Intro. Algorithms & Models of Computation CS/ECE 374A, Fall 2024

Non-deterministic Finite Automata (NFAs)

Lecture 4 Thursday, September 5, 2024

LATEXed: September 10, 2024 10:15

Intro. Algorithms & Models of Computation CS/ECE 374A, Fall 2024

4.1 NFA Introduction

Non-deterministic Finite State Automata by example

When you come to a fork in the road, take it.

Non-deterministic Finite State Automata by example II

..but only if it is made out of silver.

Non-deterministic Finite State Automata by example II

..but only if it is made out of silver.

Non-deterministic Finite State Automata by example II

..but only if it is made out of silver.

Non-deterministic Finite State Automata (NFAs)

Differences from DFA

- From state q on same letter $a \in \Sigma$ multiple possible states
- ▶ No transitions from *q* on some letters
- ε-transitions!

Questions:

- Is this a "real" machine?
- What does it do?

Non-deterministic Finite State Automata (NFAs)

Differences from DFA

- From state q on same letter $a \in \Sigma$ multiple possible states
- ▶ No transitions from *q* on some letters
- ε-transitions!

Questions:

- Is this a "real" machine?
- What does it do?

Non-deterministic Finite State Automata (NFAs)

Differences from DFA

- From state q on same letter $a \in \Sigma$ multiple possible states
- ▶ No transitions from *q* on some letters
- ε-transitions!

Questions:

- Is this a "real" machine?
- What does it do?

- From q_{ε} on 1
- From q_{ε} on **0**
- From q_0 on ε
- From q_{ε} on **01**
- ► From *q*₀₀ on **00**

- From q_{ϵ} on 1
- From q_{ε} on **0**
- From q_0 on ε
- From q_{ε} on **01**
- ► From *q*₀₀ on **00**

- From q_{ϵ} on 1
- From q_{ε} on **0**
- From q_0 on ε
- From q_{ε} on **01**
- ► From *q*₀₀ on **00**

- From q_{ϵ} on 1
- From q_{ε} on **0**
- From q_0 on ε
- From q_{ε} on **01**
- ► From *q*₀₀ on **00**

- From q_{ϵ} on 1
- From q_{ε} on **0**
- From q_0 on ε
- From q_{ε} on **01**
- ► From *q*₀₀ on **00**

- From q_{ϵ} on 1
- From q_{ε} on **0**
- From q_0 on ε
- From q_{ε} on **01**
- ▶ From *q*₀₀ on **00**

NFA acceptance: informal

Informal definition: An NFA N accepts a string w iff some accepting state is reached by N from the start state on input w.

The language accepted (or recognized) by a NFA N is denote by L(N) and defined as: $L(N) = \{w \mid N \text{ accepts } w\}.$

NFA acceptance: informal

Informal definition: An NFA N accepts a string w iff some accepting state is reached by N from the start state on input w.

The language accepted (or recognized) by a NFA N is denote by L(N) and defined as: $L(N) = \{w \mid N \text{ accepts } w\}.$

► Is **01** accepted?

- ▶ Is **001** accepted?
- ▶ Is **100** accepted?
- Are all strings in 1*01 accepted?
- ► What is the language accepted by **N**?

- ► Is **01** accepted?
- Is 001 accepted?
- ▶ Is **100** accepted?
- Are all strings in 1*01 accepted?
- ► What is the language accepted by **N**?

- ► Is **01** accepted?
- Is 001 accepted?
- ► Is 100 accepted?
- Are all strings in 1*01 accepted?
- ► What is the language accepted by **N**?

- ► Is **01** accepted?
- Is 001 accepted?
- ► Is 100 accepted?
- Are all strings in 1*01 accepted?

► What is the language accepted by **N**?

- ► Is **01** accepted?
- Is 001 accepted?
- ▶ Is 100 accepted?
- Are all strings in 1*01 accepted?
- ► What is the language accepted by **N**?

- ► Is **01** accepted?
- Is 001 accepted?
- ▶ Is 100 accepted?
- Are all strings in 1*01 accepted?
- ► What is the language accepted by **N**?

