Intro. Algorithms & Models of Computation CS/ECE 374A, Fall 2024

Non-deterministic Finite Automata (NFAs)

Lecture 4 Thursday, September 5, 2024

^LATEXed: September 10, 2024 10:15

Intro. Algorithms & Models of Computation CS/ECE 374A, Fall 2024

4.1 NFA Introduction

Non-deterministic Finite State Automata by example

When you come to a fork in the road, take it.

Non-deterministic Finite State Automata by example II

..but only if it is made out of silver.

Non-deterministic Finite State Automata by example II

..but only if it is made out of silver.

Non-deterministic Finite State Automata by example II

..but only if it is made out of silver.

Non-deterministic Finite State Automata (NFAs)

Differences from DFA

- **▶ From state q on same letter** $a \in \Sigma$ **multiple possible states**
- \triangleright No transitions from \boldsymbol{a} on some letters
- \blacktriangleright ε -transitions!

Questions:

- ▶ Is this a "real" machine?
- ▶ What does it do?

Non-deterministic Finite State Automata (NFAs)

Differences from DFA

- \triangleright From state q on same letter $a \in \Sigma$ multiple possible states
- \triangleright No transitions from \boldsymbol{a} on some letters
- ε -transitions!

Questions:

- ▶ Is this a "real" machine?
- ▶ What does it do?

Non-deterministic Finite State Automata (NFAs)

Differences from DFA

- \triangleright From state q on same letter $a \in \Sigma$ multiple possible states
- \triangleright No transitions from \boldsymbol{a} on some letters
- \blacktriangleright ε -transitions!

Questions:

- \blacktriangleright Is this a "real" machine?
- ▶ What does it do?

- **•** From q_e on 1
- **From** q_{ε} **on 0**
- **From** q_0 **on** ε
- **Example 1**
- \blacktriangleright From q_{00} on 00

- **From** q_{ϵ} **on 1**
- **From** q_{ε} **on 0**
- **From** q_0 **on** ε
- **Example 1**
- \blacktriangleright From q_{00} on 00

- **From** q_{ϵ} **on 1**
- **From** q_{ε} **on 0**
- **From** q_0 **on** ε
- **Example 1**
- \blacktriangleright From q_{00} on 00

- **From** q_{ϵ} **on 1**
- **From** q_{ε} **on 0**
- **From** q_0 **on** ε
- **Firm** q_{ε} **on 01**
- \blacktriangleright From q_{00} on 00

- **From** q_{ϵ} **on 1**
- **From** q_{ε} **on 0**
- **From** q_0 **on** ε
- **From** q_{ε} **on 01**
- \blacktriangleright From q_{00} on 00

- **From** q_{ϵ} **on 1**
- **From** q_{ε} **on 0**
- **From** q_0 **on** ε
- **From** q_{ε} **on 01**
- \blacktriangleright From q_{00} on 00

NFA acceptance: informal

Informal definition: An NFA N accepts a string w iff some accepting state is reached by N from the start state on input w .

The language accepted (or recognized) by a NFA N is denote by $L(N)$ and defined as: $L(N) = \{w \mid N \text{ accepts } w\}.$

NFA acceptance: informal

Informal definition: An NFA N accepts a string w iff some accepting state is reached by N from the start state on input w .

The language accepted (or recognized) by a NFA N is denote by $L(N)$ and defined as: $L(N) = \{w \mid N \text{ accepts } w\}.$

\blacktriangleright Is 01 accepted?

- \triangleright Is 001 accepted?
- \blacktriangleright Is 100 accepted?
- ▶ Are all strings in 1*01 accepted?
- \triangleright What is the language accepted by N ?

- \blacktriangleright Is 01 accepted?
- Is 001 accepted?
- \blacktriangleright Is 100 accepted?
- ▶ Are all strings in 1*01 accepted?
- \triangleright What is the language accepted by N ?

- \blacktriangleright Is 01 accepted?
- \blacktriangleright Is 001 accepted?
- \blacktriangleright Is 100 accepted?
- ▶ Are all strings in 1*01 accepted?

 \triangleright What is the language accepted by N ?

