Prove that each of the following languages is **not** regular.

1 ${0^{2^n} | n \ge 0}.$

Solution:

Let $F = L = \{0^{2^n} \mid n \ge 0\}.$ Let x and y be arbitrary elements of F . Then $x = 0^{2^i}$ and $y = 0^{2^j}$ for some non-negative integers x and y. Let $z = 0^{2^i}$. Then $xz = 0^{2^i} 0^{2^i} = 0^{2^{i+1}} \in L$. And $yz = 0^{2^j}0^{2^i} = 0^{2^i + 2^j} \notin L$, because $i \neq j$ Thus, F is a fooling set for L . Because F is infinite, L cannot be regular.

Solution:

For any non-negative integers $i \neq j$, the strings 0^{2^i} and 0^{2^j} are distinguished by the suffix 0^{2^i} , because $0^{2^i}0^{2^i}=0^{2^{i+1}}\in L$ but $0^{2^j}0^{2^i}=0^{2^{i+j}}\notin L$. Thus L itself is an infinite fooling set for L.

2 $\{0^{2n}1^n \mid n \geq 0\}$

Solution:

Let F be the language 0^* . Let x and y be arbitrary strings in F . Then $x = 0^i$ and $y = 0^j$ for some non-negative integers $i \neq j$. Let $z = 0^i 1^i$. Then $xz = 0^{2i}1^i \in L$. And $yz = 0^{i+j}1^i \notin L$, because $i + j \neq 2i$. Thus, F is a fooling set for L . Because F is infinite, L cannot be regular.

Solution:

For all non-negative integers $i \neq j$, the strings 0^i and 0^j are distinguished by the suffix 0^i1^i , because $0^{2i}1^i \in L$ but $0^{i+j}1^i \notin L$. Thus, the language 0^* is an infinite fooling set for L.

Solution:

For all non-negative integers $i \neq j$, the strings 0^{2i} and 0^{2j} are distinguished by the suffix 1^i , because $0^{2i}1^i \in L$ but $0^{2j}1^i \notin L$. Thus, the language $(00)^*$ is an infinite fooling set for L.

 $3 \quad \{0^m1^n \mid m \neq 2n\}$

Solution:

Let F be the language 0^* . Let x and y be arbitrary strings in F . Then $x = 0^i$ and $y = 0^j$ for some non-negative integers $i \neq j$. Let $z = 0^i 1^i$. Then $xz = 0^{2i}1^i \notin L$. And $yz = 0^{i+j}1^i \in L$, because $i + j \neq 2i$. Thus, F is a fooling set for L . Because F is infinite, L cannot be regular.

Solution:

For all non-negative integers $i \neq j$, the strings 0^{2i} and 0^{2j} are distinguished by the suffix 1^i , because $0^{2i}1^i \notin L$ but $0^{2j}1^i \in L$. Thus, the language $(00)^*$ is an infinite fooling set for L.

4 Strings over $\{0, 1\}$ where the number of 0s is exactly twice the number of 1s.

Solution:

Let F be the language 0^* . Let x and y be arbitrary strings in F . Then $x = 0^i$ and $y = 0^j$ for some non-negative integers $i \neq j$. Let $z = 0^i 1^i$. Then $xz = 0^{2i}1^i \in L$. And $yz = 0^{i+j}1^i \notin L$, because $i + j \neq 2i$. Thus, F is a fooling set for L . Because F is infinite, L cannot be regular.

Solution:

For all non-negative integers $i \neq j$, the strings 0^{2i} and 0^{2j} are distinguished by the suffix 1^i , because $0^{2i}1^i \in L$ but $0^{2j}1^i \notin L$. Thus, the language $(00)^*$ is an infinite fooling set for L.

Solution:

If L were regular, then the language

$$
((0+1)^{*} \setminus L) \cap 0^{*1^{*}} = \{0^{m}1^{n} \mid m \neq 2n\}
$$

would also be regular, because regular languages are closed under complement and intersection. But we just proved that $\{0^m1^n \mid m \neq 2n\}$ is not regular in problem 3. *[Yes, this proof would be worth full* credit, either in homework or on an exam.]

5 Strings of properly nested parentheses (), brackets \parallel , and braces \parallel . For example, the string $(\parallel)\parallel$ is in this language, but the string $\binom{n}{k}$ is not, because the left and right delimiters don't match.

Solution:

Let F be the language $(*$. Let x and y be arbitrary strings in F . Then $x = \binom{i}{x}$ and $y = \binom{j}{x}$ for some non-negative integers $i \neq j$. Let $z =$ $)^i$. Then $xz = \binom{i}{i}^i \in L$. And $yz = (i)^i \notin L$, because $i \neq j$. Thus, F is a fooling set for L . Because F is infinite, L cannot be regular.

