Intro. Algorithms & Models of Computation CS/ECE 374A, Fall 2024

Strings and Languages

Lecture 1 Tuesday, August 27, 2024

LATEXed: August 29, 2024 10:14

Intro. Algorithms & Models of Computation CS/ECE 374A, Fall 2024

1.1 Strings

Alphabet

An alphabet is a **finite** set of symbols.

Examples of alphabets:

- ► $\Sigma = \{0, 1\},\$
- $\blacktriangleright \Sigma = \{a, b, c, \ldots, z\},\$
- ► ASCII.
- ► UTF8.
- $\blacktriangleright \Sigma = \{ \langle moveforward \rangle, \ \langle moveback \rangle \}$

Alphabet

An alphabet is a **finite** set of symbols. Examples of alphabets:

- ► $\Sigma = \{0, 1\},\$
- $\blacktriangleright \Sigma = \{a, b, c, \ldots, z\},\$
- ► ASCII.
- UTF8.
- $\blacktriangleright \Sigma = \{ \langle \text{moveforward} \rangle, \langle \text{moveback} \rangle \}$

String Definitions

Definition 1.1.

- 1. A string/word over Σ is a finite sequence of symbols over Σ . For example, '0101001', 'string', '(moveback) (rotate90)'
- 2. ϵ is the empty string.
- 3. The length of a string w (denoted by |w|) is the number of symbols in w. For example, |101| = 3, $|\epsilon| = 0$
- 4. For integer $n \ge 0$, Σ^n is set of all strings over Σ of length n. Σ^* is the set of all strings over Σ .

Inductive/recursive definition of strings

Formal definition of a string:

- $\blacktriangleright \epsilon$ is a string of length **0**
- *ax* is a string if $a \in \Sigma$ and *x* is a string. The length of *ax* is 1 + |x|

The above definition helps prove statements rigorously via induction.

► Alternative recursive definition useful in some proofs: xa is a string if a ∈ Σ and x is a string. The length of xa is 1 + |x|

Convention

- ► a, b, c, \ldots denote elements of Σ
- w, x, y, z, \ldots denote strings
- ► A, B, C, ... denote sets of strings

Much ado about nothing

- $\blacktriangleright \epsilon$ is a string containing no symbols. It is not a set
- \triangleright { ϵ } is a set containing one string: the empty string. It is a set, not a string.
- \blacktriangleright Ø is the empty set. It contains no strings.
- \triangleright {Ø} is a set containing one element, which itself is a set that contains no elements.

- ▶ If x and y are strings then xy denotes their concatenation.
- **concatenation** defined recursively :

 $xy = y \text{ if } x = \epsilon$

- $\blacktriangleright xy = x \text{ if } y = \epsilon$
- xy = a(wy) if x = aw
- ► *xy* sometimes written as *x y*.
- concatenation is associative: (uv)w = u(vw)hence write $uvw \equiv (uv)w = u(vw)$
- not commutative: uv not necessarily equal to vu
- The identity element is the empty string ϵ :

- ▶ If x and y are strings then xy denotes their concatenation.
- **concatenation** defined recursively :
 - $xy = y \text{ if } x = \epsilon$
 - $\blacktriangleright xy = x \text{ if } y = \epsilon$
 - xy = a(wy) if x = aw
- xy sometimes written as x y.
- concatenation is <u>associative</u>: (uv)w = u(vw) hence write uvw = (uv)w = u(vw)
- **not** commutative: *uv* not necessarily equal to *vu*
- The identity element is the empty string ϵ :

- ▶ If x and y are strings then xy denotes their concatenation.
- **concatenation** defined recursively :
 - $xy = y \text{ if } x = \epsilon$
 - $\blacktriangleright xy = x \text{ if } y = \epsilon$
 - xy = a(wy) if x = aw
- xy sometimes written as x y.
- concatenation is associative: (uv)w = u(vw)hence write $uvw \equiv (uv)w = u(vw)$
- **not** commutative: *uv* not necessarily equal to *vu*
- The identity element is the empty string ϵ :

- ▶ If x and y are strings then xy denotes their concatenation.
- **concatenation** defined recursively :
 - $xy = y \text{ if } x = \epsilon$
 - $\blacktriangleright xy = x \text{ if } y = \epsilon$
 - xy = a(wy) if x = aw
- xy sometimes written as x y.
- concatenation is associative: (uv)w = u(vw)hence write $uvw \equiv (uv)w = u(vw)$
- not commutative: uv not necessarily equal to vu

• The identity element is the empty string ϵ :

- ▶ If x and y are strings then xy denotes their concatenation.
- **concatenation** defined recursively :
 - $xy = y \text{ if } x = \epsilon$
 - $\blacktriangleright xy = x \text{ if } y = \epsilon$
 - xy = a(wy) if x = aw
- xy sometimes written as x y.
- concatenation is associative: (uv)w = u(vw)hence write $uvw \equiv (uv)w = u(vw)$
- not commutative: uv not necessarily equal to vu
- The identity element is the empty string ϵ :

Substrings, prefix, suffix

Definition 1.2.

v is substring of $w \iff$ there exist strings x, y such that w = xvy.

- If $x = \epsilon$ then v is a prefix of w
- If $y = \epsilon$ then v is a suffix of w

String exponents

Definition 1.3.

If w is a string then w^n is defined inductively as follows: $w^n = \epsilon$ if n = 0 $w^n = ww^{n-1}$ if n > 0

Example: $(blah)^4 = blahblahblahblah$.

Set Concatenation

Definition 1.4.