- \blacktriangleright Is 01 accepted?
- \blacktriangleright Is 001 accepted?
- \blacktriangleright Is 100 accepted?
- ▶ Are all strings in 1*01 accepted?

 \triangleright What is the language accepted by N ?

- \blacktriangleright Is 01 accepted?
- \blacktriangleright Is 001 accepted?
- \blacktriangleright Is 100 accepted?
- ▶ Are all strings in 1*01 accepted?
- \triangleright What is the language accepted by N ?

- \blacktriangleright Is 01 accepted?
- \blacktriangleright Is 001 accepted?
- \blacktriangleright Is 100 accepted?
- ▶ Are all strings in 1*01 accepted?
- \triangleright What is the language accepted by N ?

- \blacktriangleright Is 01 accepted?
- \blacktriangleright Is 001 accepted?
- \blacktriangleright Is 100 accepted?
- ▶ Are all strings in 1*01 accepted?
- \triangleright What is the language accepted by N ?

Example the first

ababa.

Idea: Keep track of the states where the NFA might be at any given time.

Example the first

Remaining input: **ababa**.

Example the first

Remaining input: **baba**.

Example the first

Remaining input: **baba**.

Example the first

Remaining input: aba.

Example the first

Remaining input: aba.

Example the first

Remaining input: ba.

Example the first

Remaining input: ba.

Example the first

Remaining input: a.

Example the first

Remaining input: a.

Example the first

Remaining input: ε .

Example the first

Remaining input: ε .

Accepts: ababa.
An exercise

For you to think about...

A. What is the language that the following NFA accepts?

B. What is the minimal number of states in a DFA that recognizes the same language?

Intro. Algorithms & Models of Computation CS/ECE 374A, Fall 2024

4.1.1 Formal definition of NFA

Reminder: Power set

Q: a set. Power set of Q is: $\mathcal{P}(Q) = 2^Q = \{X \mid X \subseteq Q\}$ is set of all subsets of Q.

Example 4.1. $Q = \{1, 2, 3, 4\}$ $\mathcal{P}(Q) =$ $\sqrt{ }$ \int $\overline{\mathcal{L}}$ ${1, 2, 3, 4}$, $\{2,3,4\}, \{1,3,4\}, \{1,2,4\}, \{1,2,3\}$ $\{1,2\}$, $\{1,3\}$, $\{1,4\}$, $\{2,3\}$, $\{2,4\}$, $\{3,4\}$, $\{1\}$, $\{2\}$, $\{3\}$, $\{4\}$, {} \mathcal{L} $\overline{\mathcal{L}}$ \int

Formal Tuple Notation

Definition 4.2.

A non-deterministic finite automata (NFA) $N = (Q, \Sigma, \delta, s, A)$ is a five tuple where

- \triangleright Q is a finite set whose elements are called states.
- \triangleright $\boldsymbol{\Sigma}$ is a finite set called the input alphabet.
- $\triangleright \delta: Q \times \Sigma \cup \{\varepsilon\} \to \mathcal{P}(Q)$ is the transition function (here $\mathcal{P}(Q)$ is the power set of Q),
- ▶ $s \in Q$ is the start state,
- \blacktriangleright $A \subseteq Q$ is the set of accepting/final states.

 $\delta(q, a)$ for $a \in \Sigma \cup \{\varepsilon\}$ is a subset of Q — a set of states.

- \blacktriangleright $\bm{Q} = \{q_{\varepsilon}, q_0, q_{00}, q_p\}$
- $\blacktriangleright \Sigma = \{0,1\}$
- \blacktriangleright δ
- \blacktriangleright s = q_{ε}
- \blacktriangleright $A = \{q_p\}$

- \blacktriangleright Q = { q_{ε} , q_0 , q_{00} , q_p } $\blacktriangleright \Sigma = \{0,1\}$ \blacktriangleright δ
- \blacktriangleright s = q_{ε}
- \blacktriangleright $A = \{q_p\}$

- $\blacktriangleright Q = \{q_{\varepsilon}, q_0, q_{00}, q_p\}$ \blacktriangleright $\Sigma = \{0,1\}$ \blacktriangleright δ \blacktriangleright s = q_{ε}
- \blacktriangleright $A = \{q_p\}$

