
Models of Computation Lecture 2: Regular Languages [F23]

Voici un principe d’esthétique . . .une règle, dis-je, pour les artistes:
Soyez réglé dans votre vie et ordinaire comme un bourgeois,
afin d’être violent et original dans vos œuvres.

[Here is a principle of aesthetics . . .a rule, I say, for artists:
Be regular in your life and ordinary as a bourgeois,
so that you may be violent and original in your work.]

— Gustave Flaubert, in a letter to Gertrude Tennant (December 25, 1876)

Some people, when confronted with a problem, think "I know, I’ll use regular expressions."
Now they have two problems.

— Jamie Zawinski, alt.religion.emacs (August 12, 1997)

As far as I am aware this pronunciation is incorrect in all known languages.
— Kenneth Kleene, describing his father Stephen’s pronunciation of his last name

2 Regular Languages

2.1 Languages

A formal language (or just a language) is a set of strings over some finite alphabet Σ, or
equivalently, an arbitrary subset of Σ∗. For example, each of the following sets is a language:

• The empty set ∅.1

• The set {ϵ}.

• The set {0,1}∗.

• The set {THE,OXFORD,ENGLISH,DICTIONARY}.

• The set of all subsequences of THE⋄OXFORD⋄ENGLISH⋄DICTIONARY.

• The set of all words in The Oxford English Dictionary.

• The set of all strings in {0,1}∗ with an odd number of 1s.

• The set of all strings in {0,1}∗ that represent a prime number in base 13.

• The set of all sequences of turns that solve the Rubik’s cube (starting in some fixed
configuration)

• The set of all python programs that print “Hello World!”

As a notational convention, I will always use italic upper-case letters (usually L, but also A, B, C ,
and so on) to represent languages.

1The empty set symbol ∅ was introduced in 1939 by André Weil, as a member of the pseudonymous mathematical
collective Nicholai Bourbaki. The symbol derives from the Danish and Norwegian letter Ø, which pronounced like the
vowels in the German word “blöd” (stupid) or the French word “œuf” (egg), or a sound of disgust. The symbol has
nothing to do with the Greek letter φ; calling the empty set “fie” or “fee” makes the baby Jesus cry.
Russell and Whitehead’s Principia Mathematica, published in 1910, denoted the empty set with the Greek letter Λ,

presumably as a mnemonic for the German word leer, meaning “empty”.
Many early set theorists, including Fraenkel, Frege, Russell, and Zermelo, did not believe that the empty set (or

“null-class”) was an actual set, although they were willing to grudgingly admit that it was a technically useful concept.
I encourage students whose are skeptical about ∅ to adopt the same attitude.

© Copyright 2023 Jeff Erickson.
This work is licensed under a Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/4.0/).

Free distribution is strongly encouraged; commercial distribution is expressly forbidden.
See http://jeffe.cs.illinois.edu/teaching/algorithms/ for the most recent revision.

1

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://jeffe.cs.illinois.edu/teaching/algorithms/

Models of Computation Lecture 2: Regular Languages [F23]

Formal languages are not “languages” in the same sense that English, Klingon, and Python are
“languages”. Strings in a formal language do not necessarily carry any “meaning”, nor are they
necessarily assembled into larger units (“sentences” or “paragraphs” or “packages”) according to
some “grammar”.

It is very important to distinguish between three “empty” objects. Many beginning students
have trouble keeping these straight.

• ϵ is the empty string, which is a sequence of length zero. ϵ is not a language.

• ∅ is the empty language, which is a set containing zero strings. ∅ is not a string.

• {ϵ} is a language containing exactly one string, which has length zero. {ϵ} is not empty,
and it is not a string.

2.2 Building Languages

Languages can be combined and manipulated just like any other sets. Thus, if A and B are
languages over Σ, then their union A∪ B, intersection A∩ B, difference A \ B, and symmetric
difference A⊕ B are also languages over Σ, as is the complement A := Σ∗ \ A. However, there are
two more useful operators that are specific to sets of strings.

The concatenation of two languages A and B, again denoted A• B or just AB, is the set of all
strings obtained by concatenating an arbitrary string in A with an arbitrary string in B:

A• B := {x y | x ∈ A and y ∈ B}.

For example, if A= {HOCUS,ABRACA} and B = {POCUS,DABRA}, then

A• B = {HOCUSPOCUS,ABRACAPOCUS,HOCUSDABRA,ABRACADABRA}.

In particular, for every language A, we have

∅ • A= A•∅=∅ and {ϵ} • A= A• {ϵ}= A.

The Kleene closure or Kleene star2 of a language L, denoted L∗, is the set of all strings
obtained by concatenating a sequence of zero or more strings from L. For example,

{0,11}∗ = {ϵ,0,00,11,000,011,110,0000,0011,0110,1100,1111,00000, . . . ,011110011011, . . .}.

More formally, L∗ is defined recursively as the set of all strings w such that either

• w= ϵ, or

• w= x y , for some strings x ∈ L and y ∈ L∗.

This definition immediately implies that

∅∗ = {ϵ} and {ϵ}∗ = {ϵ}.