- ► Is **01** accepted?
- Is 001 accepted?
- ▶ Is 100 accepted?
- Are all strings in 1*01 accepted?
- What is the language accepted by N?

Simulating NFA

Example the first

ababa.

Idea: Keep track of the states where the NFA might be at any given time.

${\sf Simulating}\ {\rm NFA}$

Example the first

Remaining input: *ababa*.

${\sf Simulating}\ {\rm NFA}$

Remaining input: **baba**.

Simulating NFA

Example the first

Remaining input: **baba**.

${\sf Simulating}\ {\rm NFA}$

Remaining input: *aba*.

Simulating NFA

Example the first

Remaining input: *aba*.

${\small Simulating \ NFA} \\$

Remaining input: **ba**.

${\sf Simulating}\ {\rm NFA}$

Example the first

Remaining input: **ba**.

${\small Simulating \ NFA} \\$

Example the first

Remaining input: a.

${\sf Simulating}\ {\rm NFA}$

Example the first

Remaining input: a.

${\small Simulating \ NFA} \\$

Remaining input: ε .

${\sf Simulating}\ {\rm NFA}$

Example the first

Remaining input: ε .

Accepts: ababa.

An exercise

For you to think about...

A. What is the language that the following NFA accepts?

B. What is the minimal number of states in a DFA that recognizes the same language?

Intro. Algorithms & Models of Computation CS/ECE 374A, Fall 2024

4.1.1 Formal definition of NFA

Reminder: Power set

Q: a set. Power set of Q is: $\mathcal{P}(Q) = 2^Q = \{X \mid X \subseteq Q\}$ is set of all subsets of Q.

Example 4.1. $Q = \{1, 2, 3, 4\}$ $\mathcal{P}(Q) = \left\{ \begin{array}{c} \{1, 2, 3, 4\}, \\ \{2, 3, 4\}, \{1, 3, 4\}, \{1, 2, 4\}, \{1, 2, 3\}, \\ \{1, 2\}, \{1, 3\}, \{1, 4\}, \{2, 3\}, \{2, 4\}, \{3, 4\}, \\ \{1\}, \{2\}, \{3\}, \{4\}, \\ \{\} \end{array} \right\}$

Formal Tuple Notation

Definition 4.2.

A non-deterministic finite automata (NFA) $N = (Q, \Sigma, \delta, s, A)$ is a five tuple where

- Q is a finite set whose elements are called states,
- **Σ** is a finite set called the input alphabet,
- δ: Q × Σ ∪ {ε} → P(Q) is the transition function (here P(Q) is the power set of Q),
- $s \in Q$ is the start state,
- $A \subseteq Q$ is the set of accepting/final states.

 $\delta(q, a)$ for $a \in \Sigma \cup \{\varepsilon\}$ is a subset of Q — a set of states.

- $\blacktriangleright Q = \{q_{\varepsilon}, q_0, q_{00}, q_p\}$
- $\blacktriangleright \Sigma = \{0,1\}$
- Ν δ
- $\blacktriangleright s = q_{\varepsilon}$
- $\blacktriangleright A = \{q_p\}$

- $\blacktriangleright Q = \{q_{\varepsilon}, q_0, q_{00}, q_p\}$ ► $\Sigma = \{0, 1\}$ $\blacktriangleright \delta$ $\blacktriangleright s = q_{\varepsilon}$ $\blacktriangleright A = \{q_p\}$

Q = {q_ε, q₀, q₀₀, q_p}
Σ = {0, 1}
δ
s = q_ε
A = {q_p}

Q = {q_ε, q₀, q₀₀, q_p}
Σ = {0, 1}
δ
s = q_ε
A = {q_p}

- $Q = \{q_{\varepsilon}, q_0, q_{00}, q_{\rho}\}$ • $\Sigma = \{0, 1\}$
- δ
- $\blacktriangleright s = q_{\varepsilon}$
- $\blacktriangleright A = \{q_p\}$

- $\blacktriangleright Q = \{q_{\varepsilon}, q_0, q_{00}, q_p\}$
- ► $\Sigma = \{0, 1\}$
- $\blacktriangleright \delta$
- $\blacktriangleright s = q_{\varepsilon}$
- $\blacktriangleright A = \{q_p\}$