 $\blacktriangleright \ Q = \{q_{\varepsilon}, q_0, q_{00}, q_p\}$ $\blacktriangleright \Sigma = \{0,1\}$ \blacktriangleright δ \blacktriangleright s = q_{ε} \blacktriangleright $A = \{q_p\}$

14 / 46

- $\blacktriangleright \ Q = \{q_{\varepsilon}, q_0, q_{00}, q_p\}$ $\blacktriangleright \Sigma = \{0,1\}$
- \blacktriangleright δ
- \blacktriangleright s = q_{ε}
- \blacktriangleright $A = \{q_p\}$

- $\blacktriangleright Q = \{q_{\varepsilon}, q_0, q_{00}, q_p\}$
- $\blacktriangleright \Sigma = \{0,1\}$
- \blacktriangleright δ
- \blacktriangleright $s = q_{\varepsilon}$
- \blacktriangleright $A = \{q_p\}$

- $\blacktriangleright Q = \{q_{\varepsilon}, q_0, q_{00}, q_p\}$
- $\blacktriangleright \Sigma = \{0,1\}$
- \blacktriangleright δ
- \blacktriangleright s = q_{ε}
- \blacktriangleright $A = \{q_p\}$

- $\blacktriangleright \ Q = \{q_{\varepsilon}, q_0, q_{00}, q_p\}$
- $\blacktriangleright \Sigma = \{0,1\}$
- \blacktriangleright δ
- \blacktriangleright s = q_{ε}
- \blacktriangleright $A = \{q_p\}$

- $\blacktriangleright Q = \{q_{\varepsilon}, q_0, q_{00}, q_p\}$
- $\blacktriangleright \Sigma = \{0,1\}$
- \blacktriangleright δ
- \blacktriangleright s = q_{ε}
- \blacktriangleright $A = \{q_p\}$

Transition function in detail...

- $\delta(q_{\varepsilon}, \varepsilon) = \{q_{\varepsilon}\}\$ $\delta(q_{\varepsilon},0)=\{q_{\varepsilon},q_0\}$ $\delta(q_{\varepsilon}, 1) = \{q_{\varepsilon}\}\$
	- $\delta(q_{00}, \varepsilon) = \{q_{00}\}\$ $\delta(q_{00}, 0) = \{\}$ $\delta(q_{00}, 1) = \{q_p\}$

 $\delta(q_0, \varepsilon) = \{q_0, q_{00}\}\,$ $\delta(q_0, 0) = \{q_{00}\}\$ $\delta(q_0, 1) = \{\}$

$$
\delta(q_p, \varepsilon) = \{q_p\}
$$

\n
$$
\delta(q_p, 0) = \{q_p\}
$$

\n
$$
\delta(q_p, 1) = \{q_p\}
$$

Intro. Algorithms & Models of Computation CS/ECE 374A, Fall 2024

4.1.2 Extending the transition function to strings

1. NFA $N = (Q, \Sigma, \delta, s, A)$

2. $\delta(q, a)$: set of states that N can go to from q on reading $a \in \Sigma \cup \{\varepsilon\}$.

- 3. Want transition function $\delta^*:\bm{Q}\times \bm{\Sigma}^*\to \mathcal{P}(\bm{Q})$
- 4. $\delta^*(\bm{q},\bm{w})$: set of states reachable on input \bm{w} starting in state \bm{q} .

- 1. NFA $N = (Q, \Sigma, \delta, s, A)$
- 2. $\delta(q, a)$: set of states that N can go to from q on reading $a \in \Sigma \cup \{\varepsilon\}$.
- 3. Want transition function $\delta^*:\bm{Q}\times \bm{\Sigma}^*\to \mathcal{P}(\bm{Q})$
- 4. $\delta^*(\bm{q},\bm{w})$: set of states reachable on input \bm{w} starting in state \bm{q} .

