
Solutions for Discussion 6a: Wednesday, October 2, 2024
Version: 1.0 CS/ECE 374A: Intro. Algorithms & Models of Computation, Fall 2024

Here are several problems that are easy to solve in O(n) time, essentially by brute force. Your task is to design
algorithms for these problems that are significantly faster.

1 Suppose we are given an array A[1 .. n] of n distinct integers, which could be positive, negative, or zero,
sorted in increasing order so that A[1] < A[2] < · · · < A[n].

1.A. Describe a fast algorithm that either computes an index i such that A[i] = i or correctly reports that
no such index exists.

Solution: Suppose we define a second array B[1 .. n] by setting B[i] = A[i] − i for all i. For
every index i we have

B[i] = A[i]− i ≤ (A[i+ 1]− 1)− i = A[i+ 1]− (i+ 1) = B[i+ 1],

so this new array is sorted in increasing order. Clearly, A[i] = i if and only if B[i] = 0. So we can
find an index i such that A[i] = i by performing a binary search in B. We don’t actually need to
compute B in advance; instead, whenever the binary search needs to access some value B[i], we
can just compute A[i]− i on the fly instead!
Here are two formulations of the resulting algorithm, first recursive (keeping the array A as a
global variable), and second iterative.

// Return any index i such that ℓ ≤ i ≤ r and A[i] = i
FindMatch(ℓ, r):

if ℓ > r
return None

mid← (ℓ+ r)/2

if A[mid] = mid // B[mid] = 0
return mid

else if A[mid] < mid // B[mid] < 0
return FindMatch(mid + 1, r)

else // B[mid] > 0
return FindMatch(ℓ,mid− 1)

FindMatch(A[1 .. n]):
hi← n
lo← 1
while lo ≤ hi

mid← (lo + hi)/2
if A[mid] = mid // B[mid] = 0

return mid
else if A[mid] < mid // B[mid] < 0

lo← mid + 1
else // B[mid] > 0

hi← mid− 1

return None

In both formulations, the algorithm is binary search, so it runs in O(log n) time.

1



1.B. Suppose we know in advance that A[1] > 0. Describe an even faster algorithm that either computes
an index i such that A[i] = i or correctly reports that no such index exists.

(
Hint: This is really

easy.
)

Solution: The following algorithm solves this problem in O(1) time:

FindMatchPos(A[1 .. n]):
if A[1] = 1

return 1
else

return None

Again, the array B[1 .. n] defined by setting B[i] = A[i]− i is sorted in increasing order. It follows
that if A[1] > 1 (that is, B[1] > 0), then A[i] > i (that is, B[i] > 0) for every index i. A[1] cannot
be less than 1.

2 Suppose we are given an array A[1 .. n] such that A[1] ≥ A[2] and A[n−1] ≤ A[n]. We say that an element
A[x] is a local minimum if both A[x − 1] ≥ A[x] and A[x] ≤ A[x + 1]. For example, there are exactly
six local minima in the following array:

9
▲
7 7 2

▲
1 3 7 5

▲
4 7

▲
3

▲
3 4 8

▲
6 9

Describe and analyze a fast algorithm that returns the index of one local minimum. For example, given
the array above, your algorithm could return the integer 9, because A[9] is a local minimum.

(
Hint: With

the given boundary conditions, any array must contain at least one local minimum. Why?
)

Solution: The following algorithm solves this problem in O(log n) time:

LocalMin(A[1 . . . n]) :

if n < 100
find the smallest element in A by brute force

m← ⌊n/2⌋
if A[m] < A[m+ 1]

return LocalMin(A[1 . . .m+ 1])
else

return LocalMin(A[m. . . n])

If n is less than 100, then a brute-force search runs in O(1) time. There’s nothing special about 100
here; any other constant will do.
Otherwise, if A[n/2] < A[n/2 + 1], the subarray A[1 . . . n/2 + 1] satisfies the precise boundary condi-
tions of the original problem, so the recursion fairy will find local minimum inside that subarray.
Finally, if A[n/2] > A[n/2 + 1], the subarray A[n/2 . . . n] satisfies the precise boundary conditions of
the original problem, so the recursion fairy will find local minimum inside that subarray.
The running time satisfies the recurrence T (n) ≤ T (⌈n/2⌉ + 1) + O(1). Except for the +1 and the
ceiling in the recursive argument, which we can ignore, this is the binary search recurrence, whose
solution is T (n) = O(log n).
Alternatively, we can observe that ⌈n/2⌉+ 1 < 2n/3 when n ≥ 100, and therefore T (n) ≤ T (2n/3) +
O(1), which implies T (n) = O(log3/2 n) = O(log n).

3 Suppose you are given two sorted arrays A[1 .. n] and B[1 .. n] containing distinct integers. Describe a fast
algorithm to find the median (meaning the nth smallest element) of the union A ∪B. For example, given

2



the input
A[1 .. 8] = [0, 1, 6, 9, 12, 13, 18, 20] B[1 .. 8] = [2, 4, 5, 8, 17, 19, 21, 23]

your algorithm should return the integer 9.
(
Hint: What can you learn by comparing one element of A

with one element of B?
)

Solution: The following algorithm solves this problem in O(log n) time:

Median(A[1 . . n], B[1 . . . n]) :

if n < 10100

use brute force
else if A[n/2] > B[n/2]

return Median(A[1 . . n/2], B[n/2 + 1 . . n])
else

return Median(A[n/2 + 1 . . n], B[1 . . n/2])

Suppose A[n/2] > B[n/2]. Then A[n/2 + 1] is larger than all n elements in A[1 . . n/2] ∪ B[1 . . n/2],
and therefore larger than the median of A ∪ B, so we can discard the upper half of A. Similarly,
B[n/2−1] is smaller than all n+1 elements of A[n/2 . . n]∪B[n/2+1 . . n], and therefore smaller than
the median of A ∪ B, so we can discard the lower half of B. Because we discard the same number of
elements from each array, the median of the remaining subarrays is the median of the original A ∪B.

To think about later:

4 Now suppose you are given two sorted arrays A[1 . . m] and B[1 . . n] and an integer k. Describe a fast
algorithm to find the kth smallest element in the union A ∪B. For example, given the input

A[1 . . 8] = [0, 1, 6, 9, 12, 13, 18, 20] B[1 . . 5] = [2, 5, 7, 17, 19] k = 6

your algorithm should return the integer 7.
Solution: The following algorithm solves this problem in O(logmin {k,m+ n− k}) = O(log(m+n))
time:

Select(A[1 . . m], B[1 . . n], k) :

if k < (m+ n)/2
return Median(A[1 . . k], B[1 . . k])

else
return Median(A[k − n . . m], B[k −m . . n])

Here, Median is the algorithm from problem 3 with one minor tweak. If Median wants an entry in
either A or B that is outside the bounds of the original arrays, it uses the value −∞ if the index is
too low, or ∞ if the index is too high, instead of creating a core dump

3


