
HW 3: Extra problems Instructors: Har-Peled

CS/ECE 374A: Intro. Algorithms & Models of Computation, Fall 2024 Version: 1.11

The following problems are not for submission or grading. No solutions for them will be provided
but you can discuss them on Piazza (however, some of them already contain a solution).

1 (100 pts.) NFAs (Fall 2020).

For each of the following languages over Σ = {3, 7, 4}, draw an NFA that accepts them. Your NFA
should have a small number of states (at most say 14 states). Provide a brief explanation for your
solution.

1.A. (20 pts.) Σ∗3Σ∗7Σ∗4Σ∗

1.B. (20 pts.) All strings in Σ∗ that contain the substrings 374 and 473.

1.C. (20 pts.) All strings in Σ∗ that do not contain 374 as a substring.

1.D. (20 pts.) All strings in Σ∗ that contain the substring 374 and an odd number of 7s.

1.E. (20 pts.) All strings in Σ∗ such that every maximal substring of consecutive 7s is even in
size.

2 (100 pts.) DFAs to NFAs (Fall 2020)

Given a DFA M = (Σ, Q, δ, s, A) that accepts L, construct an NFA N = (Σ, Q′, δ′, s′, A′) that
accepts the following languages. You can assume Σ = {0, 1} in 2.A. and 2.C.. Provide a brief
explanation for your solution.

2.A. (30 pts.) DelOnes(L) :=
{
0#0(w)

∣∣ w ∈ L
}
; i.e., removes all 1s from the strings of L.

2.B. (30 pts.) ThereAndBack(L) :=
{
xy

∣∣ x ∈ L and yR ∈ L
}

2.C. (40 pts.) XOR(L) := {z | z = XOR(x, y) for some x ∈ L, y ∈ L, such that |x| = |y| = |z|},
where XOR(x, y) computes the element-wise XOR of x and y (so for each index i, zi =
xi XOR yi).

2.D. (Not for submission) Consider, if you must, the language

Middle(L) := {y ∈ L | xyz ∈ L for some x, z such that |x| = |y| = |z|} .

Prove that this language is regular.

3 (100 pts.) Fooling Sets (Fall 2020)

Prove that the following languages are not regular by providing a fooling set. You need to provide
an infinite set and also prove that it is a valid fooling set for the given language.

3.A. (20 pts.) L =
{
wwRw

∣∣ w ∈ {0, 1}∗
}
.

3.B. (20 pts.) L =
{
0i10j

∣∣ i is divisible by j
}
.

3.C. (20 pts.) L =
{
aibj

∣∣ i, j ∈ N, and j = log2 i
}
.
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3.D. (20 pts.) L =
{
0i0j

∣∣ i, j ∈ N, and j =
√
i
}
.

3.E. (20 pts.) L = {wcd#a(w) | w ∈ {a, b}∗}.

4 (100 pts.) Draw me a goat.

For each of the following languages, draw (or describe formally) an NFA that accepts them. Your
automata should have a small number of states. Provide a short explanation of your solution, if
needed.

4.A. All strings over {a, b, c}∗ in which every nonempty maximal substring of consecutive as is of
even length.

4.B. Σ∗aΣ∗bΣ∗cΣ∗.

4.C. (a(a+ b)∗a+ b(b+ c)∗b+ c(c+ a)∗c)∗.

4.D.
((

(aa+ aab)∗(bab+ bb)∗ + c
)
b
)∗

+ bb.

4.E. All strings in 1∗ of length that is divisible by at lease one of the following numbers 2, 3, 5, 7.
For full credit your automata should have less than (say) 20 states.

4.F. All strings in a∗ of length that is NOT divisible by any of the following numbers 2, 3, 5, 7.

5 (100 pts.) Blip blop.

For two binary strings x, y ∈ {0, 1}∗, of the same length, their Hamming distance dH(x, y) is
the number of bits in which they differ. For example dH(1111, 1111) = 0, dH(0001, 1111) = 3, and
dH(1111001, 1111011) = 1. As a negative example, observe that dH(11, 1011) is not defined.

Let L ⊆ {0, 1}∗ be a regular language.

5.A. Consider the language L≤1 = {x ∈ {0, 1}∗ | ∃y ∈ L s.t. dH(x, y) ≤ 1}. Describe in words
what the language L≤1 is.