- 1. NFA $N = (Q, \Sigma, \delta, s, A)$
- 2. $\delta(q, a)$: set of states that N can go to from q on reading $a \in \Sigma \cup \{\varepsilon\}$.
- 3. Want transition function $\delta^*: Q \times \Sigma^* \to \mathcal{P}(Q)$
- 4. $\delta^*(\bm{q},\bm{w})$: set of states reachable on input \bm{w} starting in state \bm{q} .

- 1. NFA $N = (Q, \Sigma, \delta, s, A)$
- 2. $\delta(q, a)$: set of states that N can go to from q on reading $a \in \Sigma \cup \{\varepsilon\}$.
- 3. Want transition function $\delta^*: Q \times \Sigma^* \to \mathcal{P}(Q)$
- 4. $\delta^*(q, w)$: set of states reachable on input w starting in state q .

Extending the transition function to strings **An Inpute String and With** Extending the transition ranction to string

Definition 4.3. *q* *is actually and ai is either <i>ai is either a*

For NFA $\mathcal{N}=(\mathcal{Q},\mathsf{\Sigma},\delta,s,\mathcal{A})$ and $\mathcal{q}\in\mathcal{Q}$ the ϵ reach (\mathcal{q}) is the set of all states that \mathcal{q} can reach using only *ε*-transitions. $\frac{1}{\sqrt{2}}$ are $\frac{1}{\sqrt{2}}$ and $\frac{1}{\sqrt{2}}$ and $\frac{1}{\sqrt{2}}$ are detected $\frac{1}{\sqrt{2}}$ or the set of an states that $\frac{1}{\sqrt{2}}$

For $X \subseteq Q$: ϵ reach $(X) = \bigcup_{x \in X} \epsilon$ reach (x) . Definition 4.4.

non-deterministically choose the following transitions and then accept.

Extending the transition function to strings **An Inpute String and With** Extending the transition ranction to string

Definition 4.3. *q* *is actually and ai is either <i>ai is either a* For NFA $\mathcal{N}=(\mathcal{Q},\mathsf{\Sigma},\delta,s,\mathcal{A})$ and $\mathcal{q}\in\mathcal{Q}$ the ϵ reach (\mathcal{q}) is the set of all states that \mathcal{q} can reach using only *ε*-transitions. $\frac{1}{\sqrt{2}}$ are $\frac{1}{\sqrt{2}}$ and $\frac{1}{\sqrt{2}}$ and $\frac{1}{\sqrt{2}}$ are detected $\frac{1}{\sqrt{2}}$ or the set of an states that $\frac{1}{\sqrt{2}}$

non-deterministically choose the following transitions and then accept.

For $X \subseteq Q$: ϵ reach $(X) = \bigcup_{x \in X} \epsilon$ reach (x) . Definition 4.4.

 ϵ reach(q): set of all states that q can reach using only ϵ -transitions.

 ϵ reach(q): set of all states that q can reach using only ϵ -transitions.

Definition 4.5. Inductive definition of $\delta^*:\pmb Q\times\pmb \Sigma^*\to \mathcal P(\pmb Q)$: if $w = \varepsilon$, $\delta^*(q, w) = \epsilon$ reach (q) \triangleright if *w* = *a* where *a* ∈ **Σ**: $\delta^*(q, a) = \epsilon$ reach $\sqrt{ }$ \mathcal{L} $\vert \ \vert$ $p \in \epsilon$ reach (q) $\delta(p,a)$ \setminus $\overline{1}$ if $w = ax$: $\delta^*(q, w) = \epsilon$ reach $\sqrt{ }$ \mathcal{L} $p \in$ ereach (q) $\sqrt{2}$ \mathcal{L} $r \in \delta^*(p,a)$ $\delta^*(r, x)$ \setminus - \setminus -

 ϵ reach(q): set of all states that q can reach using only ϵ -transitions.

Definition 4.5.

