
HW 6: Extra problems Instructors: Har-Peled

CS/ECE 374A: Intro. Algorithms & Models of Computation, Fall 2024 Version: 1.0

No solutions for the following problems will NOT be provided but you can discuss them on Piazza.

1 Given an array of n unsorted integers A and k ranks i1 < i2 < . . . < ik describe an algorithm
that outputs the elements in A with these given k ranks. Your algorithm should run in O(n log k)
time. One can easily do this via sorting in O(n log n) time. There is also an O(nk) time algorithm
(how?).

2 Problems in Jeff’s notes on dynamic programming. In particular, Probs 1, 2, 3, 5, 6.

3 Problems in Dasgupta etal book Chapter 6. In particular Probs 1, 2

4 Problems in Kleinberg-Tardos book Chapter 6. Problems 1, 2, 7.

5 Let w ∈ Σ∗ be a string. We say that u1, u2, . . . , uh where each ui ∈ Σ∗ is a valid split of w iff
w = u1u2 . . . uh (the concatenation of u1, u2, . . . , uh). Given a valid split u1, u2, . . . , uh of w we
define its ℓ3 measure as

∑h
i=1 |ui|3.

Given a language L ⊆ Σ∗ a string w ∈ L∗ iff there is a valid split u1, u2, . . . , uh of w such that
each ui ∈ L; we call such a split an L-valid split of w. Assume you have access to a subroutine
IsStringInL(x) which outputs whether the input string x is in L or not. To evaluate the running
time of your solution you can assume that each call to IsStringInL() takes constant time.

Describe an efficient algorithm that given a string w and access to a language L via IsStringInL(x)
outputs an L-valid split of w with minimum ℓ3 measure if one exists.

6 Recall that a palindrome is any string that is exactly the same as its reversal, like I, or DEED,
or RACECAR, or AMANAPLANACATACANALPANAMA.

Any string can be decomposed into a sequence of palindrome substrings. For example, the string
BUBBASEESABANANA (“Bubba sees a banana.”) can be broken into palindromes in the
following ways (among many others):

BUB • BASEESAB • ANANA

B • U • BB • A • SEES • ABA • NAN • A

B • U • BB • A • SEES • A • B • ANANA

B • U • B • B • A • S • E • E • S • A • B • ANA • N • A

Describe and analyze an efficient algorithm that given a string w and an integer k decides whether
w can be split into palindromes each of which is of length at least k. For example, given the input
string BUBBASEESABANANA and 3 your algorithm would answer yes because one can find
a split BUB • BASEESAB • ANANA. The answer should be no if we set k = 4. Note that the
answer is always yes for k = 1.

7 The McKing chain wants to open several restaurants along Red street in Shampoo-Banana. The
possible locations are at L1, L2, . . . , Ln where Li is at distance mi meters from the start of Red
street. Assume that the street is a straight line and the locations are in increasing order of

1

distance from the starting point (thus 0 ≤ m1 < m2 < . . . < mn). McKing has collected some
data indicating that opening a restaurant at location Li will yield a profit of pi independent of
where the other restaurants are located. However, the city of Shampoo-Banana has a zoning
law which requires that any two McKing locations should be D or more meters apart. Describe
an algorithm that McKing can use to figure out the maximum profit it can obtain by opening
restaurants while satisfying the city’s zoning law.

Solved Problem

8 A shuffle of two strings X and Y is formed by interspersing the characters into a new string, keeping
the characters of X and Y in the same order. For example, the string BANANAANANAS is a
shuffle of the strings BANANA and ANANAS in several different ways.

BANANAANANAS BANANAANANAS BANANAANANAS

Similarly, the strings PRODGY RNAMAMMIINCG and DY PRONGARMAMMICING are
both shuffles of DYNAMIC and PROGRAMMING:

PRODGY RNAMAMMIINCG DY PRONGARMAMMICING

Given three strings A[1 ..m], B[1 .. n], and C[1 ..m + n], describe and analyze an algorithm to
determine whether C is a shuffle of A and B.