Given two sets X and Y of strings (over some common alphabet Σ) the concatenation of X and Y is

 $XY = \{xy \mid x \in X, y \in Y\}$

Set Concatenation

Definition 1.4.

Given two sets X and Y of strings (over some common alphabet Σ) the concatenation of X and Y is

 $XY = \{xy \mid x \in X, y \in Y\}$

Example 1.5. $X = \{fido, rover, spot\},\$ $Y = \{fluffy, tabby\}$ \Longrightarrow $XY = \{fidofluffy, fidotabby, roverfluffy, ...\}.$

$\pmb{\Sigma}^*$ and languages

Definition 1.6.

1. Σ^n is the set of all strings of length *n*. Defined inductively: $\Sigma^n = \{\epsilon\}$ if n = 0 $\Sigma^n = \Sigma\Sigma^{n-1}$ if n > 0

- 2. $\Sigma^* = \bigcup_{n \ge 0} \Sigma^n$ is the set of all finite length strings
- 3. $\Sigma^+ = \bigcup_{n \ge 1} \Sigma^n$ is the set of non-empty strings.

Definition 1.7.

A language L is a set of strings over Σ . In other words $L \subseteq \Sigma^*$.

$\pmb{\Sigma}^*$ and languages

Definition 1.6.

1. Σ^n is the set of all strings of length n. Defined inductively: $\Sigma^n = \{\epsilon\}$ if n = 0 $\Sigma^n = \Sigma\Sigma^{n-1}$ if n > 0

- 2. $\Sigma^* = \bigcup_{n \ge 0} \Sigma^n$ is the set of all finite length strings
- 3. $\Sigma^+ = \bigcup_{n \ge 1} \Sigma^n$ is the set of non-empty strings.

Definition 1.7.

A language *L* is a set of strings over Σ . In other words $L \subseteq \Sigma^*$.

Answer the following questions taking $\Sigma = \{0, 1\}$.

- 2. How many elements are there in Σ^3 ?
- 3. How many elements are there in Σ^n ?
- 4. What is the length of the longest string in Σ ?
- 5. Does Σ^* have strings of infinite length?
- 6. If |u| = 2 and |v| = 3 then what is $|u \cdot v|$?
- 7. Let u be an arbitrary string in Σ^* . What is ϵu ? What is $u\epsilon$?
- 8. Is uv = vu for every $u, v \in \Sigma^*$?
- 9. Is (uv)w = u(vw) for every $u, v, w \in \Sigma^*$?

Intro. Algorithms & Models of Computation CS/ECE 374A, Fall 2024

1.1.1 Exercise solved in detail

Answer the following questions taking $\Sigma = \{0, 1\}$. 1. What is Σ^0 ?

- 2. How many elements are there in Σ^3 ?
- 3. How many elements are there in Σ^n ?
- 4. What is the length of the longest string in Σ ?
- 5. Does $\mathbf{\Sigma}^*$ have strings of infinite length?
- 6. If |u| = 2 and |v| = 3 then what is $|u \cdot v|$?
- 7. Let \boldsymbol{u} be an arbitrary string in $\boldsymbol{\Sigma}^*$. What is $\boldsymbol{\epsilon}\boldsymbol{u}$? What is $\boldsymbol{u}\boldsymbol{\epsilon}$?
- 8. Is uv = vu for every $u, v \in \Sigma^*$?
- 9. Is (uv)w = u(vw) for every $u, v, w \in \Sigma^*$?

Answer the following questions taking $\Sigma = \{0, 1\}$.

- 1. What is Σ^0 ?
- 2. How many elements are there in Σ^3 ?
- How many elements are there in Σⁿ?
- 4. What is the length of the longest string in ${oldsymbol \Sigma}$?
- 5. Does $\mathbf{\Sigma}^*$ have strings of infinite length?
- 6. If |u| = 2 and |v| = 3 then what is $|u \cdot v|$?
- 7. Let \boldsymbol{u} be an arbitrary string in $\boldsymbol{\Sigma}^*$. What is $\boldsymbol{\epsilon}\boldsymbol{u}$? What is $\boldsymbol{u}\boldsymbol{\epsilon}$?
- 8. Is uv = vu for every $u, v \in \Sigma^*$?
- 9. Is (uv)w = u(vw) for every $u, v, w \in \Sigma^*$?

Answer the following questions taking $\Sigma = \{0, 1\}$.

- 2. How many elements are there in Σ^3 ?
- 3. How many elements are there in Σ^n ?
- 4. What is the length of the longest string in Σ ?
- 5. Does $\mathbf{\Sigma}^*$ have strings of infinite length?
- 6. If |u| = 2 and |v| = 3 then what is $|u \cdot v|$?
- 7. Let \boldsymbol{u} be an arbitrary string in $\boldsymbol{\Sigma}^*$. What is $\boldsymbol{\epsilon}\boldsymbol{u}$? What is $\boldsymbol{u}\boldsymbol{\epsilon}$?
- 8. Is uv = vu for every $u, v \in \Sigma^*$?
- 9. Is (uv)w = u(vw) for every $u, v, w \in \Sigma^*$?

Answer the following questions taking $\Sigma = \{0, 1\}$.

- 2. How many elements are there in Σ^3 ?
- 3. How many elements are there in Σ^n ?
- 4. What is the length of the longest string in Σ ?
- 5. Does Σ^* have strings of infinite length?
- 6. If |u| = 2 and |v| = 3 then what is $|u \cdot v|$?
- 7. Let \boldsymbol{u} be an arbitrary string in $\boldsymbol{\Sigma}^*$. What is $\boldsymbol{\epsilon}\boldsymbol{u}$? What is $\boldsymbol{u}\boldsymbol{\epsilon}$?
- 8. Is uv = vu for every $u, v \in \Sigma^*$?
- 9. Is (uv)w = u(vw) for every $u, v, w \in \Sigma^*$?