Solution:

For any non-negative integers $i \neq j$, the strings (ⁱ and (^j are distinguished by the suffix)ⁱ, because $({}^{i})^{i} \in L$ but $({}^{i})^{j} \notin L$. Thus, the language (* is an infinite fooling set.

6 Strings of the form $w_1 \# w_2 \# \cdots \# w_n$ for some $n \geq 2$, where each substring w_i is a string in $\{0,1\}^*$, and some pair of substrings w_i and w_j are equal.

Solution:

Let F be the language 0^* .

Let x and y be arbitrary strings in F .

Then $x = 0^i$ and $y = 0^j$ for some non-negative integers $i \neq j$.

Let $z = \#0^i$.

Then $xz = 0^i \# 0^i \in L$.

And $yz = 0^j \# 0^i \notin L$, because $i \neq j$.

Thus, F is a fooling set for L .

Because F is infinite, L cannot be regular.

Solution:

For any non-negative integers $i \neq j$, the strings 0^i and 0^j are distinguished by the suffix $\#0^i$, because $0^i \# 0^i \in L$ but $0^j \# 0^i \notin L$. Thus, the language 0^* is an infinite fooling set.

Extra problems

7 $\{0^{n^2} \mid n \geq 0\}$

Solution:

Let x and y be distinct arbitrary strings in L .

Without loss of generality, $x = 0^{i^2}$ and $y = 0^{j^2}$ for some $j > i \ge 0$.

Let $z = 0^{2i+1}$.

Then $xz = 0^{i^2} 0^{2i+1} = 0^{i^2+2i+1} = 0^{(i+1)^2} \in L$

On the other hand, $yz = 0^{j^2}0^{2i+1} = 0^{j^2+2i+1} \notin L$, because $j^2 < j^2 + 2i + 1 < j^2 + 2j + 1 = (j+1)^2$. Thus, z distinguishes x and y .

We conclude that L is an infinite fooling set for itself (i.e., L), so L cannot be, will not be, and is not regular.

Solution:

Let x and y be distinct arbitrary strings in 0^* . Without loss of generality, $x = 0^i$ and $y = 0^j$ for some $i > j \ge 0$. Let $z = 0^{i^2 + i + 1}$. Then $xz = 0^{i^2 + 2i + 1} = 0^{(i+1)^2} \in L$. On the other hand, $yz = 0^{i^2 + i + j + 1} \notin L$, because $i^2 < i^2 + i + j + 1 < (i + 1)^2$. Thus, z distinguishes x and y. We conclude that 0^* is an infinite fooling set for L , so L cannot be regular.

Solution:

Let x and y be distinct arbitrary strings in 0000^* .

Without loss of generality, $x = 0^i$ and $y = 0^j$ for some $i > j \ge 3$.

$$
Let z = 0^{i^2 - i}.
$$

Then $xz = 0^{i^2} \in L$.

On the other hand, $yz = 0^{i^2 - i + j} \notin L$, because

 $(i-1)^2 = i^2 - 2i + 1 \leq i^2 - i \leq i^2 - i + j \leq i^2.$

(The first inequalities requires $i \geq 2$, and the second $j \geq 1$.)

Thus, z distinguishes x and y.

We conclude that $0000*$ is an infinite fooling set for L , so L cannot be regular.

8 $\{w \in (0+1)^* \mid w \text{ is the binary representation of a perfect square}\}\$

Solution:

We design our fooling set around numbers of the form $(2^k + 1)^2 = 2^{2k} + 2^{k+1} + 1 = 10^{k-2}10^k1 \in L$, for any integer $k \geq 2$. The argument is somewhat simpler if we further restrict k to be even.

Let $F = 1(00)^*1$, and let x and y be arbitrary strings in F.

Then $x = 10^{2i-2}1$ and $y = 10^{2j-2}1$, for some positive integers $i \neq j$.

Without loss of generality, assume $i < j$. (Otherwise, swap x and y.)

$$
Let z = 0^{2i}1.
$$

Then $xz = 10^{2i-2}10^{2i}1$ is the binary representation of $2^{4i} + 2^{2i+1} + 1 = (2^{2i} + 1)^2$, and therefore $xz \in L$. On the other hand, $yz = 10^{2j-2}10^{2i}1$ is the binary representation of $2^{2i+2j} + 2^{2i+1} + 1$. Simple algebra gives us the inequalities

$$
(2^{i+j})^2 = 2^{2i+2j}
$$

<
$$
< 2^{2i+2j} + 2^{2i+1} + 1
$$

<
$$
< 2^{2(i+j)} + 2^{i+j+1} + 1
$$

$$
= (2^{i+j} + 1)^2.
$$

So $2^{2i+2j} + 2^{2i+1} + 1$ lies between two consecutive perfect squares, and thus is not a perfect square, which implies that $yz \notin L$.

We conclude that F is a fooling set for L. Because F is infinite, L cannot be regular.