CS/ECE 374: Algorithms & Models of Computation, Fall 2017 Midterm 1 October 2: 7–9pm, 2017

\overline{A}	В		D	$\mid E \mid$	F	G	H	J	K	?
1 1	10		noon	1pm	$1 \mathrm{pm}$	2pm	2pm	$3 \mathrm{pm}$	3pm	Waiting
9am	10am	11am	Shant	Abhishek	Xilin	Shalan	Phillip	Vishal	Phillip	list
Rucha	Rucha	Srihita	$\overline{\mathrm{DCL}}$	DCL	$\overline{\mathrm{DCL}}$	ECE	ECE	ECE	ECE	ECE
SC 1404	SC 1404	$\left \text{SC } 1404 \right $	1320	1320	1320	1002	1002	1002	1002	1002

	#	1	2	3	4	5	Total
Name:	Score		l I	1	l I	i I	
	IDK Score		i – – –		_	,	
NetID:	$\overline{\text{Max}}$	$\bar{20}^{-}$	20	20	$\bar{20}$	$\bar{20}$	100
	Grader		!		!		

• Don't panic!

- Please print your name and NetID **in each page** in the appropriate fields, and circle your discussion section in the boxes above. We will return your exam at the indicated section.
- If you brought anything except your writing implements, your double-sided **handwritten** (in the original) 8½" × 11" cheat sheet, and your university ID, please put it away for the duration of the exam. In particular, you please turn off and put away *all* medically unnecessary electronic devices.
 - Submit your cheat sheet together with your exam. An exam without your cheat sheet attached to it will not be graded.
 - If you are NOT using a cheat sheet, please indicate so in large friendly letters on this page.
- Please ask for clarification if any question is unclear.
- This exam lasts 120 minutes. The clock started when you got the questions.
- If you run out of space for an answer, feel free to use the blank pages at the back of this booklet, but please tell us where to look.
- As usual, answering any (sub)problem with I don't know (and nothing else) is worth 25% partial credit. Correct, complete, but sub-optimal solutions are *always* worth more than 25%. A blank answer is not the same as I don't know.
- Total IDK points for the whole exam would not exceed 10.
- Beware the Three Deadly Sins. Give complete solutions, not examples. Declare all your variables. If you don't know the answer admit it and use IDK.
- Style counts. Please use the backs of the pages or the blank pages at the end for scratch work, so that your actual answers are clear.
- Please return *all* paper with your answer booklet: your cheat sheet, and all scratch paper. We will return everything with your graded exam.
- Good luck!

- For each statement below, check "True" if the statement is **always** true and "False" otherwise. Each correct answer is worth 2 points; each incorrect answer is worth 0 points; and flipping a coin is (on average) worth 1 point. **There is no IDK for this question**.
 - **1.A.** The logical expression "X implies Y" is true, if X is false and Y is true.
 - **1.B.** If L_1, L_2, \ldots are all regular languages, then $L = \bigcup_{i=0}^{\infty} L_i$ is False: True:

Let L be a regular language over alphabet Σ , and consider the language

1.C. $L' = \{x\alpha y \mid x, y \in \Sigma^*, \alpha \in \Sigma, \text{ and } xy \in L\}.$ False: \square True: \square

The language L' is not regular.

- **1.D.** For all languages $L \subset \Sigma^*$, if L is recognized by a DFA, then $\Sigma^* \setminus L$ can NOT be represented by an NFA.
- **1.E.** If a language $L \subseteq \{0,1\}^*$ contains a string of length one, then L^* is regular.
- 1.F. For all languages L, if L is not regular, then L does not have a finite fooling set.
- **1.G.** For all context-free languages L and L', the language $(L \bullet L') \cup \{L' \bullet L\}$ is also context-free.
- **1.H.** $\{0^i1^j0^k1^\ell \mid i \geq j \geq k \geq \ell \geq 0\}$ is not regular. False: True:

Let $M = (\Sigma, Q, s, A, \delta)$ and $M' = (\Sigma, Q, s, Q \setminus A, \delta)$ be arbitrary DFAs with identical alphabets, states, starting states, and transition functions, but with complementary accepting states. Then $L(M) \cup L(M') = \Sigma^*$.

The strings 010 and 101 are distinguishable by the language $L = \{x \in \Sigma^* \mid |x| \text{ is even}\}.$

- For each of the following languages over the alphabet $\Sigma = \{0, 1\}$, either **prove** that the language is regular or **prove** that the language is not regular. **Exactly one of these two languages is regular.** [This is a tricky question.]
 - **2.A.** $L = \{xyxy \mid x, y \in \Sigma^+\}.$

2.B. $L = \{xyx^R \mid x, y \in \Sigma^+\}$, where x^R is the *reverse* string of x.

NETID: NAME:

For any language L, let $\text{MID}(L) = \{y \mid xyz \in L \text{ for some } x, y, z \in \Sigma^*\}$ be the language containing all substrings of all strings in L. For example, if $L = \{000, 100, 110, 111\}$, then $\text{MID}(L) = \{\varepsilon, 0, 00, 000, 1, 10, 100, 11, 110, 111\}$.

Prove that for any regular language L, the language MID(L) is also regular (suggestion: first describe the necessary construction, and then prove the correctness of the construction).

- 4 In the following, you do **not** need to prove that your answers are correct.
 - **4.A.** Provide a DFA and a regular expression for the following language: The set of all strings in $\{0,1\}^*$ that do not contain the substring 11111.

4.B. Provide a regular expression for the following language: The set of all strings in $\{0,1\}^*$ that contain both the substrings 01 and 11.

NETID: NAME:

A CFG G is *idiotic* if all production rules in G are of the form $A \to wB$ or $A \to \varepsilon$, where $w \in \Sigma^+$ and A and B are variables (i.e., non-terminals) of G. Here $\Sigma = \{0\}$. For a given idiotic CFG grammar G, provide a construction that shows that the language of L(G) is regular. Provide a convincing argument why this is true.

[No need to provide a formal proof here - it is too tedious for an exam.]

[If you do not know the answer - just use IDK – no need to waste your and our time.]