\nInductive definition of
$$
\delta^* : Q \times \Sigma^* \to \mathcal{P}(Q)
$$
:

\n \blacktriangleright if $w = \varepsilon$, $\delta^*(q, w) = \text{reach}(q)$

\n \blacktriangleright if $w = a$ where $a \in \Sigma$: $\delta^*(q, a) = \text{reach}\left(\bigcup_{p \in \text{reach}(q)} \delta(p, a)\right)$

\n \blacktriangleright if $w = ax$: $\delta^*(q, w) = \text{reach}\left(\bigcup_{p \in \text{reach}(q)} \left(\bigcup_{r \in \delta^*(p, a)} \delta^*(r, x)\right)\right)$

Translation...

$$
\delta^*(q, w) = \text{erach}\left(\bigcup_{p \in \text{erach}(q)} \left(\bigcup_{r \in \delta^*(p, a)} \delta^*(r, x)\right)\right)
$$

1. $R = \text{erach}(q) \implies \delta^*(q, w) = \text{erach}\left(\bigcup_{p \in R} \bigcup_{r \in \delta^*(p, a)} \delta^*(r, x)\right)$
2. $N = \bigcup_{p \in R} \delta^*(p, a)$: All the states reachable from q with the letter a .
3. $\delta^*(q, w) = \text{erach}\left(\bigcup_{r \in N} \delta^*(r, x)\right)$

Translation...

$$
\delta^*(q, w) = \epsilon \text{reach}\left(\bigcup_{p \in \text{reach}(q)} \left(\bigcup_{r \in \delta^*(p, a)} \delta^*(r, x)\right)\right)
$$

1. $R = \epsilon \text{reach}(q) \implies \delta^*(q, w) = \epsilon \text{reach}\left(\bigcup_{p \in R} \bigcup_{r \in \delta^*(p, a)} \delta^*(r, x)\right)$

2. $N = \left[\begin{array}{ccc} \end{array} \right] \delta^*(p,a)$: All the states reachable from q with the letter $a.$ p∈R

3.
$$
\delta^*(q, w) = \epsilon \text{reach}\left(\bigcup_{r \in N} \delta^*(r, x)\right)
$$

Translation...

$$
\delta^*(q, w) = \text{ereach}\left(\bigcup_{p \in \text{ereach}(q)} \left(\bigcup_{r \in \delta^*(p, a)} \delta^*(r, x)\right)\right)
$$

1. $R = \text{ereach}(q) \implies \delta^*(q, w) = \text{ereach}\left(\bigcup_{p \in R} \bigcup_{r \in \delta^*(p, a)} \delta^*(r, x)\right)$

2. $N = \left| \begin{array}{c} \end{array} \right| \delta^*(p,a)$: All the states reachable from q with the letter a . p∈R

3. $\delta^*(q, w) = \epsilon$ reach $\begin{pmatrix} | & | \end{pmatrix}$ r∈N $\delta^*(r, x)$!

Translation...

$$
\delta^*(q, w) = \epsilon \text{reach}\left(\bigcup_{p \in \epsilon \text{reach}(q)} \left(\bigcup_{r \in \delta^*(p, a)} \delta^*(r, x)\right)\right)
$$

1.
$$
R = \epsilon \text{reach}(q) \implies \delta^*(q, w) = \epsilon \text{reach}\left(\bigcup_{p \in R} \bigcup_{r \in \delta^*(p, a)} \delta^*(r, x)\right)
$$

2. $N = \left| \begin{array}{c} \end{array} \right| \delta^*(p,a)$: All the states reachable from q with the letter a . p∈R *Contract Contract Contract Contract*

3.
$$
\delta^*(q, w) = \epsilon \text{reach}\left(\bigcup_{r \in N} \delta^*(r, x)\right)
$$

Formal definition of language accepted by N

Definition 4.6.

A string w is accepted by NFA N if δ^*_{N} $\chi_N^*(s, w) \cap A \neq \emptyset$.

Definition 4.7.

The language $L(N)$ accepted by a NFA $N = (Q, \Sigma, \delta, s, A)$ is

 $\{w \in \Sigma^* \mid \delta^*(s, w) \cap A \neq \emptyset\}.$

Important: Formal definition of the language of NFA above uses $\boldsymbol{\delta^*}$ and not $\boldsymbol{\delta}$. As such, one does not need to include ε -transitions closure when specifying $\boldsymbol{\delta},$ since $\boldsymbol{\delta^*}$ takes care of that.

