In lecture, Alex described an algorithm of Karatsuba that multiplies two *n*-digit integers using $O(n^{\lg 3})$ singledigit additions, subtractions, and multiplications. In this lab we'll look at some extensions and applications of this algorithm.

1 Describe an algorithm to compute the product of an *n*-digit number and an *m*-digit number, where m < n, in $O(m^{\lg 3-1}n)$ time.

Solution: Split the larger number into $\lceil n/m \rceil$ chunks, each with *m* digits. Multiply the smaller number by each chunk in $O(m^{\lg 3})$ time using Karatsuba's algorithm, and then add the resulting partial products with appropriate shifts.

$$\begin{split} & \frac{\mathbf{SkewMultiply}(x[0 \dots m-1], y[0 \dots n-1]):}{prod \leftarrow 0} \\ & offset \leftarrow 0 \\ & \text{for } i \leftarrow 0 \text{ to } \lceil n/m \rceil - 1 \\ & c_i \leftarrow y[i \cdot m \dots (i+1) \cdot m - 1] \\ & d_i \leftarrow \mathbf{Multiply}(x, c_i) \\ & prod \leftarrow prod + d_i \cdot 10^{i \cdot m} \quad (*) \\ & \mathbf{return} \ prod \end{split}$$

Each call to **Multiply** requires $O(m^{\lg 3})$ time, and all other work within a single iteration of the main loop requires O(m) time. To see why (*) indeed takes O(m) time, observe that in the *i*th iteration, we add a number of 2m digits to the current sum prod, but we do it in the top part of the current sum (because of the shifting) – so we can do it in O(m) time per iteration. See the following illustration.

i = 0						d	0
i = 1					d	l_1	
i=2				d	2		
i = 3			d	3			
i = 4		d	4				
i = 5	d	5					
				prod			

Thus, the overall running time of the algorithm is $O(1) + \lceil n/m \rceil O(m^{\lg 3}) = O(m^{\lg 3-1}n)$ as required. This is the standard method for multiplying a large integer by a single "digit" integer *written in base* **10**^{*m*}, but with each single-"digit" multiplication implemented using Karatsuba's algorithm.

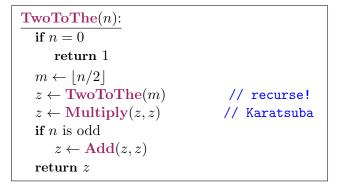
2 Describe an algorithm to compute the decimal representation of 2^n in $O(n^{\lg 3})$ time. (The standard algorithm that computes one digit at a time requires $\Theta(n^2)$ time.)

Solution:

We compute 2^n via repeated squaring, implementing the following recurrence:

$$2^{n} = \begin{cases} 1 & \text{if } n = 0\\ (2^{n/2})^{2} & \text{if } n > 0 \text{ is even}\\ 2 \cdot (2^{\lfloor n/2 \rfloor})^{2} & \text{if } n \text{ is odd} \end{cases}$$

We use Karatsuba's algorithm to implement decimal multiplication for each square.



The running time of this algorithm satisfies the recurrence

$$T(n) = T(|n/2|) + O(n^{\lg 3}).$$

We can safely ignore the floor in the recursive argument. The recursion tree for this algorithm is just a path; the work done at recursion depth *i* is $O((n/2^i)^{\lg 3}) = O(n^{\lg 3}/3^i)$. Thus, the levels sums form a descending geometric series, which is dominated by the work at level 0, so the total running time is at most $O(n^{\lg 3})$.

3 Describe a divide-and-conquer algorithm to compute the decimal representation of an arbitrary *n*-bit binary number in $O(n^{\lg 3})$ time. (Hint: Let $x = a \cdot 2^{n/2} + b$. Watch out for an extra log factor in the running time.)

Solution:

Following the hint, we break the input x into two smaller numbers $x = a \cdot 2^{n/2} + b$; recursively convert a and b into decimal; convert $2^{n/2}$ into decimal using the solution to problem 2; multiply a and $2^{n/2}$ using Karatsuba's algorithm; and finally add the product to b to get the final result.

Decimal $(x[0n-1])$:
if $n < 100$
use brute force
$m \leftarrow \lceil n/2 \rceil$
$a \leftarrow x[m \dots n-1]$
$b \leftarrow x[0 \dots m-1]$
return $Add(Multiply(Decimal(a), TwoToThe(m)), Decimal(b))$

The running time of this algorithm satisfies the recurrence

$$T(n) = 2T(n/2) + O(n^{\lg 3}).$$

The $O(n^{\lg 3})$ term includes the running times of both **Multiply** and **TwoToThe** (as well as the final linear-time addition).