5.B. Consider the following DFA M .

S F

0,1A

B

0
1

C
01 1

001

What is its language L = L(M)?

5.C. By modifying the given DFA give above, describe an NFA that that accepts the language L≤1.
Explain your construction.

5.D. More generally, demonstrate that if a language L ⊆ {0, 1}∗ is regular, then L≤1 is a regular
language (for simplicity, you can assume ε /∈ L). Specifically, consider a DFA for L, and
describe in detail how to modify it to an NFA for L≤1. (The description of the NFA does not
have to be formal here.) Explain why the constructed NFA accept the desired language.

5.E. Prove, that for any constant k, the language L≤k is regular. Your proof has to be formal and
provide all necessary details. (I.e., you need to provide an explicit formal description of the
resulting NFA for the new language, and prove that the NFA accepts the language L≤k).
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6 Suppose N1 = (Q1,Σ, δ1, s1, A1) and N2 = (Q2,Σ, δ2, s2, A2) are NFAs. Formally describe a DFA
that accepts the language L(N1) \ L(N2). This combines subset construction and product con-
struction to give you practice with formalism.

7 Suppose M = (Q,Σ, δ, s, A) is a DFA. For states p, q ∈ Q (p can be same as q) argue that
Lp,q = {w | δ∗(p, w) = q} is regular. Recall that PREFIX(L) = {w | wx ∈ L, x ∈ Σ∗} is the set of
all prefixes of strings in L. Express PREFIX(L(M)) as ∪q∈ZLs,q for a suitable set of states Z ⊆ Q.
Why does this prove that PREFIX(L(M)) is regular whenever L is regular?

8 For a language L let MID(L) = {w | xwy ∈ L, x, y ∈ Σ∗}. Prove that MID(L) is regular if L is
regular.

9 1. Draw an NFA that accepts the language {w | there is exactly one block of 0s of even length}.
(A “block of 0s” is a maximal substring of 0s.)

2. (a) Draw an NFA for the regular expression (010)∗ + (01)∗ + 0∗.

(b) Now using the powerset construction (also called the subset construction), design a DFA
for the same language. Label the states of your DFA with names that are sets of states
of your NFA.

10 This problem is to illustrate proofs of (the many) closure properties of regular languages.

1. For a language L let FUNKY(L) = {w | w ∈ L but no proper prefix of w is in L}. Prove
that if L is regular then FUNKY(L) is also regular using the following technique. Let
M = (Q,Σ, δ, s, A) be a DFA accepting L. Describe a NFA N in terms of M that accepts
FUNKY(L). Explain the construction of your NFA.

2. In Lab 3 we saw that insert1(L) is regular whenever L is regular. Here we consider a different
proof technique. Let r be a regular expression. We would like to show that there is another
regular expression r′ such that L(r′) = insert1(L(r)).

(a) For each of the base cases of regular expressions ∅, ϵ and {a}, a ∈ Σ describe a regular
expression for insert1(L(r)).

(b) Suppose r1 and r2 are regular expressions, and r′1 and r′2 are regular expressions for the
languages insert1(L(r1)) and insert1(L(r2)) respectively. Describe a regular expression
for the language insert1(L(r1 + r2)) using r1, r2, r

′
1, r

′
2.

(c) Same as the previous part but now consider L(r1r2).
(d) Same as the previous part but now consider L((r1)

∗).

11 Recall that for any language L, L = Σ∗ − L is the complement of L. In particular, for any NFA
N , L(N) is the complement of L(N).

Let N = (Q,Σ, δ, s, A) be an NFA, and define the NFA Ncomp = (Q,Σ, δ, s, Q \ A). In other words
we simply complemented the accepting states of N to obtain Ncomp. Note that if M is DFA then
Mcomp accepts Σ∗ − L(M). However things are trickier with NFAs.

1. Describe a concrete example of a machine N to show that L(Ncomp) ̸= L(N). You need to
explain for your machine N what L(N) and L(Ncomp) are.
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2. Define an NFA that accepts L(N)− L(Ncomp), and explain how it works.

3. Define an NFA that accepts L(Ncomp)− L(N), and explain how it works.

Hint: For all three parts it is useful to classify strings in Σ∗ based on whether N takes them to
accepting and non-accepting states from s.