Formal definition of language accepted by N

Definition 4.6.

```
A string w is accepted by NFA N if \delta^*_{N}\chi_N^*(s, w) \cap A \neq \emptyset.
```
Definition 4.7. The language $L(N)$ accepted by a NFA $N = (Q, \Sigma, \delta, s, A)$ is $\{w \in \Sigma^* \mid \delta^*(s, w) \cap A \neq \emptyset\}.$

Important: Formal definition of the language of NFA above uses δ^* and not δ . As such, one does not need to include ε -transitions closure when specifying δ , since δ^* takes care of that.

- \triangleright $\delta^*(s, \epsilon)$
- \blacktriangleright $\delta^*(s, 0)$
	- \blacktriangleright $\delta^*(c, 0)$
	- \triangleright *δ*^{*}(*b*,00)

- \triangleright $\delta^*(s, \epsilon)$
- $\blacktriangleright \delta^*(s,0)$
	- \blacktriangleright $\delta^*(c, 0)$
	- \triangleright $\delta^*(b, 00)$

- \triangleright $\delta^*(s, \epsilon)$
- $\blacktriangleright \delta^*(s,0)$
	- \blacktriangleright $\delta^*(c, 0)$
	- \blacktriangleright $\delta^*(b, 00)$

- \triangleright $\delta^*(s, \epsilon)$
- $\blacktriangleright \delta^*(s,0)$
	- \blacktriangleright $\delta^*(c, 0)$
	- \triangleright *δ*^{*}(*b*, 00)

Another definition of computation

Definition 4.8.

 $q \stackrel{w}{\longrightarrow}_N p$: State p of NFA N is reachable from q on $w \iff$ there exists a sequence of states r_0, r_1, \ldots, r_k and a sequence x_1, x_2, \ldots, x_k where $x_i \in \Sigma \cup \{\varepsilon\},$ for each i , such that:

 \blacktriangleright $r_0 = q$,

• for each
$$
i, r_{i+1} \in \delta^*(r_i, x_{i+1})
$$
,

$$
\blacktriangleright r_k = p, \text{ and}
$$

$$
\blacktriangleright w = x_1x_2x_3\cdots x_k.
$$

The sequence $r_0 \stackrel{x_1}{\rightarrow} r_1 \stackrel{x_2}{\rightarrow} \cdots \stackrel{x_k}{\rightarrow} r_k$ is a trace of N on w .

Definition 4.9. δ^*_{Λ} $\mathcal{L}_N^*(q, w) = \left\{ p \in Q \middle| q \stackrel{w}{\longrightarrow}_N p \right\}.$

Why non-determinism?

- ▶ Non-determinism adds power to the model; richer programming language and hence (much) easier to "design" programs
- \blacktriangleright Fundamental in theory to prove many theorems
- \triangleright Very important in **practice** directly and indirectly

▶ Many deep connections to various fields in Computer Science and Mathematics Many interpretations of non-determinism. Hard to understand at the outset. Get used

to it and then you will appreciate it slowly.
Intro. Algorithms & Models of Computation CS/ECE 374A, Fall 2024

4.2 Constructing NFAs

DFAs and NFAs

- ▶ Every DFA is a NFA so NFAs are at least as powerful as DFAs.
- ▶ NFAs prove ability to "guess and verify" which simplifies design and reduces number of states
- \blacktriangleright Easy proofs of some closure properties

Strings that represent decimal numbers.

- ▶ {strings that contain CS374 as a substring}
- ▶ {strings that contain CS374 or CS473 as a substring}
- ▶ {strings that contain CS374 and CS473 as substrings}

- ▶ {strings that contain CS374 as a substring}
- ▶ {strings that contain CS374 or CS473 as a substring}
- ▶ {strings that contain CS374 and CS473 as substrings}

- ▶ {strings that contain CS374 as a substring}
- ▶ {strings that contain CS374 or CS473 as a substring}
- ▶ {strings that contain CS374 and CS473 as substrings}

 $L_k = \{$ bitstrings that have a 1 k positions from the end $\}$

DFA for same task is much bigger...