Answer the following questions taking $\Sigma = \{0, 1\}$.

- 2. How many elements are there in Σ^3 ?
- 3. How many elements are there in Σ^n ?
- 4. What is the length of the longest string in Σ ?
- 5. Does Σ^* have strings of infinite length?
- 6. If |u| = 2 and |v| = 3 then what is $|u \cdot v|$?
- 7. Let \boldsymbol{u} be an arbitrary string in $\boldsymbol{\Sigma}^*$. What is $\boldsymbol{\epsilon}\boldsymbol{u}$? What is $\boldsymbol{u}\boldsymbol{\epsilon}$?
- 8. Is uv = vu for every $u, v \in \Sigma^*$?
- 9. Is (uv)w = u(vw) for every $u, v, w \in \Sigma^*$?

Answer the following questions taking $\Sigma = \{0, 1\}$.

- 2. How many elements are there in Σ^3 ?
- 3. How many elements are there in Σ^n ?
- 4. What is the length of the longest string in Σ ?
- 5. Does Σ^* have strings of infinite length?
- 6. If |u| = 2 and |v| = 3 then what is $|u \cdot v|$?
- 7. Let u be an arbitrary string in Σ^* . What is ϵu ? What is $u\epsilon$?
- 8. Is uv = vu for every $u, v \in \Sigma^*$?
- 9. Is (uv)w = u(vw) for every $u, v, w \in \Sigma^*$?

Answer the following questions taking $\Sigma = \{0, 1\}$.

- 2. How many elements are there in Σ^3 ?
- 3. How many elements are there in Σ^n ?
- 4. What is the length of the longest string in Σ ?
- 5. Does Σ^* have strings of infinite length?
- 6. If |u| = 2 and |v| = 3 then what is $|u \cdot v|$?
- 7. Let u be an arbitrary string in Σ^* . What is ϵu ? What is $u\epsilon$?
- 8. Is uv = vu for every $u, v \in \Sigma^*$?
- 9. Is (uv)w = u(vw) for every $u, v, w \in \Sigma^*$?

Answer the following questions taking $\Sigma = \{0, 1\}$.

- 2. How many elements are there in Σ^3 ?
- 3. How many elements are there in Σ^n ?
- 4. What is the length of the longest string in Σ ?
- 5. Does Σ^* have strings of infinite length?
- 6. If |u| = 2 and |v| = 3 then what is $|u \cdot v|$?
- 7. Let u be an arbitrary string in Σ^* . What is ϵu ? What is $u\epsilon$?
- 8. Is uv = vu for every $u, v \in \Sigma^*$?
- 9. Is (uv)w = u(vw) for every $u, v, w \in \Sigma^*$?

Answer the following questions taking $\Sigma = \{0, 1\}$.

- 2. How many elements are there in Σ^3 ?
- 3. How many elements are there in Σ^n ?
- 4. What is the length of the longest string in Σ ?
- 5. Does Σ^* have strings of infinite length?
- 6. If |u| = 2 and |v| = 3 then what is $|u \cdot v|$?
- 7. Let u be an arbitrary string in Σ^* . What is ϵu ? What is $u\epsilon$?
- 8. Is uv = vu for every $u, v \in \Sigma^*$?
- 9. Is (uv)w = u(vw) for every $u, v, w \in \Sigma^*$?

Intro. Algorithms & Models of Computation CS/ECE 374A, Fall 2024

1.2

Countable sets, countably infinite sets, and languages

Definition 1.1.

A set X is countable, if its elements can be counted. There exists an injective mapping from X to natural numbers $N = \{1, 2, 3, ...\}$.

Example 1.2. All finite sets are countable: {*aba*, *ima*, *saba*, *safta*, *uma*, *upa*}

Example 1.3. $\mathbb{N} \times \mathbb{N} = \{(i, j) \mid i, j \in \mathbb{N}\}$ is countable.

: Proof: $f(i,j) = 2^i 3^j$.

Definition 1.1.

A set X is countable, if its elements can be counted. There exists an injective mapping from X to natural numbers $N = \{1, 2, 3, ...\}$.

Example 1.2.

All finite sets are countable: { aba, ima, saba, safta, uma, upa }.

Example 1.3. $\mathbb{N} \times \mathbb{N} = \{(i, j) \mid i, j \in \mathbb{N}\}$ is countable.

: Proof: $f(i,j) = 2^i 3^j$.

Definition 1.1.

A set X is countable, if its elements can be counted. There exists an injective mapping from X to natural numbers $N = \{1, 2, 3, ...\}$.

Example 1.2.

All finite sets are countable: { aba, ima, saba, safta, uma, upa }.

Example 1.3. $\mathbb{N} \times \mathbb{N} = \{(i, j) \mid i, j \in \mathbb{N}\}$ is countable.

: Proof: $f(i,j) = 2^i 3^j$.

Definition 1.1.

A set X is countable, if its elements can be counted. There exists an injective mapping from X to natural numbers $N = \{1, 2, 3, ...\}$.

Example 1.2.

All finite sets are countable: { *aba*, *ima*, *saba*, *safta*, *uma*, *upa*}.

Example 1.3. $\mathbb{N} \times \mathbb{N} = \{(i, j) \mid i, j \in \mathbb{N}\}$ is countable.

: Proof: $f(i,j) = 2^{i}3^{j}$.

