
Solutions for Discussion 07a: Wednesday, October 9, 2024
Version: 1.2 CS/ECE 374A: Intro. Algorithms & Models of Computation, Fall 2024

Describe recursive backtracking algorithms for the following problems. Don’t worry about running times.

1 Longest increasing subsequence. Given an array A[1 .. n] of integers, compute the length of a longest
increasing subsequence. A sequence B[1 .. ℓ] is increasing if B[i] > B[i− 1] for every index i ≥ 2.

For example, given the array

⟨3,1,4, 1,5, 9, 2,6, 5, 3, 5,8,9, 7, 9, 3, 2, 3, 8, 4, 6, 2, 7⟩

your algorithm should return the integer 6, because ⟨1, 4, 5, 6, 8, 9⟩ is a longest increasing subsequence (one
of many).

Solution:
[#1 of ∞]

Add a sentinel value A[0] = −∞. Let LIS(i, j) denote the length of the longest increasing subsequence
of A[j . . n] where every element is larger than A[i]. This function obeys the following recurrence:

LIS(i, j) =


0 if j > n

LIS(i, j + 1) if j ≤ n and A[i] ≥ A[j]

max {LIS(i, j + 1), 1 + LIS(j, j + 1)} otherwise

We need to compute LIS(0, 1).
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Solution:
DP as a graph problem. All (or almost all) dynamic programming problems can be represented as
a graph problem on a DAG. We show how to do it in this case – it is not very natural here – however,
there are many cases where doing it using a graph yields much cleaner and nicer algorithms.

Details. (Building on the previous solution.) An alternative way to think about this problem, is as
a configurations graph. Each distinct recursive call of LIS(i, j) is a distinct node (i, j). We add an
edge between (i, j) → (i′, j′) if LIS(i, j) directly calls LIS(i′, j′). We label each such edge by 0 or 1
depending if LISadds one when considering the solution during the recursive call. In this specific case,
this happens for an edge outgoing from (i, j) if A[i] < A[j].
Thus, for the input:

A = [12, 60, 71, 17, 75, 6, 34, 63, 77, 37]

We get the graph:
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(Here, for clarity, we replaced all the vertices of the form (i, 11) by (11, 11). We are now looking for
the longest path (in the total sum of the labels of the edges along the path )in this DAG from (0, 1) to
(11, 11). This path is (edges with no label have 0 label):

(0, 1)
1−→ (1, 2)

1−→ (2, 3)
1−→ (3, 4) ⇒ (3, 5)

1−→ (5, 6) ⇒ (5, 7) ⇒ (5, 8) ⇒ (5, 9)
1−→ (9, 10) ⇒ (11, 11),

This path has length 5. To read the solution from this path, we take the second number in each state
that has an outgoing edge in this path with label 1. This, the solution is:

(0, 1)
1−→ (1, 2)

1−→ (2, 3)
1−→ (3, 4) ⇒ (3, 5)

1−→ (5, 6) ⇒ (5, 7) ⇒ (5, 8) ⇒ (5, 9)
1−→ (9, 10) ⇒ (11, 11),

That is, the required longest increasing subsequence is A[1], A[2], A[3], A[5], A[9]. Since the input is
A = [12, 60, 71, 17, 75, 6, 34, 63, 77, 37], the result is thus the subsequence:

A = [12, 60, 71, 17, 75, 6, 34, 63, 77, 37]
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On the longest path. Computing the longest path in a graph is a NP-Hard problem (i.e., we
believe it requires exponential time. However, on a DAG we can solve it in linear time in the size of the
graph, as would see later in the class.

Solution:
[#2 of ∞] Add a sentinel value A[n+1] = −∞. Let LIS(i, j) denote the length of the longest increasing
subsequence of A[1 . . j] where every element is smaller than A[j]. This function obeys the following
recurrence:

LIS(i, j) =


0 if i < 1

LIS(i− 1, j) if i ≥ 1 and A[i] ≥ A[j]

max {LIS(i− 1, j), 1 + LIS(i− 1, i)} otherwise

We need to compute LIS(n, n+ 1).