2

Solution: We define a boolean function Shuf(i, j), which is True if and only if the prefix
C[1 .. i+ j] is a shuffle of the prefixes A[1 .. i] and B[1 .. j]. This function satisfies the following
recurrence:

Shuf(i, j) =

True if i = j = 0

Shuf(0, j − 1) ∧ (B[j] = C[j]) if i = 0 and j > 0

Shuf(i− 1, 0) ∧ (A[i] = C[i]) if i > 0 and j = 0(
Shuf(i− 1, j) ∧ (A[i] = C[i+ j])

)
∨
(
Shuf(i, j − 1) ∧ (B[j] = C[i+ j])

)
if i > 0 and j > 0

We need to compute Shuf(m,n).
We can memoize all function values into a two-dimensional array Shuf[0 ..m][0 .. n]. Each array
entry Shuf[i, j] depends only on the entries immediately below and immediately to the right:
Shuf[i− 1, j] and Shuf[i, j − 1]. Thus, we can fill the array in standard row-major order. The
original recurrence gives us the following pseudocode:

Shuffle?(A[1 ..m], B[1 .. n], C[1 ..m+ n]):
Shuf[0, 0]← True
for j ← 1 to n

Shuf[0, j]← Shuf[0, j − 1] ∧ (B[j] = C[j])

for i← 1 to n
Shuf[i, 0]← Shuf[i− 1, 0] ∧ (A[i] = B[i])

for j ← 1 to n
Shuf[i, j]← False
if A[i] = C[i+ j]

Shuf[i, j]← Shuf[i, j] ∨ Shuf[i− 1, j]
if B[i] = C[i+ j]

Shuf[i, j]← Shuf[i, j] ∨ Shuf[i, j − 1]

return Shuf[m,n]

The algorithm runs in O(mn) time .
Rubric: Max 10 points: Standard dynamic programming rubric. No proofs required. Max 7 points
for a slower polynomial-time algorithm; scale partial credit accordingly.

9 (100 pts.) Feline indiscretion advised.

Real cats plan out their day by drawing action cards from a deck. Each time they draw a card,
they must either perform the action indicated by the card, or else discard it. The possible action
cards are Nap, Y awn, Eat, Stretch, and Climb. There are a few rules governing the sequences of
actions they perform:

• A Nap can only be followed by a Y awn or a Stretch.
• Eat can only follow a Climb.

Other than these rules, cats are free to choose any subsequence of action cards from the deck of
cards they are given.
For example, given the following deck of cards

N,C, Y , S, C,E,E

3

The subsequence N,C,E would not be compatible with the rules (since Nap was followed by
something other than Y awn or Stretch. One longest acceptable subsequence would be N , Y , S,
C, E.

9.A. (50 pts.) Given a deck of n action cards, give a backtracking algorithm for computing
the length of the longest sequence of actions compatible with the rules above. Describe the
asymptotic running time as a function of n.

9.B. (50 pts.) Given a deck of n action cards, give a dynamic programming algorithm for com-
puting the length of the longest sequence of actions compatible with the rules above. Describe
the asymptotic running time as a function of n. The running time and space used by your
algorithm should be as small as possible.

10 (100 pts.) Cutting strings.

Assume you have an oracle that can query assess the “quality” of strings: q : Σ∗ → N. Computing
q using the oracle takes O(1) time regardless of the size of the string.

The following is an example q function (please note this is just an example, your algorithms must
work for any q function):

q(CATDOG) = 10, q(CAT) = 9, q(DOG) = 10, q(ATDO) = 15,

where q(everything else) = 0. For the given input string x[1 . . . n], you may invoke the q function
by passing indexes. Thus, q(i, j) is a shorthand for q(x[i...j]).

For each of the following, it is sufficient to describe how to compute the value realizing the desired
optimal solution.

10.A. (20 pts.) Give an algorithm to compute the highest quality substring of x.
For example, for the q function defined above, the highest quality substring of the string
CATDOG is 15 (because the highest quality substring is ATDO). Analyze the performance
of your algorithm. For full credit, you need to prove that your algorithm achieves the best
possible asymptotic efficiency.