$\mathbb{N}\times\mathbb{N}$ is countable
$\mathbb{N}\times\mathbb{N}$ is countable

Canonical order and countability of strings

Definition 1.4.

A set X is countably infinite (countable and infinite) if there is a bijection f between the natural numbers and X.

Alternatively: X is countably infinite if X is an infinite set and there enumeration of elements of X.

Theorem 1.5.

 Σ^* is countable for any finite Σ .

Enumerate strings in order of increasing length and for each given length enumerate strings in dictionary order (based on some fixed ordering of Σ).

Example: $\{0,1\}^* = \{\epsilon, 0, 1, 00, 01, 10, 11, 000, 001, 010, \ldots\}$. $\{a, b, c\}^* = \{\epsilon, a, b, c, aa, ab, ac, ba, bb, bc, \ldots\}$

Theorem 1.5.

 Σ^* is countable for any finite Σ .

Enumerate strings in order of increasing length and for each given length enumerate strings in dictionary order (based on some fixed ordering of Σ).

Example: $\{0,1\}^* = \{\epsilon, 0, 1, 00, 01, 10, 11, 000, 001, 010, \ldots\}$. $\{a, b, c\}^* = \{\epsilon, a, b, c, aa, ab, ac, ba, bb, bc, \ldots\}$

Theorem 1.5.

 Σ^* is countable for any finite Σ .

Enumerate strings in order of increasing length and for each given length enumerate strings in dictionary order (based on some fixed ordering of Σ).

Example: $\{0, 1\}^* = \{\epsilon, 0, 1, 00, 01, 10, 11, 000, 001, 010, \ldots\}$. $\{a, b, c\}^* = \{\epsilon, a, b, c, aa, ab, ac, ba, bb, bc, \ldots\}$

Theorem 1.5.

 Σ^* is countable for any finite Σ .

Enumerate strings in order of increasing length and for each given length enumerate strings in dictionary order (based on some fixed ordering of Σ).

Example: $\{0, 1\}^* = \{\epsilon, 0, 1, 00, 01, 10, 11, 000, 001, 010, \ldots\}$. $\{a, b, c\}^* = \{\epsilon, a, b, c, aa, ab, ac, ba, bb, bc, \ldots\}$

Exercise I

Question: Is $\Sigma^* \times \Sigma^* = \{(x, y) \mid x, y \in \Sigma^*\}$ countable?

Question: Is $\Sigma^* \times \Sigma^* \times \Sigma^* = \{(x, y, z) \mid x, y, x \in \Sigma^*\}$ countable?

Exercise I

Question: Is $\Sigma^* \times \Sigma^* = \{(x, y) \mid x, y \in \Sigma^*\}$ countable?

Question: Is $\Sigma^* \times \Sigma^* \times \Sigma^* = \{(x, y, z) \mid x, y, x \in \Sigma^*\}$ countable?

Exercise II

Answer the following questions taking $\Sigma = \{0, 1\}$.

- 1. Is a finite set countable?
- 2. X is countable, and the set $Y \subseteq X$, then is the set Y countable?
- 3. If **X** and **Y** are countable, is $X \setminus Y$ countable?
- 4. Are all infinite sets countably infinite?
- 5. If X_i is a countable infinite set, for i = 1, ..., 700, is $\cup_i X_i$ countable infinite?
- 6. If X_i is a countable infinite set, for $i = 1, ..., i \in \bigcup_i X_i$ countable infinite?
- 7. Let \boldsymbol{X} be a countable infinite set, and consider its power set

 $2^{X} = \{Y \mid Y \subseteq x\}.$

The statement "the set 2^{x} is countable" is correct?

Intro. Algorithms & Models of Computation CS/ECE 374A, Fall 2024

1.3 Inductive proofs on strings

Inductive proofs on strings

Inductive proofs on strings and related problems follow inductive definitions.

Definition 1.1. The reverse w^R of a string w is defined as follows: $\blacktriangleright w^R = \epsilon$ if $w = \epsilon$ $\blacktriangleright w^R = x^R a$ if w = ax for some $a \in \Sigma$ and string x

Theorem 1.2.

Prove that for any strings $u, v \in \Sigma^*$, $(uv)^R = v^R u^R$.

Example: $(dog \bullet cat)^R = (cat)^R \bullet (dog)^R = tacgod$.

Inductive proofs on strings

Inductive proofs on strings and related problems follow inductive definitions.

Definition 1.1. The reverse w^R of a string w is defined as follows: w^R = ε if w = ε w^R = x^Ra if w = ax for some a ∈ Σ and string x

Theorem 1.2.

Prove that for any strings $u, v \in \Sigma^*$, $(uv)^R = v^R u^R$.

Example: $(dog \bullet cat)^R = (cat)^R \bullet (dog)^R = tacgod$.

Principle of mathematical induction

Induction is a way to prove statements of the form $\forall n \ge 0, P(n)$ where P(n) is a statement that holds for integer n.

Example: Prove that $\sum_{i=0}^{n} i = n(n+1)/2$ for all n.

Induction template:

- ▶ Base case: Prove P(0)
- Induction hypothesis: Let k > 0 be an arbitrary integer. Assume that P(n) holds for any n ≤ k.
- Induction Step: Prove that P(n) holds, for n = k + 1.

Structured induction

- 1. Unlike simple cases we are working with...
- 2. ...induction proofs also work for more complicated "structures".
- 3. Such as strings, tuples of strings, graphs etc.
- 4. See class notes on induction for details.

Proving the theorem

Theorem 1.3.