The recursion tree for this algorithm is a binary tree, with 2^i nodes at recursion depth *i*. Each recursive call at depth *i* converts an $n/2^i$ -bit binary number to decimal. The non-recursive work at the corresponding node of the recursion tree, of depth *i*, is

$$W_i = O((n/2^i)^{\lg 3}) = O(n^{\lg 3}/3^i).$$

There are 2^i nodes in the recursion tree of depth *i*. As such, the total work at all the nodes of the recursion tree of depth *i* is

$$L_i = 2^i \cdot W_i = 2^i \cdot O(n^{\lg 3}/3^i) = O(n^{\lg 3}/(3/2)^i) \cdot O(n^{\lg 3}(2/3)^i).$$

The total running time of the algorithm is bounded by

$$\sum_{i=0}^{\infty} L_i = \sum_{i=0}^{\infty} O\left(n^{\lg 3} (2/3)^i\right) = O\left(n^{\lg 3}\right) \sum_{i=0}^{\infty} (2/3)^i = O\left(n^{\lg 3}\right)$$

since $\sum_{i=0}^{\infty} (2/3)^i = O(1)$ (specifically 3).

Notice that if we had converted $2^{n/2}$ to decimal *recursively* instead of calling **TwoToThe**, the recurrence would have been $T(n) = 3T(n/2) + O(n^{\lg 3})$. Every level of this recursion tree has the same sum, so the overall running time would be $O(n^{\lg 3} \log n)$.

Think about later:

4 Suppose we can multiply two *n*-digit numbers in O(M(n)) time. Describe an algorithm to compute the decimal representation of an arbitrary *n*-bit binary number in $O(M(n) \log n)$ time.

Solution:

We modify the solutions of problems 2 and 3 to use the faster multiplication algorithm instead of Karatsuba's algorithm. Let $T_2(n)$ and $T_3(n)$ denote the running times of **TwoToThe** and **Decimal**, respectively. We need to solve the recurrences

$$T_2(n) = T_2(n/2) + O(M(n))$$
 and $T_3(n) = 2T_3(n/2) + T_2(n) + O(M(n)).$

But how can we do that when we don't know M(n)?

For the moment, suppose $M(n) = O(n^c)$ for some constant c > 0. Since any algorithm to multiply two *n*-digit numbers must *read* all *n* digits, we have $M(n) = \Omega(n)$, and therefore $c \ge 1$. On the other hand, the grade-school lattice algorithm implies $M(n) = O(n^2)$, so we can safely assume $c \le 2$. With this assumption, the recursion tree method implies

$$T_2(n) = T_2(n/2) + O(n^c) \implies T_2(n) = O(n^c)$$
$$T_3(n) = 2T_3(n/2) + O(n^c) \implies T_3(n) = \begin{cases} O(n \log n) & \text{if } c = 1, \\ O(n^c) & \text{if } c > 1. \end{cases}$$

So in this case, we have $T_3(n) = O(M(n) \log n)$ as required.

In reality, M(n) may not be a simple polynomial, but we can effectively **ignore** any sub-polynomial noise using the following trick. Suppose we can write $M(n) = n^c \cdot \mu(n)$ for some constant c and some arbitrary non-decreasing function $\mu(n)$.¹

To solve the recurrence $T_2(n) = T_2(n/2) + O(M(n))$, we define a new function $\tilde{T}_2(n) = T_2(n)/\mu(n)$. Then we have

$$\tilde{T}_2(n) = \frac{T_2(n/2)}{\mu(n)} + \frac{O(M(n))}{\mu(n)} \le \frac{T_2(n/2)}{\mu(n/2)} + \frac{O(M(n))}{\mu(n)} = \tilde{T}_2(n/2) + O(n^c).$$

Here we used the inequality $\mu(n) \ge \mu(n/2)$; this the only fact about μ that we actually need. The recursion tree method implies $\tilde{T}_2(n) \le O(n^c)$, and therefore $T_2(n) \le O(n^c) \cdot \mu(n) = O(M(n))$.

Similarly, to solve the recurrence $T_3(n) = 2T_3(n/2) + O(M(n))$, we define $\tilde{T}_3(n) = T_3(n)/\mu(n)$, which gives us the recurrence $\tilde{T}_3(n) \le 2\tilde{T}_3(n/2) + O(n^c)$. The recursion tree method implies

$$\tilde{T}_3(n) \le \begin{cases} O(n \log n) & \text{if } c = 1, \\ O(n^c) & \text{if } c > 1. \end{cases}$$

In both cases, we have $\tilde{T}_3(n) = O(n^c \log n)$, which implies that $T_3(n) = O(M(n) \log n)$.