- $\blacktriangleright Q = \{q_{\varepsilon}, q_0, q_{00}, q_p\}$
- ► $\Sigma = \{0, 1\}$
- $\blacktriangleright \delta$
- $\blacktriangleright s = q_{\varepsilon}$
- $\blacktriangleright A = \{q_p\}$

- $\blacktriangleright Q = \{q_{\varepsilon}, q_0, q_{00}, q_p\}$
- ► $\Sigma = \{0, 1\}$
- $\blacktriangleright \delta$
- $\blacktriangleright s = q_{\varepsilon}$
- $\blacktriangleright A = \{q_p\}$

- $\blacktriangleright Q = \{q_{\varepsilon}, q_0, q_{00}, q_p\}$
- ► $\Sigma = \{0, 1\}$
- $\blacktriangleright \delta$
- $\blacktriangleright s = q_{\varepsilon}$
- $\blacktriangleright A = \{q_p\}$

Transition function in detail...

- $egin{aligned} \delta(q_arepsilon,arepsilon) &= \{q_arepsilon\} \ \delta(q_arepsilon,0) &= \{q_arepsilon,q_0\} \ \delta(q_arepsilon,1) &= \{q_arepsilon\} \end{aligned}$
 - $\delta(q_{00}, \varepsilon) = \{q_{00}\}$ $\delta(q_{00}, 0) = \{\}$ $\delta(q_{00}, 1) = \{q_p\}$

 $egin{aligned} \delta(q_0,arepsilon) &= \{q_0,q_{00}\} \ \delta(q_0,0) &= \{q_{00}\} \ \delta(q_0,1) &= \{\} \end{aligned}$

$$\delta(q_p, \varepsilon) = \{q_p\}$$

 $\delta(q_p, 0) = \{q_p\}$
 $\delta(q_p, 1) = \{q_p\}$

Intro. Algorithms & Models of Computation CS/ECE 374A, Fall 2024

- 1. NFA $N = (Q, \Sigma, \delta, s, A)$
- 2. $\delta(q, a)$: set of states that *N* can go to from *q* on reading $a \in \Sigma \cup \{\varepsilon\}$.
- 3. Want transition function $\delta^*: Q \times \Sigma^* \to \mathcal{P}(Q)$
- 4. $\delta^*(m{q},m{w})$: set of states reachable on input $m{w}$ starting in state $m{q}$.

- 1. NFA $N = (Q, \Sigma, \delta, s, A)$
- 2. $\delta(q, a)$: set of states that N can go to from q on reading $a \in \Sigma \cup \{\varepsilon\}$.
- 3. Want transition function $\delta^* : Q \times \Sigma^* \to \mathcal{P}(Q)$
- 4. $\delta^*(m{q},m{w})$: set of states reachable on input $m{w}$ starting in state $m{q}$.

- 1. NFA $N = (Q, \Sigma, \delta, s, A)$
- 2. $\delta(q, a)$: set of states that N can go to from q on reading $a \in \Sigma \cup \{\varepsilon\}$.
- 3. Want transition function $\delta^* : Q \times \Sigma^* \to \mathcal{P}(Q)$
- 4. $\delta^*(q,w)$: set of states reachable on input w starting in state q.

- 1. NFA $N = (Q, \Sigma, \delta, s, A)$
- 2. $\delta(q, a)$: set of states that N can go to from q on reading $a \in \Sigma \cup \{\varepsilon\}$.
- 3. Want transition function $\delta^* : Q \times \Sigma^* \to \mathcal{P}(Q)$
- 4. $\delta^*(q, w)$: set of states reachable on input w starting in state q.

Definition 4.3. For NFA $N = (Q, \Sigma, \delta, s, A)$ and $q \in Q$ the $\epsilon \operatorname{reach}(q)$ is the set of all states that q can reach using only ε -transitions.

Definition 4.4. For $X \subseteq Q$: ϵ reach $(X) = \bigcup_{x \in X} \epsilon$ reach(x).

Definition 4.3. For NFA $N = (Q, \Sigma, \delta, s, A)$ and $q \in Q$ the $\epsilon \operatorname{reach}(q)$ is the set of all states that q can reach using only ε -transitions.

