫ a
b

a

a+ b

b

ǫ

=⇒

init A B

C AC

ǫ a
b

a

a+ b

b

ǫ

a

b

32 / 38

Stage 4: Redrawn without old edges

init A B

C AC

ǫ a
b

a

a+ b

b

ǫ

a

b

=⇒

init B

C AC

b

a

a+ b

ǫ

a

b

33 / 38

Stage 4: Removing B

init B

C AC

b

a

a+ b

ǫ

a

b

=⇒

init B

C AC

b

a

a+ b

ǫ

a

b

ab∗a

34 / 38

Stage 5: Redraw

init B

C AC

b

a

a+ b

ǫ

a

b

ab∗a

=⇒

init

C AC

a+ b

ǫ

ab∗a+ b

35 / 38

Stage 6: Removing C

init

C AC

a+ b

ǫ

ab∗a+ b

=⇒

init

C AC

a+ b

ǫ

ab∗a+ b

(ab∗a+ b)(a+ b)∗ ǫ

36 / 38

Stage 7: Redraw

init

C AC

a+ b

ǫ

ab∗a+ b

(ab∗a+ b)(a+ b)∗ ǫ

=⇒ init AC
(ab∗a+ b)(a+ b)∗

37 / 38

Stage 8: Extract regular expression

init AC
(ab∗a+ b)(a+ b)∗

Thus, this automata is equivalent to the regular expression

(ab∗a + b)(a + b)∗.

38 / 38

	Equivalence of NFAs and DFAs
	The idea of the conversion of NFA to DFA
	Algorithm for converting NFA to DFA
	Proof of correctness of conversion of NFA to DFA

	Closure Properties of Regular Languages
	Algorithm for converting NFA into regular expression