 $L_4 = \{$ bitstrings that have a 1 in fourth position from the end $\}$

A simple transformation

Theorem 4.1.

For every NFA N there is another NFA N' such that $L(N) = L(N')$ and such that N' has the following two properties:

- \triangleright N' has single final state f that has no outgoing transitions
- The start state s of N is different from f

Intro. Algorithms & Models of Computation CS/ECE 374A, Fall 2024

4.3 Closure Properties of NFAs

Closure properties of NFAs

Are the class of languages accepted by NFAs closed under the following operations?

- \blacktriangleright union
- \blacktriangleright intersection
- \blacktriangleright concatenation
- ▶ Kleene star
- \blacktriangleright complement

Closure under union

Theorem 4.1.

For any two NFAs N_1 and N_2 there is a NFA N such that $L(N) = L(N_1) \cup L(N_2)$.

Closure under union

Theorem 4.1.

For any two NFAs N_1 and N_2 there is a NFA N such that $L(N) = L(N_1) \cup L(N_2)$.

Closure under concatenation

Theorem 4.2.

For any two NFAs N_1 and N_2 there is a NFA N such that $L(N) = L(N_1) \cdot L(N_2)$.

Closure under concatenation

Theorem 4.2.

For any two NFAs N_1 and N_2 there is a NFA N such that $L(N) = L(N_1) \cdot L(N_2)$.

Theorem 4.3.

For any NFA N_1 there is a NFA N such that $L(N) = (L(N_1))^*$.

Theorem 4.4. For any NFA N_1 there is a NFA N such that $L(N) = (L(N_1))^*$.

Does not work! Why?

Theorem 4.4. For any NFA N_1 there is a NFA N such that $L(N) = (L(N_1))^*$.

Does not work! Why?

Theorem 4.5.

For any NFA N_1 there is a NFA N such that $L(N) = (L(N_1))^*$.

Intro. Algorithms & Models of Computation CS/ECE 374A, Fall 2024

4.4 NFAs capture Regular Languages

Regular Languages Recap

∅ regular ∅ denotes ∅ $\{\epsilon\}$ regular ϵ denotes $\{\epsilon\}$ {a} regular for $a \in \Sigma$ a denote {a} $R_1 \cup R_2$ regular if both are $r_1 + r_2$ denotes $R_1 \cup R_2$ R_1R_2 regular if both are r_1r_2 denotes R_1R_2 R^* is regular if R is **r**

Regular Languages Regular Expressions

 $*$ denote R^*

Regular expressions denote regular languages — they explicitly show the operations that were used to form the language

Theorem 4.1.

For every regular language L there is an NFA N such that $L = L(N)$.

Proof strategy:

- \triangleright For every regular expression r show that there is a NFA N such that $L(r) = L(N)$
- \blacktriangleright Induction on length of r

 \triangleright For every regular expression r show that there is a NFA N such that $L(r) = L(N)$

 \blacktriangleright Induction on length of r

Base cases: \emptyset , $\{\varepsilon\}$, $\{a\}$ for $a \in \Sigma$.

- ▶ For every regular expression r show that there is a NFA N such that $L(r) = L(N)$
- \blacktriangleright Induction on length of r

Inductive cases:

 \triangleright r_1 , r_2 regular expressions and $r = r_1 + r_2$.

By induction there are NFAs N_1 , N_2 s.t $L(N_1) = L(r_1)$ and $L(N_2) = L(r_2)$. We have already seen that there is NFA N s.t $L(N) = L(N_1) \cup L(N_2)$, hence $L(N) = L(r)$

- \blacktriangleright $\boldsymbol{r} = \boldsymbol{r}_1 \boldsymbol{\cdot} \boldsymbol{r}_2$. Use closure of NFA languages under concatenation
- \blacktriangleright $r = (r_1)^*$. Use closure of NFA languages under Kleene star

- \triangleright For every regular expression r show that there is a NFA N such that $L(r) = L(N)$
- \blacktriangleright Induction on length of r