Definition 4.4. For $X \subseteq Q$: ϵ reach $(X) = \bigcup_{x \in X} \epsilon$ reach(x).

 ϵ reach(q): set of all states that q can reach using only ε -transitions.

 ϵ reach(q): set of all states that q can reach using only ε -transitions.

Definition 4.5. Inductive definition of $\delta^* : Q \times \Sigma^* \to \mathcal{P}(Q)$: • if $w = \varepsilon$, $\delta^*(q, w) = \epsilon \operatorname{reach}(q)$ • if w = a where $a \in \Sigma$: $\delta^*(q, a) = \epsilon \operatorname{reach}\left(\bigcup_{p \in \epsilon \operatorname{reach}(q)} \delta(p, a)\right)$ • if w = ax: $\delta^*(q, w) = \epsilon \operatorname{reach}\left(\bigcup_{p \in \epsilon \operatorname{reach}(q)} \left(\bigcup_{r \in \delta^*(p, a)} \delta^*(r, x)\right)\right)$

 ϵ reach(q): set of all states that q can reach using only ε -transitions.

Definition 4.5. Inductive definition of $\delta^* : Q \times \Sigma^* \to \mathcal{P}(Q)$: • if $w = \varepsilon$, $\delta^*(q, w) = \epsilon \operatorname{reach}(q)$ • if w = a where $a \in \Sigma$: $\delta^*(q, a) = \epsilon \operatorname{reach}\left(\bigcup_{p \in \operatorname{reach}(q)} \delta(p, a)\right)$ • if w = ax: $\delta^*(q, w) = \epsilon \operatorname{reach}\left(\bigcup_{p \in \operatorname{creach}(q)} \left(\bigcup_{r \in \delta^*(p, q)} \delta^*(r, x)\right)\right)$

Translation...

$$\delta^{*}(q, w) = \epsilon \operatorname{reach}\left(\bigcup_{p \in \epsilon \operatorname{reach}(q)} \left(\bigcup_{r \in \delta^{*}(p, a)} \delta^{*}(r, x)\right)\right)$$

$$R = \epsilon \operatorname{reach}(q) \implies \delta^{*}(q, w) = \epsilon \operatorname{reach}\left(\bigcup_{p \in R} \bigcup_{r \in \delta^{*}(p, a)} \delta^{*}(r, x)\right)$$

$$R = \bigcup_{p \in R} \delta^{*}(p, a): \text{ All the states reachable from } q \text{ with the letter } a$$

$$\delta^{*}(q, w) = \epsilon \operatorname{reach}\left(\bigcup_{r \in N} \delta^{*}(r, x)\right)$$

Translation...

$$\delta^{*}(q, w) = \epsilon \operatorname{reach}\left(\bigcup_{p \in \epsilon \operatorname{reach}(q)} \left(\bigcup_{r \in \delta^{*}(p, a)} \delta^{*}(r, x)\right)\right)$$
1. $R = \epsilon \operatorname{reach}(q) \implies \delta^{*}(q, w) = \epsilon \operatorname{reach}\left(\bigcup_{p \in R} \bigcup_{r \in \delta^{*}(p, a)} \delta^{*}(r, x)\right)$
2. $N = \bigcup_{q \in Q} \delta^{*}(p, a)$: All the states reachable from q with the letter a

3.
$$\delta^*(q, w) = \epsilon \operatorname{reach}\left(\bigcup_{r \in N} \delta^*(r, x)\right)$$

Translation...

$$\delta^{*}(q, w) = \epsilon \operatorname{reach}\left(\bigcup_{p \in \epsilon \operatorname{reach}(q)} \left(\bigcup_{r \in \delta^{*}(p, a)} \delta^{*}(r, x)\right)\right)$$
1. $R = \epsilon \operatorname{reach}(q) \implies \delta^{*}(q, w) = \epsilon \operatorname{reach}\left(\bigcup_{p \in R} \bigcup_{r \in \delta^{*}(p, a)} \delta^{*}(r, x)\right)$
2. $N = \bigcup_{p \in R} \delta^{*}(p, a)$: All the states reachable from q with the letter a .