Prove that for any strings $u, v \in \Sigma^*$, $(uv)^R = v^R u^R$.

```
Proof: by induction.
On what?? |uv| = |u| + |v|?
|u|?
|v|?
```

What does it mean "induction on |u|"?

1.3.1: Three proofs by induction

1.3.1.1:Induction on |u|

By induction on $|\mathbf{u}|$

Theorem 1.4.

Prove that for any strings $u, v \in \Sigma^*$, $(uv)^R = v^R u^R$.

Proof by induction on |u| means that we are proving the following. **Base case:** Let u be an arbitrary string of length 0. $u = \epsilon$ since there is only one such string. Then

 $(uv)^R = (\epsilon v)^R = v^R = v^R \epsilon = v^R \epsilon^R = v^R u^R$

Induction hypothesis: $\forall n \geq 0$, for any string u of length n: For all strings $v \in \Sigma^*$, $(uv)^R = v^R u^R$.

No assumption about v, hence statement holds for all $v \in \Sigma^*$.

By induction on $|\mathbf{u}|$

Theorem 1.4.

Prove that for any strings $u, v \in \Sigma^*$, $(uv)^R = v^R u^R$.

Proof by induction on |u| means that we are proving the following. **Base case:** Let u be an arbitrary string of length 0. $u = \epsilon$ since there is only one such string. Then

 $(uv)^R = (\epsilon v)^R = v^R = v^R \epsilon = v^R \epsilon^R = v^R u^R$

Induction hypothesis: $\forall n \ge 0$, for any string u of length n: For all strings $v \in \Sigma^*$, $(uv)^R = v^R u^R$.

No assumption about v, hence statement holds for all $v \in \Sigma^*$.

By induction on $|\mathbf{u}|$

Theorem 1.4.

Prove that for any strings $u, v \in \Sigma^*$, $(uv)^R = v^R u^R$.

Proof by induction on |u| means that we are proving the following. **Base case:** Let u be an arbitrary string of length 0. $u = \epsilon$ since there is only one such string. Then

 $(uv)^{R} = (\epsilon v)^{R} = v^{R} = v^{R} \epsilon = v^{R} \epsilon^{R} = v^{R} u^{R}$

Induction hypothesis: $\forall n \ge 0$, for any string u of length n: For all strings $v \in \Sigma^*$, $(uv)^R = v^R u^R$.

No assumption about v, hence statement holds for all $v \in \Sigma^*$.

- Let u be an arbitrary string of length n > 0. Assume inductive hypothesis holds for all strings w of length < n.
- Since |u| = n > 0 we have u = ay for some string y with |y| < n and $a \in \Sigma$.

Then

$$(uv)^{R} = ((ay)v)^{R}$$
$$= (a(yv))^{R}$$
$$= (yv)^{R}a^{R}$$
$$= (v^{R}y^{R})a^{R}$$
$$= v^{R}(y^{R}a^{R})$$
$$= v^{R}(ay)^{R}$$
$$= v^{R}u^{R}$$

- Let u be an arbitrary string of length n > 0. Assume inductive hypothesis holds for all strings w of length < n.
- Since |u| = n > 0 we have u = ay for some string y with |y| < n and $a \in \Sigma$.

Then

$$uv)^{R} = ((ay)v)^{R}$$

$$= (a(yv))^{R}$$

$$= (yv)^{R}a^{R}$$

$$= (v^{R}y^{R})a^{R}$$

$$= v^{R}(y^{R}a^{R})$$

$$= v^{R}(ay)^{R}$$

$$= v^{R}u^{R}$$

- Let u be an arbitrary string of length n > 0. Assume inductive hypothesis holds for all strings w of length < n.
- Since |u| = n > 0 we have u = ay for some string y with |y| < n and $a \in \Sigma$.

Then

$$(uv)^{R} = ((ay)v)^{R}$$
$$= (a(yv))^{R}$$
$$= (yv)^{R}a^{R}$$
$$= (v^{R}y^{R})a^{R}$$
$$= v^{R}(y^{R}a^{R})$$
$$= v^{R}(ay)^{R}$$
$$= v^{R}u^{R}$$

1.3.1.2: A failed attempt: Induction on |v|

Induction on $|\mathbf{v}|$

Theorem 1.5.

Prove that for any strings $u, v \in \Sigma^*$, $(uv)^R = v^R u^R$.

Proof by induction on |v| means that we are proving the following. Induction hypothesis: $\forall n \ge 0$, for any string v of length n: For all strings $u \in \Sigma^*$, $(uv)^R = v^R u^R$.

Base case: Let v be an arbitrary string of length **0**. $v = \epsilon$ since there is only one such string. Then

$$(uv)^R = (u\epsilon)^R = u^R = \epsilon u^R = \epsilon^R u^R = v^R u^R$$

Induction on $|\mathbf{v}|$

Theorem 1.5.

Prove that for any strings $u, v \in \Sigma^*$, $(uv)^R = v^R u^R$.

Proof by induction on |v| means that we are proving the following. Induction hypothesis: $\forall n \ge 0$, for any string v of length n: For all strings $u \in \Sigma^*$, $(uv)^R = v^R u^R$.

Base case: Let v be an arbitrary string of length 0. $v = \epsilon$ since there is only one such string. Then

$$(uv)^{R} = (u\epsilon)^{R} = u^{R} = \epsilon u^{R} = \epsilon^{R} u^{R} = v^{R} u^{R}$$

Induction on $|\mathbf{v}|$

Theorem 1.5.

Prove that for any strings $u, v \in \Sigma^*$, $(uv)^R = v^R u^R$.