10.B. (40 pts.) A decomposition of string x is a sequence of non-empty substrings x1, x2, ..., xk

such that x = x1x2...xk. The quality of such a decomposition is

Q(x1, . . . , xk) = min
i

q(xi).

Namely, the quality is determined by the worst substring the decomposition uses.
Give a dynamic programming algorithm (and analyze its performance) to compute the decom-
position that maximizes the quality Q of the decomposition (yeh, this is a bit confusing).
For example, if the string is CATDOG, then the best possible min-quality is 9. (CAT,DOG
is a decomposition that achieves this).

10.C. (40 pts.) Give a dynamic programming algorithm (and analyze its performance) to find the
best possible average quality of the non-empty substrings in a decomposition (that is, the
sum quality of the substrings in a decomposition divided by the number of substrings in the
decomposition).
For example, continuing the above examples, the best average quality decomposition for the
string CATDOG is 10 (the decomposition CATDOG achieves this).

4

11 (100 pts.) Laser Cuttery

You are in charge of programming the laser cutter at the local Maker Space. A member of the
Maker Space needs your help to cut wood for a project. You’re given a piece of wood to cut into
smaller pieces. The wood is already marked according to positive integer-length segments, the
lengths of which are given to you as a sequence.

Your laser cutter isn’t tuned all that well, such that the only way to cut a piece of wood into
two smaller pieces is to burn through one of the marked segments, destroying it. For example,
the following illustrates the result of cutting a piece of wood marked as [10, 5, 4] into two smaller
pieces [10] and [4].

10 5 4 10 4

Before After

The cost of each cut is proportional to the total length of the piece being cut. Thus the cut depicted
above would cost $19. (Assume after cutting into two smaller pieces, you can file the ends down
for free).

It is also possible to cut off a segment at the end, so for example you could cut [5, 4] into [5], for
a cost of $9.

The project that hired you can only make use of pieces of wood length 5 or smaller. Anything
larger is unusable. For example, pieces [2, 3], [1], [5] would all be usable, but [5, 4] would have to
be thrown out or cut down further.

11.A. (40 pts.) Suppose you need to produce usable wood pieces with a total combined length as
large as possible. Cost is no object. Give an algorithm to compute the largest total combined
length you could achieve. Analyze its asymptotic efficiency in terms of n, the number of
marked segments in the initial piece of wood.

11.B. (40 pts.) Suppose you get paid t dollars for each usable piece you produce, for some pre-
specified t. Your net profits are the difference between the amount you get paid and the total
cost of the cuts you make. Give an algorithm, as efficient as possible, to compute the best
possible achievable net profit. Analyze its asymptotic efficiency in terms of n, the number of
marked segments in the initial piece of wood.

11.C. (20 pts.) Modify your algorithm for the previous part so that it outputs not just the lowest
cost, but also the sequence of cuts necessary to achieve that cost.

12 (100 pts.) Fire in the prairie. (Fall 22.)

In Champaign county, the streets are straight, the corn is tall, and the fields are vast. Consider a
long straight green street with n houses located along it at locations x1 < x2 < · · · < xn. There
are two fire trucks initially located at the first house (i.e., x1). At time t, for t = 1, . . . ,m, a
request arrives at house number ℓt ∈ JnK = {1, . . . , n} for help. At this point, one of the trucks
has to move to house ℓt (located at xℓt). If the truck is being moved from house numbered p, the

5

price of moving it is g(p, ℓt), where g(p, q) = 1 + (xp − xq)
2 if p ̸= q, and g(p, q) = 0 if p = q. You

have a choice which one of the two trucks to move. Note, that trucks move only upon requests,
and only one truck can be moved at each point in time – and it can move only to the requested
house (i.e., a truck is always located at the last request it fulfilled).
Describe a dynamic programming algorithm, as efficient as possible, that computes the minimum
price of moving the trucks and fulfilling the requests for help, assuming that the sequence ℓ1, . . . , ℓm
is provided in advance.
Your dynamic programming solution should use as little space as possible – specifically, how much
space does your program use?
Provide a short1 sketch of how to extend your algorithm so that it computes the optimal solution
if k trucks are being used instead of two. What would be the running time of your algorithm in
this case?