3.
$$\delta^*(q, w) = \epsilon \operatorname{reach}\left(\bigcup_{r \in N} \delta^*(r, x)\right)$$

Translation...

$$\delta^{*}(q, w) = \epsilon \operatorname{reach}\left(\bigcup_{p \in \epsilon \operatorname{reach}(q)} \left(\bigcup_{r \in \delta^{*}(p, a)} \delta^{*}(r, x)\right)\right)$$

1. $R = \epsilon \operatorname{reach}(q) \implies \delta^{*}(q, w) = \epsilon \operatorname{reach}\left(\bigcup_{p \in R} \bigcup_{r \in \delta^{*}(p, a)} \delta^{*}(r, x)\right)$

2. $N = \bigcup_{p \in R} \delta^*(p, a)$: All the states reachable from q with the letter a.

3.
$$\delta^*(q, w) = \epsilon \operatorname{reach}\left(\bigcup_{r \in N} \delta^*(r, x)\right)$$

Formal definition of language accepted by ${\bf N}$

Definition 4.6.

A string w is accepted by NFA N if $\delta_N^*(s, w) \cap A \neq \emptyset$.

Definition 4.7.

The language L(N) accepted by a NFA $N = (Q, \Sigma, \delta, s, A)$ is

 $\{w \in \mathbf{\Sigma}^* \mid \delta^*(s, w) \cap A \neq \emptyset\}.$

Important: Formal definition of the language of NFA above uses δ^* and not δ . As such, one does not need to include ε -transitions closure when specifying δ , since δ^* takes care of that.

Formal definition of language accepted by ${\bf N}$

Definition 4.6.

```
A string w is accepted by NFA N if \delta_N^*(s, w) \cap A \neq \emptyset.
```

Definition 4.7.

The language L(N) accepted by a NFA $N = (Q, \Sigma, \delta, s, A)$ is

 $\{w \in \mathbf{\Sigma}^* \mid \delta^*(s, w) \cap A \neq \emptyset\}.$

Important: Formal definition of the language of NFA above uses δ^* and not δ . As such, one does not need to include ε -transitions closure when specifying δ , since δ^* takes care of that.

- $\delta^*(s,\epsilon)$
- δ*(s, 0)
 δ*(c, 0)
- ▶ δ*(b, 00)

- ► $\delta^*(s, \epsilon)$
- ► δ*(s,0)
- ▶ δ*(c, 0)
- ► δ*(b,00)

- ► $\delta^*(s, \epsilon)$
- ► δ*(s, 0)
- ▶ δ*(c, 0)
- ▶ δ*(b, 00)

- ► $\delta^*(s, \epsilon)$
- ► δ*(s, 0)
- ► δ*(c, 0)
- ► δ*(b,00)

Another definition of computation

Definition 4.8.

 $q \xrightarrow{w}_N p$: State p of NFA N is <u>reachable</u> from q on $w \iff$ there exists a sequence of states r_0, r_1, \ldots, r_k and a sequence x_1, x_2, \ldots, x_k where $x_i \in \Sigma \cup \{\varepsilon\}$, for each i, such that:

 $\blacktriangleright r_0 = q,$

• for each
$$i$$
, $r_{i+1} \in \delta^*(r_i, x_{i+1})$,

$$r_k = p$$
, and

$$\blacktriangleright w = x_1 x_2 x_3 \cdots x_k.$$

The sequence $r_0 \xrightarrow{x_1} r_1 \xrightarrow{x_2} \cdots \xrightarrow{x_k} r_k$ is a <u>trace</u> of *N* on *w*.

Definition 4.9. $\delta_N^*(q, w) = \Big\{ p \in Q \mid q \xrightarrow{w} p \Big\}.$

Why non-determinism?

- Non-determinism adds power to the model; richer programming language and hence (much) easier to "design" programs
- Fundamental in **theory** to prove many theorems
- Very important in practice directly and indirectly
- Many deep connections to various fields in Computer Science and Mathematics

Many interpretations of non-determinism. Hard to understand at the outset. Get used to it and then you will appreciate it slowly.