Proof by induction on |v| means that we are proving the following. **Induction hypothesis:** $\forall n \ge 0$, for any string v of length n: For all strings $u \in \Sigma^*$, $(uv)^R = v^R u^R$.

Base case: Let v be an arbitrary string of length 0. $v = \epsilon$ since there is only one such string. Then

$$(uv)^R = (u\epsilon)^R = u^R = \epsilon u^R = \epsilon^R u^R = v^R u^R$$

- Let v be an arbitrary string of length n > 0. Assume inductive hypothesis holds for all strings w of length < n.
- Since |v| = n > 0 we have v = ay for some string y with |y| < n and $a \in \Sigma$.

Then

$$(uv)^{R} = (u(ay))^{R}$$

= $((ua)y)^{R}$
= $y^{R}(ua)^{R}$
= ??

Cannot simplify $(ua)^R$ using inductive hypothesis. Can simplify if we extend base case to include n = 0 and n = 1. However, n = 1 itself requires induction on |u|!

- Let v be an arbitrary string of length n > 0. Assume inductive hypothesis holds for all strings w of length < n.</p>
- Since |v| = n > 0 we have v = ay for some string y with |y| < n and $a \in \Sigma$.

Then

$$(uv)^{R} = (u(ay))^{R}$$

= $((ua)y)^{R}$
= $y^{R}(ua)^{R}$
= ??

Cannot simplify $(ua)^R$ using inductive hypothesis. Can simplify if we extend base case to include n = 0 and n = 1. However, n = 1 itself requires induction on |u|!

1.3.1.3: Induction on |u| + |v|

Theorem 1.6.

Prove that for any strings $u, v \in \Sigma^*$, $(uv)^R = v^R u^R$.

Proof by induction on |u| + |v| means that we are proving the following. Induction hypothesis: $\forall n \ge 0$, for any $u, v \in \Sigma^*$ with $|u| + |v| \le n$, $(uv)^R = v^R u^R$.

Base case: n = 0. Let u, v be an arbitrary strings such that |u| + |v| = 0. Implies $u, v = \epsilon$.

Theorem 1.6.

Prove that for any strings $u, v \in \Sigma^*$, $(uv)^R = v^R u^R$.

Proof by induction on |u| + |v| means that we are proving the following. **Induction hypothesis:** $\forall n \ge 0$, for any $u, v \in \Sigma^*$ with $|u| + |v| \le n$, $(uv)^R = v^R u^R$.

Base case: n = 0. Let u, v be an arbitrary strings such that |u| + |v| = 0. Implies $u, v = \epsilon$.

Theorem 1.6.

Prove that for any strings $u, v \in \Sigma^*$, $(uv)^R = v^R u^R$.

Proof by induction on |u| + |v| means that we are proving the following. **Induction hypothesis:** $\forall n \ge 0$, for any $u, v \in \Sigma^*$ with $|u| + |v| \le n$, $(uv)^R = v^R u^R$.

Base case: n = 0. Let u, v be an arbitrary strings such that |u| + |v| = 0. Implies $u, v = \epsilon$.

Theorem 1.6.

Prove that for any strings $u, v \in \Sigma^*$, $(uv)^R = v^R u^R$.

Proof by induction on |u| + |v| means that we are proving the following. **Induction hypothesis:** $\forall n \ge 0$, for any $u, v \in \Sigma^*$ with $|u| + |v| \le n$, $(uv)^R = v^R u^R$.

Base case: n = 0. Let u, v be an arbitrary strings such that |u| + |v| = 0. Implies $u, v = \epsilon$.

Theorem 1.6.

Prove that for any strings $u, v \in \Sigma^*$, $(uv)^R = v^R u^R$.

Proof by induction on |u| + |v| means that we are proving the following. Induction hypothesis: $\forall n \ge 0$, for any $u, v \in \Sigma^*$ with $|u| + |v| \le n$, $(uv)^R = v^R u^R$.

Base case: n = 0. Let u, v be an arbitrary strings such that |u| + |v| = 0. Implies $u, v = \epsilon$.

Intro. Algorithms & Models of Computation CS/ECE 374A, Fall 2024

1.4 Languages
Languages

Definition 1.1.

A language *L* is a set of strings over Σ . In other words $L \subseteq \Sigma^*$.

Standard set operations apply to languages.

- For languages A, B the concatenation of A, B is $AB = \{xy \mid x \in A, y \in B\}$.
- For languages A, B, their union is A ∪ B, intersection is A ∩ B, and difference is A \ B (also written as A − B).

For language $A \subseteq \Sigma^*$ the complement of A is $\overline{A} = \Sigma^* \setminus A$.

Languages

Definition 1.1.

A language *L* is a set of strings over Σ . In other words $L \subseteq \Sigma^*$.

Standard set operations apply to languages.

- ▶ For languages A, B the concatenation of A, B is $AB = \{xy \mid x \in A, y \in B\}$.
- For languages A, B, their union is A ∪ B, intersection is A ∩ B, and difference is A \ B (also written as A − B).

For language $A \subseteq \Sigma^*$ the complement of A is $\overline{A} = \Sigma^* \setminus A$.

Exponentiation, Kleene star etc

Definition 1.2.

For a language $L \subseteq \Sigma^*$ and $n \in \mathbb{N}$, define L^n inductively as follows.

$$L^{n} = \begin{cases} \{\epsilon\} & \text{if } n = 0\\ L \bullet (L^{n-1}) & \text{if } n > 0 \end{cases}$$

And define $L^* = \bigcup_{n \ge 0} L^n$, and $L^+ = \bigcup_{n \ge 1} L^n$

Exercise

Problem 1.3.