12 Let L be an arbitrary regular language. Prove that the language half(L) := {w | ww ∈ L} is also
regular.

Solution: Let M = (Σ, Q, s, A, δ) be an arbitrary DFA that accepts L. We define a new
NFA M ′ = (Σ, Q′, s′, A′, δ′) with ε-transitions that accepts half(L), as follows:

Q′ = (Q×Q×Q) ∪ {s′}
s′ is an explicit state in Q′

A′ = {(h, h, q) | h ∈ Q and q ∈ A}

δ′(s′, ε) = {(s, h, h) | h ∈ Q}
δ′((p, h, q), a) =

{(
δ(p, a), h, δ(q, a)

)}
M ′ reads its input string w and simulates M reading the input string ww. Specifically, M ′

simultaneously simulates two copies of M , one reading the left half of ww starting at the usual
start state s, and the other reading the right half of ww starting at some intermediate state h.

• The new start state s′ non-deterministically guesses the “halfway” state h = δ∗(s, w)
without reading any input; this is the only non-determinism in M ′.

• State (p, h, q) means the following:

– The left copy of M (which started at state s) is now in state p.

– The initial guess for the halfway state is h.

– The right copy of M (which started at state h) is now in state q.

• M ′ accepts if and only if the left copy of M ends at state h (so the initial non-deterministic
guess h = δ∗(s, w) was correct) and the right copy of M ends in an accepting state.

Rubric: 5 points =

+ 1 for a formal, complete, and unambiguous description of a DFA or NFA

– No points for the rest of the problem if this is missing.
+ 3 for a correct NFA

– −1 for a single mistake in the description (for example a typo)
+ 1 for a brief English justification. We explicitly do not want a formal proof of correctness,

but we do want one or two sentences explaining how the NFA works.

13 (100 pts.) Codes.

Let Σ be finite alphabet. A code is a mapping f : Σ → {0, 1}+. For example, if Σ = {a, b, c}, a
code f might be f(a) = 00010, f(b) = 000, and f(c) = 1. (To simplify things, we assume that
f(a) ̸= ε, for any character a ∈ Σ.)
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For a string w1w2 · · ·wm ∈ Σ∗, we define f(w) = f(w1)f(w2) · · · f(wm). In the above code, we
have

f(abcba) = 00010 • 000 • 1 • 000 • 00010. = 00010000100000010.

13.A. (10 pts.) Let L be the language of the following DFA M . What is L?

X Y
  a,b,c  
  a,b,c  

13.B. (20 pts.) Working directly on the DFA M from (A) construct an NFA for the language f(L).
Here f(L) = {f(w) | w ∈ L} is the code language. Where f is code from the above example.

13.C. (30 pts.) Let L ⊆ Σ∗ be am arbitrary regular language. Prove that the encoded language
f(L) = {f(w) | w ∈ L} is regular.

Specifically, given a DFA M = (Q,Σ, δ, s, A) for L, describe how to build an NFA M ′ for f(L).
Give an upper bound on the number of states of M ′.
(I.e., You need to prove the correctness of your construction – that the language of the
constructed NFA is indeed the desired language f(L).)
(Rubric: Half the credit is for a correct construction, and the other half is for a correct proof
of correctness.)

13.D. (40 pts.) Let L ⊆ {0, 1}∗ be a regular language. Consider the decoded language Lf =
{w ∈ Σ∗ | f(w) ∈ L}.
Prove that Lf is a regular language. As above, given a DFA M for L, describe how to construct
an NFA for Lf .
(Rubric: Half the credit is for a correct construction, and the other half is for a correct proof
of correctness.)

14 (100 pts.) Draw me a giraffe.

For each of the following languages in 14.A.–14.C., draw an NFA that accepts them. Your
automata should have a small number of states. Provide a short explanation of your solution, if
needed.

14.A. (25 pts.) All strings in {0, 1, 2}∗ such that at least one of the symbols 0, 1, or 2 occurs at
most 4 times. (Example: 1200201220210 is in the language, since 1 occurs 3 times.)

14.B. (25 pts.)
(
(01)∗(10)∗ + 00

)∗ · (1 + 00 + ε) · (11)∗.
14.C. (25 pts.) All strings in {0, 1}∗ such that the last symbol is the same as the third last symbol.

(Example: 1100101 is in the language, since the last and the third last symbol are 1.)