Intro. Algorithms & Models of Computation CS/ECE 374A, Fall 2024

4.2 Constructing NFAs

$\ensuremath{\mathsf{DFAs}}$ and $\ensuremath{\mathsf{NFAs}}$

- Every DFA is a NFA so NFAs are at least as powerful as DFAs.
- NFAs prove ability to "guess and verify" which simplifies design and reduces number of states
- Easy proofs of some closure properties

Strings that represent decimal numbers.

- \$ {strings that contain CS374 as a substring}
- {strings that contain CS374 or CS473 as a substring}
- {strings that contain CS374 and CS473 as substrings}

- \$ {strings that contain CS374 as a substring}
- {strings that contain CS374 or CS473 as a substring}
- {strings that contain CS374 and CS473 as substrings}

- {strings that contain CS374 as a substring}
- {strings that contain CS374 or CS473 as a substring}
- {strings that contain CS374 and CS473 as substrings}

 $L_k = \{$ bitstrings that have a 1 k positions from the end $\}$

$\ensuremath{\mathrm{DFA}}$ for same task is much bigger...

 $L_4 = \{$ bitstrings that have a 1 in fourth position from the end $\}$

A simple transformation

Theorem 4.1.

For every NFA N there is another NFA N' such that L(N) = L(N') and such that N' has the following two properties:

- N' has single final state **f** that has no outgoing transitions
- The start state s of N is different from f

Intro. Algorithms & Models of Computation CS/ECE 374A, Fall 2024

4.3 Closure Properties of NFAs

Closure properties of NFAs

Are the class of languages accepted by NFAs closed under the following operations?

- union
- intersection
- concatenation
- Kleene star
- complement

Closure under union

Theorem 4.1.

For any two NFAs N_1 and N_2 there is a NFA N such that $L(N) = L(N_1) \cup L(N_2)$.

Closure under union

Theorem 4.1.

For any two NFAs N_1 and N_2 there is a NFA N such that $L(N) = L(N_1) \cup L(N_2)$.

Closure under concatenation

Theorem 4.2.

For any two NFAs N_1 and N_2 there is a NFA N such that $L(N) = L(N_1) \cdot L(N_2)$.

Closure under concatenation

Theorem 4.2.

For any two NFAs N_1 and N_2 there is a NFA N such that $L(N) = L(N_1) \cdot L(N_2)$.

Theorem 4.3. For any NFA N_1 there is a NFA N such that $L(N) = (L(N_1))^*$.

Theorem 4.4. For any NFA N_1 there is a NFA N such that $L(N) = (L(N_1))^*$.

Does not work! Why?

Theorem 4.4. For any NFA N_1 there is a NFA N such that $L(N) = (L(N_1))^*$.

Does not work! Why?

Theorem 4.5. For any NFA N_1 there is a NFA N such that $L(N) = (L(N_1))^*$.

Intro. Algorithms & Models of Computation CS/ECE 374A, Fall 2024

4.4 NFAs capture Regular Languages

Regular Languages Recap

Regular Languages

 \emptyset regular { ϵ } regular {a} regular for $a \in \Sigma$ $R_1 \cup R_2$ regular if both are R_1R_2 regular if both are R^* is regular if R is

Regular Expressions

 \emptyset denotes \emptyset ϵ denotes $\{\epsilon\}$ a denote $\{a\}$ $\mathbf{r}_1 + \mathbf{r}_2$ denotes $R_1 \cup R_2$ $\mathbf{r}_1\mathbf{r}_2$ denotes R_1R_2 \mathbf{r}^* denote R^*

Regular expressions denote regular languages — they explicitly show the operations that were used to form the language

$\rm NFAs$ and Regular Language

Theorem 4.1.

For every regular language L there is an NFA N such that L = L(N).

Proof strategy:

- For every regular expression r show that there is a NFA N such that L(r) = L(N)
- Induction on length of r

$\rm NFAs$ and Regular Language

For every regular expression r show that there is a NFA N such that L(r) = L(N)

Induction on length of r

Base cases: \emptyset , $\{\varepsilon\}$, $\{a\}$ for $a \in \Sigma$.