Answer the following questions taking $A, B \subseteq \{0, 1\}^*$.

- 1. Is $\epsilon = \{\epsilon\}$? Is $\emptyset = \{\epsilon\}$?
- 2. What is $\emptyset \bullet A$? What is $A \bullet \emptyset$?
- 3. What is $\{\epsilon\} \bullet A$? And $A \bullet \{\epsilon\}$?
- 4. If |A| = 2 and |B| = 3, what is $|A \cdot B|$?

Exercise

Problem 1.4.

Consider languages over $\Sigma = \{0, 1\}$.

- 1. What is \emptyset^0 ?
- 2. If |L| = 2, then what is $|L^4|$?
- 3. What is \emptyset^* , $\{\epsilon\}^*$, ϵ^* ?
- 4. For what **L** is **L**^{*} finite?
- 5. What is \emptyset^+ , $\{\epsilon\}^+$, ϵ^+ ?

What are we interested in computing? Mostly functions.

Informal definition: An algorithm \mathcal{A} computes a function $f : \Sigma^* \to \Sigma^*$ if for all $w \in \Sigma^*$ the algorithm \mathcal{A} on input w terminates in a finite number of steps and outputs f(w).

Examples of functions:

- Numerical functions: length, addition, multiplication, division etc
- ▶ Given graph *G* and *s*, *t* find shortest paths from *s* to *t*
- ▶ Given program *M* check if *M* halts on empty input
- Posts Correspondence problem

Definition 1.5.

A function f over Σ^* is a boolean if $f: \Sigma^* \to \{0, 1\}$.

Observation: There is a bijection between boolean functions and languages

- Given boolean function $f: \Sigma^* \to \{0, 1\}$ define language $L_f = \{w \in \Sigma^* \mid f(w) = 1\}$
- Given language L ⊆ Σ* define boolean function f : Σ* → {0, 1} as follows: f(w) = 1 if w ∈ L and f(w) = 0 otherwise.

Definition 1.5.

A function f over Σ^* is a boolean if $f: \Sigma^* \to \{0, 1\}$.

Observation: There is a bijection between boolean functions and languages.

- Given boolean function $f : \Sigma^* \to \{0, 1\}$ define language $L_f = \{w \in \Sigma^* \mid f(w) = 1\}$
- Given language $L \subseteq \Sigma^*$ define boolean function $f : \Sigma^* \to \{0, 1\}$ as follows: f(w) = 1 if $w \in L$ and f(w) = 0 otherwise.

Definition 1.5.

A function f over Σ^* is a boolean if $f : \Sigma^* \to \{0, 1\}$.

Observation: There is a bijection between boolean functions and languages.

- Given boolean function $f : \Sigma^* \to \{0, 1\}$ define language $L_f = \{w \in \Sigma^* \mid f(w) = 1\}$
- Given language L ⊆ Σ* define boolean function f : Σ* → {0,1} as follows: f(w) = 1 if w ∈ L and f(w) = 0 otherwise.

Language recognition problem

Definition 1.6.

For a language $L \subseteq \Sigma^*$ the language recognition problem associate with L is the following: given $w \in \Sigma^*$, is $w \in L$?

- Equivalent to the problem of "computing" the function f_L .
- Language recognition is same as boolean function computation
- ▶ How difficult is a function f to compute? How difficult is the recognizing L_f ?

Why two different views? Helpful in understanding different aspects?

Language recognition problem

Definition 1.6.

For a language $L \subseteq \Sigma^*$ the language recognition problem associate with L is the following: given $w \in \Sigma^*$, is $w \in L$?

- Equivalent to the problem of "computing" the function f_L .
- Language recognition is same as boolean function computation
- How difficult is a function f to compute? How difficult is the recognizing L_f ?

Why two different views? Helpful in understanding different aspects?

Language recognition problem

Definition 1.6.

For a language $L \subseteq \Sigma^*$ the language recognition problem associate with L is the following: given $w \in \Sigma^*$, is $w \in L$?

- Equivalent to the problem of "computing" the function f_L .
- Language recognition is same as boolean function computation
- How difficult is a function f to compute? How difficult is the recognizing L_f ?

Why two different views? Helpful in understanding different aspects?

How many languages are there?

The answer my friend is blowing in the slides.

Recall:

Definition 1.7.

An set X is countable if there is a bijection f between the natural numbers and A.

Theorem 1.8.

 Σ^* is countable for every finite Σ .

The set of all languages is $\mathbb{P}(\Sigma^*)$ the power set of Σ^*

Theorem 1.9 (Cantor).

 $\mathbb{P}(\Sigma^*)$ is not countable for any finite Σ , with $|\Sigma| > 0$.

How many languages are there?

The answer my friend is blowing in the slides.

Recall:

Definition 1.7.

An set X is countable if there is a bijection f between the natural numbers and A.

Theorem 1.8.

 Σ^* is countable for every finite Σ .

The set of all languages is $\mathbb{P}(\Sigma^*)$ the power set of Σ^*

Theorem 1.9 (Cantor).

 $\mathbb{P}(\Sigma^*)$ is not countable for any finite Σ , with $|\Sigma| > 0$.

Cantor's diagonalization argument

Theorem 1.10 (Cantor).

 $\mathbb{P}(\mathbb{N})$ is not countable.

- Suppose P(N) is countable infinite. Let S₁, S₂,..., be an enumeration of all subsets of numbers.
- ► Let **D** be the following diagonal subset of numbers.

 $D = \{i \mid i \not\in S_i\}$

▶ Since D is a set of numbers, by assumption, D = S_j for some j.
▶ Question: ls j ∈ D?