Solution: [#3 of ∞] Let LIS(i) denote the length of the longest increasing subsequence of A[i . . n]
that begins with A[i]. This function obeys the following recurrence:

LIS(i) =

{
1 if A[j] ≤ A[i] for all j > i

1 + max {LIS(j)} j > i and A[j] > A[i] otherwise

(The first case is actually redundant if we define max∅ = 0.) We need to compute maxi LIS(i).
Solution: [#4 of ∞] Add a sentinel value A[0] = −∞. Let LIS(i) denote the length of the longest
increasing subsequence of A[i . . n] that begins with A[i]. This function obeys the following recurrence:

LIS(i) =

{
1 if A[j] ≤ A[i] for all j > i

1 + max {LIS(j)} j > i and A[j] > A[i] otherwise

(The first case is actually redundant if we define max∅ = 0.) We need to compute LIS(0)− 1; the −1
removes the sentinel −∞ from the start of the subsequence.
Solution: [#5 of ∞] Add sentinel values A[0] = −∞ and A[n + 1] = ∞. Let LIS(j) denote the
length of the longest increasing subsequence of A[1 . . j] that ends with A[j]. This function obeys the
following recurrence:

LIS(j) =

{
1 if j = 0

1 +max {LIS(i)} i < j and A[i] < A[j] otherwise

We need to compute LIS(n+ 1)− 2; the −2 removes the sentinels −∞ and ∞ from the subsequence.

2 Longest decreasing subsequence. Given an array A[1 .. n] of integers, compute the length of a longest
decreasing subsequence. A sequence B[1 .. ℓ] is decreasing if B[i] < B[i− 1] for every index i ≥ 2.

For example, given the array

⟨3, 1, 4, 1, 5,9, 2,6, 5, 3,5, 8, 9, 7, 9, 3, 2, 3, 8,4, 6,2, 7⟩

your algorithm should return the integer 5, because ⟨9, 6, 5, 4, 2⟩ is a longest decreasing subsequence (one
of many).
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Solution: [one of many] Add a sentinel value A[0] = ∞. Let LDS(i, j) denote the length of the
longest decreasing subsequence of A[j . . n] where every element is smaller than A[i]. This function
obeys the following recurrence:

LDS(i, j) =


0 if j > n

LDS(i, j + 1) if j ≤ n and A[i] ≤ A[j]

max {LDS(i, j + 1), 1 + LIS(j, j + 1)} otherwise

We need to compute LDS(0, 1).
Solution: [clever] Multiply every element of A by −1, and then compute the length of the longest
increasing subsequence using the algorithm from problem 1.

3 Longest alternating subsequence.

Given an array A[1 .. n] of integers, compute the length of a longest alternating subsequence. A sequence
B[1 .. ℓ] is alternating if B[i] < B[i − 1] for every even index i ≥ 2, and B[i] > B[i − 1] for every odd
index i ≥ 3.

For example, given the array

⟨3,1,4,1,5, 9,2,6,5, 3, 5,8, 9,7,9,3, 2, 3,8,4,6,2,7⟩ ,

your algorithm should return 17, because ⟨3, 1, 4, 1, 5, 2, 6, 5, 8, 7, 9, 3, 8, 4, 6, 2, 7⟩ is a longest alternating
subsequence (one of many).

Solution: [one of many] We define two functions:

• Let LAS+(i, j) denote the length of the longest alternating subsequence of A[j . . n] whose first
element (if any) is larger than A[i] and whose second element (if any) is smaller than its first.

• Let LAS−(i, j) denote the length of the longest alternating subsequence of A[j . . n] whose first
element (if any) is smaller than A[i] and whose second element (if any) is larger than its first.

These two functions satisfy the following mutual recurrences:

LAS+(i, j) =


0 if j > n

LAS+(i, j + 1) if j ≤ n and A[j] ≤ A[i]

max
{
LAS+(i, j + 1), 1 + LAS−(j, j + 1)

}
otherwise

LAS−(i, j) =


0 if j > n

LAS−(i, j + 1) if j ≤ n and A[j] ≥ A[i]

max
{
LAS−(i, j + 1), 1 + LAS+(j, j + 1)

}
otherwise

To simplify computation, we consider two different sentinel values A[0]. First we set A[0] = −∞ and
let ℓ+ = LAS+(0, 1). Then we set A[0] = +∞ and let ℓ− = LAS−(0, 1). Finally, the length of the
longest alternating subsequence of A is max {ℓ+, ℓ−}.
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Solution: [one of many] We define two functions:

• Let LAS+(i) denote the length of the longest alternating subsequence of A[i . . n] that starts
with A[i] and whose second element (if any) is larger than A[i].

• Let LAS−(i) denote the length of the longest alternating subsequence of A[i . . n] that starts
with A[i] and whose second element (if any) is smaller than A[i].

These two functions satisfy the following mutual recurrences:

LAS+(i) =

{
1 if A[j] ≤ A[i] for all j > i

1 + max
{
LAS−(j)

}
j > i and A[j] > A[i] otherwise

LAS−(i) =

{
1 if A[j] ≥ A[i] for all j > i

1 + max
{
LAS+(j)

}
j > i and A[j] < A[i] otherwise

We need to compute maximax
{
LAS+(i),LAS−(i)

}
.