- For every regular expression r show that there is a NFA N such that L(r) = L(N)
- Induction on length of r

Inductive cases:

▶ r_1, r_2 regular expressions and $r = r_1 + r_2$. By induction there are NFAs N_1, N_2 s.t $L(N_1) = L(r_1)$ and $L(N_2) = L(r_2)$. We have already seen that there is NFA N s.t $L(N) = L(N_1) \cup L(N_2)$, hence L(N) = L(r)

- ▶ $r = r_1 \bullet r_2$. Use closure of NFA languages under concatenation
- ▶ $r = (r_1)^*$. Use closure of NFA languages under Kleene star

- For every regular expression r show that there is a NFA N such that L(r) = L(N)
- Induction on length of r

Inductive cases:

▶ r_1 , r_2 regular expressions and $r = r_1 + r_2$. By induction there are NFAs N_1 , N_2 s.t $L(N_1) = L(r_1)$ and $L(N_2) = L(r_2)$. We have already seen that there is NFA N s.t $L(N) = L(N_1) \cup L(N_2)$, hence L(N) = L(r)

- ▶ $r = r_1 \bullet r_2$. Use closure of NFA languages under concatenation
- ▶ $r = (r_1)^*$. Use closure of NFA languages under Kleene star

- For every regular expression r show that there is a NFA N such that L(r) = L(N)
- Induction on length of r

- ▶ r_1 , r_2 regular expressions and $r = r_1 + r_2$. By induction there are NFAs N_1 , N_2 s.t $L(N_1) = L(r_1)$ and $L(N_2) = L(r_2)$. We have already seen that there is NFA N s.t $L(N) = L(N_1) \cup L(N_2)$, hence L(N) = L(r)
- r = r₁ r₂. Use closure of NFA languages under concatenation
 r = (r₁)*. Use closure of NFA languages under Kleene star

- For every regular expression r show that there is a NFA N such that L(r) = L(N)
- Induction on length of r

- ▶ r_1 , r_2 regular expressions and $r = r_1 + r_2$. By induction there are NFAs N_1 , N_2 s.t $L(N_1) = L(r_1)$ and $L(N_2) = L(r_2)$. We have already seen that there is NFA N s.t $L(N) = L(N_1) \cup L(N_2)$, hence L(N) = L(r)
- r = r₁ r₂. Use closure of NFA languages under concatenation
 r = (r₁)*. Use closure of NFA languages under Kleene star

- For every regular expression r show that there is a NFA N such that L(r) = L(N)
- Induction on length of r

- ▶ r_1, r_2 regular expressions and $r = r_1 + r_2$. By induction there are NFAs N_1, N_2 s.t $L(N_1) = L(r_1)$ and $L(N_2) = L(r_2)$. We have already seen that there is NFA N s.t $L(N) = L(N_1) \cup L(N_2)$, hence L(N) = L(r)
- ▶ $r = r_1 \bullet r_2$. Use closure of NFA languages under concatenation
- ▶ $r = (r_1)^*$. Use closure of NFA languages under Kleene star

- For every regular expression r show that there is a NFA N such that L(r) = L(N)
- Induction on length of r

- ▶ r_1, r_2 regular expressions and $r = r_1 + r_2$. By induction there are NFAs N_1, N_2 s.t $L(N_1) = L(r_1)$ and $L(N_2) = L(r_2)$. We have already seen that there is NFA N s.t $L(N) = L(N_1) \cup L(N_2)$, hence L(N) = L(r)
- ▶ $r = r_1 \bullet r_2$. Use closure of NFA languages under concatenation
- ▶ $r = (r_1)^*$. Use closure of NFA languages under Kleene star

- For every regular expression r show that there is a NFA N such that L(r) = L(N)
- Induction on length of r

- ▶ r_1, r_2 regular expressions and $r = r_1 + r_2$. By induction there are NFAs N_1, N_2 s.t $L(N_1) = L(r_1)$ and $L(N_2) = L(r_2)$. We have already seen that there is NFA N s.t $L(N) = L(N_1) \cup L(N_2)$, hence L(N) = L(r)
- ▶ $r = r_1 \bullet r_2$. Use closure of NFA languages under concatenation
- ▶ $r = (r_1)^*$. Use closure of NFA languages under Kleene star

(ε+0)(1+10)*

Final NFA simplified slightly to reduce states