13 (100 pts.) Splitting into two curve. (Fa22)

Given a sequence of n disjoint points in the plane, p1, . . . , pn, a subsequence I is a set of indices
1 ≤ i1 < i2 < · · · < it ≤ n. Such a subsequence defines a natural curve γ(I) = pi1pi2 . . . pit . The
length of such a curve is ℓ(I) = ∥γ(I)∥ =

∑t−1
u=1 ∥piu+1 − piu∥, where ∥p− q∥ denotes the Euclidean

distance between the points p and q. Below is an example of an input curve, and the resulting
split curves:

Describe a dynamic programming algorithm, as fast as possible, that computes the partition of
the input sequence into two disjoint subsequences I and J , such that ℓ(I)+ ℓ(J) is minimized, and
each integer i ∈ JnK appears exactly once – either in I or in J .
What is the running time of your algorithm? Your dynamic programming solution should use as
little space as possible – specifically, how much space does your program use?
Provide a short sketch of how to extend your algorithm so that it computes the optimal such
splitting into k curves. What would be the running time of your algorithm in this case?

14 (100 pts.) Elections.

In Champaign county, the streets are straight, the corn is tall, the fields are vast, and the soy
bean is genetically modified and getting ready to escape. Be as it may, el presidente Shakshoka is
running for reelection as dictator for life mayor. In particular, consider a long and boring straight
green street with n houses located at addresses 1, 2, . . . , n. You are also given m volunteers, where
the ith volunteer is willing to visit the houses Jxi : yiK = {xi, xi + 1, . . . , yi}, for i = 1, . . . ,m.
Unfortunately, the people of green street are already sick and tired of the elections, and if more
than two volunteers visit them, well, bad things would happen. Describe an algorithm, as fast as
possible, that given k, picks at most k volunteers, such that the number of distinct houses being
visited is maximal, while no house is visited three or more times.

1Really short – one or two sentences.

6

Rubric:Standard dynamic programming rubric For problems worth 10 poins:

• 6 points for a correct recurrence, described either using mathematical notation or as pseudocode
for a recursive algorithm.

+ 1 point for a clear English description of the function you are trying to evaluate. (Other-
wise, we don’t even know what you are trying to do.) Automatic zero if the English
description is missing.

+ 1 point for stating how to call your function to get the final answer.

+ 1 point for base case(s). −1/2 for one minor bug, like a typo or an off-by-one error.

+ 3 points for recursive case(s). −1 for each minor bug, like a typo or an off-by-one error. No
credit for the rest of the problem if the recursive case(s) are incorrect.

• 4 points for details of the dynamic programming algorithm

+ 1 point for describing the memoization data structure

+ 2 points for describing a correct evaluation order; a clear picture is usually sufficient. If you
use nested loops, be sure to specify the nesting order.

+ 1 point for time analysis

• It is not necessary to state a space bound.

• For problems that ask for an algorithm that computes an optimal structure—such as a subset,
partition, subsequence, or tree—an algorithm that computes only the value or cost of the optimal
structure is sufficient for full credit, unless the problem says otherwise.

• Official solutions usually include pseudocode for the final iterative dynamic programming algo-
rithm, but iterative psuedocode is not required for full credit . If your solution includes
iterative pseudocode, you do not need to separately describe the recurrence, memoization struc-
ture, or evaluation order. (But you still need to describe the underlying recursive function in
English.)

• Official solutions will provide target time bounds. Algorithms that are faster than this target are
worth more points; slower algorithms are worth fewer points, typically by 2 or 3 points (out of 10)
for each factor of n. Partial credit is scaled to the new maximum score, and all points above 10
are recorded as extra credit.

We rarely include these target time bounds in the actual questions, because when we have
included them, significantly more students turned in algorithms that meet the target time bound
but did not work (earning 0/10) instead of correct algorithms that are slower than the target time
bound (earning 8/10).

7