- \triangleright r_1 , r_2 regular expressions and $r = r_1 + r_2$. By induction there are NFAs N_1 , N_2 s.t $L(N_1) = L(r_1)$ and $L(N_2) = L(r_2)$. We have already seen that there is NFA N s.t $L(N) = L(N_1) \cup L(N_2)$, hence $L(N) = L(r)$
- \blacktriangleright $\boldsymbol{r} = \boldsymbol{r}_1 \boldsymbol{\cdot} \boldsymbol{r}_2$. Use closure of NFA languages under concatenation
- \blacktriangleright $r = (r_1)^*$. Use closure of NFA languages under Kleene star

- \triangleright For every regular expression r show that there is a NFA N such that $L(r) = L(N)$
- \blacktriangleright Induction on length of r

- \triangleright r_1 , r_2 regular expressions and $r = r_1 + r_2$. By induction there are NFAs N_1 , N_2 s.t $L(N_1) = L(r_1)$ and $L(N_2) = L(r_2)$. We have already seen that there is NFA N s.t $L(N) = L(N_1) \cup L(N_2)$, hence $L(N) = L(r)$
- \blacktriangleright $r = r_1 \cdot r_2$. Use closure of NFA languages under concatenation
- \blacktriangleright $r = (r_1)^*$. Use closure of NFA languages under Kleene star

- \triangleright For every regular expression r show that there is a NFA N such that $L(r) = L(N)$
- \blacktriangleright Induction on length of r

- \triangleright r_1 , r_2 regular expressions and $r = r_1 + r_2$. By induction there are NFAs N_1 , N_2 s.t $L(N_1) = L(r_1)$ and $L(N_2) = L(r_2)$. We have already seen that there is NFA N s.t $L(N) = L(N_1) \cup L(N_2)$, hence $L(N) = L(r)$
- \blacktriangleright $\boldsymbol{r} = \boldsymbol{r_1} \cdot \boldsymbol{r_2}$. Use closure of NFA languages under concatenation
- \blacktriangleright $r = (r_1)^*$. Use closure of NFA languages under Kleene star

- \triangleright For every regular expression r show that there is a NFA N such that $L(r) = L(N)$
- \blacktriangleright Induction on length of r

- \triangleright r_1 , r_2 regular expressions and $r = r_1 + r_2$. By induction there are NFAs N_1 , N_2 s.t $L(N_1) = L(r_1)$ and $L(N_2) = L(r_2)$. We have already seen that there is NFA N s.t $L(N) = L(N_1) \cup L(N_2)$, hence $L(N) = L(r)$
- \blacktriangleright $r = r_1 \cdot r_2$. Use closure of NFA languages under concatenation
- ▶ $r = (r_1)^*$. Use closure of NFA languages under Kleene star

- \triangleright For every regular expression r show that there is a NFA N such that $L(r) = L(N)$
- \blacktriangleright Induction on length of r

- \triangleright r_1 , r_2 regular expressions and $r = r_1 + r_2$. By induction there are NFAs N_1 , N_2 s.t $L(N_1) = L(r_1)$ and $L(N_2) = L(r_2)$. We have already seen that there is NFA N s.t $L(N) = L(N_1) \cup L(N_2)$, hence $L(N) = L(r)$
- \blacktriangleright $r = r_1 \cdot r_2$. Use closure of NFA languages under concatenation
- \blacktriangleright $r = (r_1)^*$. Use closure of NFA languages under Kleene star

- \triangleright For every regular expression r show that there is a NFA N such that $L(r) = L(N)$
- \blacktriangleright Induction on length of r

- \triangleright r_1 , r_2 regular expressions and $r = r_1 + r_2$. By induction there are NFAs N_1 , N_2 s.t $L(N_1) = L(r_1)$ and $L(N_2) = L(r_2)$. We have already seen that there is NFA N s.t $L(N) = L(N_1) \cup L(N_2)$, hence $L(N) = L(r)$
- \blacktriangleright $r = r_1 \cdot r_2$. Use closure of NFA languages under concatenation
- ▶ $r = (r_1)^*$. Use closure of NFA languages under Kleene star

(ε+0)(1+10)* (ε+0) (1+10)* ε 0 $(1+10)$ *

Final NFA simplified slightly to reduce states

