
Solutions for Discussion 4a: Wednesday, September 18, 2024
Version: 1.01 CS/ECE 374A: Intro. Algorithms & Models of Computation, Fall 2024

Give context-free grammars for each of the following languages.

1
{
02n1n

∣∣ n ≥ 0
}

Solution: S → ε | 00S1.

2 {0m1n | m ̸= 2n}(
Hint: If m ̸= 2n, then either m < 2n or m > 2n.

)
Solution:

To simplify notation, let ∆(w) = #(0, w) − 2#(1, w). Our solution follows the following logic. Let w
be an arbitrary string in this language.

• Because ∆(w) ̸= 0, then either ∆(w) > 0 or ∆(w) < 0.
• If ∆(w) > 0, then w = 0iz for some integer i > 0 and some suffix z with ∆(z) = 0.
• If ∆(w) < 0, then w = x1j for some integer j > 0 and some prefix x with either ∆(x) = 0 or

∆(x) = 1.
• Substrings with ∆ = 0 is generated by the previous grammar; we need only a small tweak to

generate substrings with ∆ = 1.

Here is one way to encode this case analysis as a CFG. The nonterminals M and L generate all strings
where the number of 0s is More or Less than twice the number of 1s, respectively. The last nonterminal
generates strings with ∆ = 0 or ∆ = 1.

S → M | L {0m1n | m ̸= 2n}
M → 0M | 0E {0m1n | m > 2n}
L → L1 | E1 {0m1n | m < 2n}
E → ε | 0 | 00E1 {0m1n | m = 2n or 2n+ 1}

Here is a different correct solution using the same logic. We either identify a non-empty prefix of 0s or
a non-empty prefix of 1s, so that the rest of the string is as “balanced” as possible. We also generate
strings with ∆ = 1 using a separate non-terminal.

S → AE | EB | FB {0m1n | m ̸= 2n}
A → 0 | 0A 0+ =

{
0i

∣∣ i ≥ 1
}

B → 1 | 1B 1+ =
{
1j

∣∣ j ≥ 1
}

E → ε | 00E1 {0m1n | m = 2n}
F → 0E {0m1n | m = 2n+ 1}

Alternatively, we can separately generate all strings of the form 0odd1∗, so that we don’t have to worry
about the case ∆ = 1 separately.

S → D | M | L {0m1n | m ̸= 2n}
D → 0 | 00D | D1 {0m1n | m is odd}
M → 0M | 0E {0m1n | m > 2n}
L → L1 | E1 {0m1n | m < 2n and m is even}
E → ε | 00E1 {0m1n | m = 2n}

1

Solution:
Intuitively, we can parse any string w ∈ L as follows. First, remove the first 2k 0s and the last k 1s, for
the largest possible value of k. The remaining string cannot be empty, and it must consist entirely of
0s, entirely of 1s, or a single 0 followed by 1s.

S → 00S1 | A | B | C {0m1n | m ̸= 2n}
A → 0 | 0A 0+

B → 1 | 1B 1+

C → 0 | 0B 01+

Lets elaborate on the above, since k is maximal, w = 02kw′1k. If w′ starts with 00, and ends with a 1,
then we can increase k by one. As such, w′ is either in 0+ or 1+. If w′ contains both 0s and 1s, then it
can contain only a single 0, followed potentially by 1+. We conclude that w′ ∈ 0+ + 1+ + 01+.

3 {0, 1}∗ \
{
02n1n

∣∣ n ≥ 0
}

Solution:
This language is the union of the previous language and the complement of 0∗1∗, which is (0+1)∗10(0+
1)∗.

S → T | X {0, 1}∗ \
{
02n1n

∣∣ n ≥ 0
}

T → 00T1 | A | B | C {0m1n | m ̸= 2n}
A → 0 | 0A 0+

B → 1 | 1B 1+

C → 0 | 0B 01+

X → Z10Z (0 + 1)∗10(0 + 1)∗

Z → ε | 0Z | 1Z (0 + 1)∗

Work on these later:

4
{
w ∈ {0, 1}∗

∣∣ #(0, w) = 2 ·#(1, w)
}

– Binary strings where the number of 0s is exactly twice the number
of 1s.

Solution:
S → ε | SS | 00S1 | 0S1S0 | 1S00.
Here is a sketch of a correctness proof; a more detailed proof appears in the homework.

For any string w, let ∆(w) = #(0, w)− 2 ·#(1, w). Suppose w is a binary string such that ∆(w) = 0.
Suppose w is nonempty and has no non-empty proper prefix x such that ∆(x) = 0. There are three
possibilities to consider:

• Suppose ∆(x) > 0 for every proper prefix x of w. In this case, w must start with 00 and end with
1. Thus, w = 00x1 for some string x ∈ L.

2

• Suppose ∆(x) < 0 for every proper prefix x of w. In this case, w must start with 1 and end with
00. Let x be the shortest non-empty prefix with ∆(x) = 1. Thus, w = 1X00 for some string x ∈ L.

• Finally, suppose ∆(x) > 0 for some prefix x and ∆(x′) < 0 for some longer proper prefix x′. Let
x′ be the shortest non-empty proper prefix of w with ∆ < 0. Then x′ = 0y1 for some substring y
with ∆(y) = 0, and thus w = 0y1z0 for some strings y, z ∈ L.

5 {0, 1}∗ \ {ww | w ∈ {0, 1}∗}.

Solution:
All strings of odd length are in L.

Let w be any even-length string in L, and let m =
∣∣w∣∣ /2. For some index i ≤ m, we have wi ̸= wm+i.

Thus, w can be written as either x1y0z or x0y1z for some substrings x, y, z such that
∣∣x∣∣ = i − 1,∣∣y∣∣ = m− 1, and

∣∣z∣∣ = m− i. We can further decompose y into a prefix of length i− 1 and a suffix of
length m − i. So we can write any even-length string w ∈ L as either x1x′z′0z or x0x′z′1z, for some
strings x, x′, z, z′ with

∣∣x∣∣ = ∣∣x′∣∣ = i− 1 and
∣∣z∣∣ = ∣∣z′∣∣ = m− i. Said more simply, we can divide w into

two odd-length strings, one with a 0 at its center, and the other with a 1 at its center.

S → AB | BA | A | B strings not of the form ww

A → 0 | ΣAΣ odd-length strings with 0 at center
B → 1 | ΣBΣ odd-length strings with 1 at center
Σ → 0 | 1 single character

3