Consequences for Computation

- How many C programs are there? The set of C programs is countable since each of them can be represented as a string over a finite alphabet.
- How many languages are there? Uncountably many!
- Hence some (in fact almost all!) languages/boolean functions do not have any C program to recognize them.

Questions:

- Maybe interesting languages/functions have C programs and hence computable. Only uninteresting languors uncomputable?
- ▶ Why should *C* programs be the definition of computability?
- Ok, there are difficult problems/languages. what languages are computable and which have efficient algorithms?

Consequences for Computation

- How many C programs are there? The set of C programs is countable since each of them can be represented as a string over a finite alphabet.
- How many languages are there? Uncountably many!
- Hence some (in fact almost all!) languages/boolean functions do not have any C program to recognize them.

Questions:

- Maybe interesting languages/functions have C programs and hence computable. Only uninteresting languors uncomputable?
- ▶ Why should *C* programs be the definition of computability?
- Ok, there are difficult problems/languages. what languages are computable and which have efficient algorithms?

Easy languages

Definition 1.11.

A language $L \subseteq \Sigma^*$ is finite if |L| = n for some integer n.

Exercise: Prove the following.

Theorem 1.12.

The set of all finite languages is countable.

Intro. Algorithms & Models of Computation CS/ECE 374A, Fall 2024

1.5

Overview of whats coming on finite automata/complexity

1. Finite languages.

- 2. Regular languages.
 - 2.1 Regular expressions.
 - 2.2 DFA: Deterministic finite automata.
 - 2.3 NFA: Non-deterministic finite automata.
 - 2.4 Languages that are not regular.
- 3. Context free languages (stack).
- 4. Turing machines: Decidable languages.
- 5. TM Undecidable languages (halting theorem).
- 6. TM Unrecognizable languages.

1. Finite languages.

2. Regular languages.

- 2.1 Regular expressions.
- 2.2 DFA: Deterministic finite automata.
- 2.3 NFA: Non-deterministic finite automata.
- 2.4 Languages that are not regular.
- 3. Context free languages (stack).
- 4. Turing machines: Decidable languages.
- 5. TM Undecidable languages (halting theorem).
- 6. TM Unrecognizable languages.

- 1. Finite languages.
- 2. Regular languages.

2.1 Regular expressions.

2.2 DFA: Deterministic finite automata.2.3 NFA: Non-deterministic finite automata.2.4 Languages that are not regular.

- 3. Context free languages (stack).
- 4. Turing machines: Decidable languages.
- 5. TM Undecidable languages (halting theorem).
- 6. TM Unrecognizable languages.

- 1. Finite languages.
- 2. Regular languages.
 - 2.1 Regular expressions.
 - 2.2 DFA: Deterministic finite automata.
 - 2.3 NFA: Non-deterministic finite automata.
 - 2.4 Languages that are not regular.
- 3. Context free languages (stack).
- 4. Turing machines: Decidable languages.
- 5. TM Undecidable languages (halting theorem).
- 6. TM Unrecognizable languages.

- 1. Finite languages.
- 2. Regular languages.
 - 2.1 Regular expressions.
 - 2.2 DFA: Deterministic finite automata.
 - 2.3 NFA: Non-deterministic finite automata.

2.4 Languages that are not regular.

- 3. Context free languages (stack).
- 4. Turing machines: Decidable languages.
- 5. TM Undecidable languages (halting theorem).
- 6. TM Unrecognizable languages.

- 1. Finite languages.
- 2. Regular languages.
 - 2.1 Regular expressions.
 - 2.2 DFA: Deterministic finite automata.
 - 2.3 NFA: Non-deterministic finite automata.
 - 2.4 Languages that are not regular.
- 3. Context free languages (stack).
- 4. Turing machines: Decidable languages.
- 5. TM Undecidable languages (halting theorem).
- 6. TM Unrecognizable languages.

- 1. Finite languages.
- 2. Regular languages.
 - 2.1 Regular expressions.
 - 2.2 DFA: Deterministic finite automata.
 - 2.3 NFA: Non-deterministic finite automata.
 - 2.4 Languages that are not regular.
- 3. Context free languages (stack).
- 4. Turing machines: Decidable languages.
- 5. TM Undecidable languages (halting theorem).
- 6. TM Unrecognizable languages.

- 1. Finite languages.
- 2. Regular languages.
 - 2.1 Regular expressions.
 - 2.2 DFA: Deterministic finite automata.
 - 2.3 NFA: Non-deterministic finite automata.
 - 2.4 Languages that are not regular.
- 3. Context free languages (stack).
- 4. Turing machines: Decidable languages.
- 5. TM Undecidable languages (halting theorem).
- 6. TM Unrecognizable languages.

- 1. Finite languages.
- 2. Regular languages.
 - 2.1 Regular expressions.
 - 2.2 DFA: Deterministic finite automata.
 - 2.3 NFA: Non-deterministic finite automata.
 - 2.4 Languages that are not regular.
- 3. Context free languages (stack).
- 4. Turing machines: Decidable languages.
- 5. TM Undecidable languages (halting theorem).
- 6. TM Unrecognizable languages.

- 1. Finite languages.
- 2. Regular languages.
 - 2.1 Regular expressions.
 - 2.2 DFA: Deterministic finite automata.
 - 2.3 NFA: Non-deterministic finite automata.
 - 2.4 Languages that are not regular.
- 3. Context free languages (stack).
- 4. Turing machines: Decidable languages.
- 5. TM Undecidable languages (halting theorem).
- 6. TM Unrecognizable languages.