To think about later:

1 Given an array A[1 .. n] of integers, compute the length of a longest convex subsequence of A.
Solution: Let LCS(i, j) denote the length of the longest convex subsequence of A[i . . n] whose first
two elements are A[i] and A[j]. This function obeys the following recurrence:

LCS(i, j) = 1 +max {LCS(j, k)} j < k ≤ n and A[i] +A[k] > 2A[j]

Here we define max∅ = 0; this gives us a working base case. The length of the longest convex
subsequence is max1≤i<j≤n LCS(i, j).
Solution: [with sentinels] Assume without loss of generality that A[i] ≥ 0 for all i. (Otherwise,
we can add

∣∣m∣∣ to each A[i], where m is the smallest element of A[1 . . n].) Add two sentinel values
A[0] = 2M + 1 and A[−1] = 4M + 3, where M is the largest element of A[1 . . n].
Let LCS(i, j) denote the length of the longest convex subsequence of A[i . . n] whose first two elements
are A[i] and A[j]. This function obeys the following recurrence:

LCS(i, j) = 1 +max {LCS(j, k)} j < k ≤ n and A[i] +A[k] > 2A[j]

Here we define max∅ = 0; this gives us a working base case.
Finally, we claim that the length of the longest convex subsequence of A[1 . . n] is LCS(−1, 0)− 2.

Proof: First, consider any convex subsequence S of A[1 . . n], and suppose its first element is A[i].
Then we have A[−1]− 2A[0] + A[i] = 4M + 3− 2(2M + 1) + A[i] = A[i] + 1 > 0, which implies that
A[−1] · A[0] · S is a convex subsequence of A[−1 . . n]. So the longest convex subsequence of A[1 . . n]
has length at most LCS(−1, 0)− 2.
On the other hand, removing A[−1] and A[0] from any convex subsequence of A[−1 . . n] laves a convex
subsequence of A[1 . . n]. So the longest subsequence of A[1 . . n] has length at least LCS(−1, 0)− 2.

2 Given an array A[1 .. n], compute the length of a longest palindrome subsequence of A.
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Solution: [naive] Let LPS(i, j) denote the length of the longest palindrome subsequence of A[i . . j].
This function obeys the following recurrence:

LPS(i, j) =



0 if i > j

1 if i = j

max

{
LPS(i+ 1, j)

LPS(i, j − 1)

}
if i < j and A[i] ̸= A[j]

max


2 + LPS(i+ 1, j − 1)

LPS(i+ 1, j)

LPS(i, j − 1)

 otherwise

We need to compute LPS(1, n).
Solution: [with greedy optimization] Let LPS(i, j) denote the length of the longest palindrome
subsequence of A[i . . j]. Before stating a recurrence for this function, we make the following useful
observation.a

Claim 0.1. If i < j and A[i] = A[j], then LPS(i, j) = 2 + LPS(i+ 1, j − 1).

Proof: Suppose i < j and A[i] = A[j]. Fix an arbitrary longest palindrome subsequence S of A[i . . j].
There are four cases to consider.

• If S uses neither A[i] nor A[j], then A[i] • S • A[j] is a palindrome subsequence of A[i . . j] that
is longer than S, which is impossible.

• Suppose S uses A[i] but not A[j]. Let A[k] be the last element of S. If k = i, then A[i] • A[j]
is a palindrome subsequence of A[i . . j] that is longer than S, which is impossible. Otherwise,
replacing A[k] with A[j] gives us a palindrome subsequence of A[i . . j] with the same length as
S that uses both A[i] and A[j].

• Suppose S uses A[j] but not A[i]. Let A[h] be the first element of S. If h = j, then A[i] • A[j]
is a palindrome subsequence of A[i . . j] that is longer than S, which is impossible. Otherwise,
replacing A[h] with A[i] gives us a palindrome subsequence of A[i . . j] with the same length as
S that uses both A[i] and A[j].

• Finally, S might include both A[i] and A[j].

In all cases, we find either a contradiction or a longest palindrome subsequence of A[i . . j] that uses
both A[i] and A[j].

Claim 1 implies that the function LPS satisfies the following recurrence:

LPS(i, j) =


0 if i > j

1 if i = j

max
{
LPS(i+ 1, j), LPS(i, j − 1)

}
if i < j and A[i] ̸= A[j]

2 + LPS(i+ 1, j − 1) otherwise

We need to compute LPS(1, n).
aAnd yes, optimizations like this require a proof of correctness, both in homework and on exams. Premature opti-

mization is the root of all evil.
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