14.D. (25 pts.) Use the power-set construction (also called subset construction) to convert your
NFA from 14.C. to a DFA. You may omit unreachable states.
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15 (100 pts.) Fun with parity.

Given L ⊆ {0, 1}∗, define even0(L) to be the set of all strings in {0, 1}∗ that can be obtained by
taking a string in L and inserting an even number of 0’s (anywhere in the string). Similarly, define
odd0(L) to be the set of all strings x in {0, 1}∗ that can be obtained by taking a string in L and
inserting an odd number of 0’s.

(Example: if 01101 ∈ L, then 01010000100 ∈ even0(L).)

(Another example: if L is 1∗, then even0(L) can be described by the regular expression (1∗01∗0)∗1∗.)

The purpose of this question is to show that if L ⊆ {0, 1}∗ is regular, then even0(L) and odd0(L)
are regular.

15.A. (30 pts.) For each of the base cases of regular expressions ∅, ε, 0, and 1, give regular
expressions for even0(L(r)) and odd0(L(r)).

15.B. (60 pts.) Given regular expressions for ej = even0(L(rj)) and oj = odd0(L(rj)), for j ∈ {1, 2},
give regular expressions for

(i) even0(L(r1 + r2))

(ii) odd0(L(r1 + r2))

(iii) even0(L(r1r2))

(iv) odd0(L(r1r2))
(v) even0(L(r

∗
1))

(vi) odd0(L(r∗1))
Give brief justification of correctness for each of the above.

15.C. (10 pts.) Using the above, describe (shortly) a recursive algorithm that given a regular
expression r, outputs a regular expression for even0(L(r)) (similarly describe the algorithm
for computing odd0(L(r))).

16 (100 pts.) “+1”.

Let binary(i) denote the binary representation of a positive integer i. (Note that the string
binary(i) must start with a 1.)

Given a language L ⊆ {0, 1}∗, define INC(L) = {binary(i + 1) | binary(i) ∈ L}. For the time
being assume that L does not contain any string of 1∗.

(Example: for L = {100, 101011, 1101}, we have INC(L) = {101, 101100, 1110}.)

16.A. (30 pts.) Given a DFA M = (Q,Σ, δ, s, A) for L, describe informally (in a few sentences)
how to construct an NFA Mw for INC(L).

16.B. (30 pts.) Given a DFA M = (Q,Σ, δ, s, A) for L, describe formally how to construct an
NFA M ′ for INC(L).

16.C. (30 pts.) Prove formally the correctness of your construction from (16.B.). That is, prove
that INC(L) = L(M ′).

16.D. (10 pts.) Describe formally how to modify the construction of M ′ from above, to handle
that general case (without the above assumption) that L might also contain strings of the
form 1∗. You do not need to provide a proof of correctness of the new automata.
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17 (100 pts.) String flip [Fall 24].

Let Σ = {0, 1}, and let L ⊆ Σ∗ be a regular language. For a string s = s1 . . . sn ∈ Σ∗, let
sR = snsn−1 . . . s1 be the reverse of s. Consider the following language

L8 =
{
xyRz

∣∣ x, y, z ∈ Σ∗, |y| ≤ 8, and xyz ∈ L
}
.

Thus, if 0101000011110101 ∈ L, then 0101111100000101 ∈ L8 as is 0101001001110101 ∈ L8. Prove
that L8 is a regular language.

To this end, you are given a DFA M for L – provide an NFA N for L8. Describe formally how
you construct N from M , and argue why your construction is correct. A formal proof that your
construction works is not required.

Hints: (A) Your NFA should use its ability to guess things, and remember constant amount of
information (how?). (B) To build up to the solution consider special cases, and solve them first,
such as: (i) x = ε, (ii) z = ε, and (iii) |y| = 2.

18 (100 pts.) Highly irregular [Fall 24].

For each of the following languages prove that they are not regular using fooling sets. Here
Σ = {0, 1}.

18.A. (30 pts.) For a string w = w1w2 . . . wk, let odd(w) = w1w3w5 · · · be the string formed by the
odd characters of w. Consider the language LA = {w ∈ (0 + 1)∗ | odd(w) is a palindrome} .

18.B. (30 pts.) LB = {w ∈ Σ∗ | 10n10n1 is a substring of w, where n is an integer} .
18.C. (40 pts.) LC =

{
0i1j

∣∣ i+ j = k2, where k is an integer
}
.
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