For every language L that contains at least one non-empty string, the Kleene closure L∗ is infinite
and contains arbitrarily long (but finite!) strings. L∗ can also be defined as the smallest superset

2named after logician Stephen Cole Kleene, who actually pronounced his last name “clay-knee”, not “clean” or
“cleanie” or “claynuh” or “dimaggio”.

2

Models of Computation Lecture 2: Regular Languages [F23]

of L that contains the empty string ϵ and is closed under concatenation (hence “closure”). The
set of all strings Σ∗ is, just as the notation suggests, the Kleene closure of the alphabet Σ (where
each symbol is viewed as a string of length 1).

A common variant of the Kleene closure operator is the Kleene plus, defined as L+ := L • L∗.
Thus, L+ is the set of all strings obtained by concatenating a sequence of one or more strings
from L. However, I recommend avoiding this notation, because it is easy to confuse with the
more common use of + to denote union.

The following identities, which we state here without (easy) proofs, are useful for designing,
simplifying, and understanding languages.

Lemma 2.1. The following identities hold for all languages A, B, and C:

(a) A∪ B = B ∪ A.

(b) (A∪ B)∪ C = A∪ (B ∪ C).

(c) ∅ • A= A•∅=∅.

(d) {ϵ} • A= A• {ϵ}= A.

(e) (A• B) • C = A• (B • C).

(f) A• (B ∪ C) = (A• B)∪ (A• C).

(g) (A∪ B) • C = (A• C)∪ (B • C).

Lemma 2.2. The following identities hold for every language L:

(a) L∗ = {ϵ} ∪ L+ = L∗ • L∗ = (L ∪ {ϵ})∗ = (L \ {ϵ})∗ = {ϵ} ∪ L ∪ (L • L+).

(b) L+ = L • L∗ = L∗ • L = L+ • L∗ = L∗ • L+ = L ∪ (L • L+) = L ∪ (L+ • L+).

(c) L+ = L∗ if and only if ϵ ∈ L.

Lemma 2.3 (Arden’s Rule). For any languages A, B, and L such that L = A• L ∪ B, we have
A∗ • B ⊆ L. Moreover, if A does not contain the empty string, then L = A• L ∪ B if and only if
L = A∗ • B.

2.3 Regular Languages and Regular Expressions

Intuitively, a language is regular if it can be constructed from individual strings using any
combination of union, concatenation, and unbounded repetition. More formally, a language L is
regular if and only if it satisfies one of the following (recursive) conditions:

• L is empty;

• L contains exactly one string (which could be the empty string ϵ);

• L is the union of two regular languages;

• L is the concatenation of two regular languages; or

• L is the Kleene closure of a regular language.

Equivalently, a set of strings is regular if it is the set of all possible outputs of a program
without subroutines (or goto). Specifically,

3

Models of Computation Lecture 2: Regular Languages [F23]

• The empty language corresponds to a program that produces no output.
• The singleton language {w} corresponds to the one-line program print(w).
• Sequencing: The language AB corresponds to the program containing all lines of program A,

followed by all lines of program B.
• Branching: The language A∪ B corresponds to the program if ————— A else B, where the

line ————— represents some unknown condition.
• Iteration The language A∗ corresponds to the program while ————— A, where again the

line ————— represents some unknown condition.

Regular languages are normally described using a compact notation called regular expres-
sions, which omit braces around one-string sets, use + to represent union instead of ∪, and
juxtapose subexpressions to represent concatenation instead of using an explicit operator •. By
convention, in the absence of parentheses, the ∗ operator has highest precedence, followed by
the (implicit) concatenation operator, followed by +. (These conventions mirror the precedence
rules for exponents, implicit multiplication, and addition in high-school algebra.)

For example, the regular expression 10∗ is shorthand for the regular language {1} • {0}∗ =
{1,10,100,1000,10000, . . .}, or equivalently, the code pattern

print(1)

while —————:

print(0)

and not the language {10}∗ = {ϵ,10,1010,101010,10101010, . . .}. As a larger example, the
regular expression

0∗0+ 0∗1(10∗1+ 01∗0)∗10∗

represents the language

({0}∗ • {0})∪
�

{0}∗ • {1} •
�

({1} • {0}∗ • {1})∪ ({0} • {1}∗ • {0})
�∗ • {1} • {0}∗
�

.

or the following equivalent code pattern:

if —————:
print(0)
while —————:

print(0)
else:

while —————:
print(0)

print(1)
while —————:

if —————:
print(1)
while —————:

print(0)
print(1)

else:
print(0)
while —————:

print(1)
print(0)

end if-else
end while
print(1)
while —————:

print(0)
end if-else

4

Models of Computation Lecture 2: Regular Languages [F23]

Most of the time we do not distinguish between regular expressions and the languages they
represent, for the same reason that we do not normally distinguish between the arithmetic
expression “2+ 2” and the integer 4, or the Greek letter π and the area of the unit circle, or
the not-Greek letter ∅ and the empty set. However, we sometimes need to refer to regular
expressions themselves as strings. In those circumstances, we write L(R) to denote the language
represented by the regular expression R. String w matches regular expression R if and only if
w ∈ L(R).

Here are several more examples of regular expressions and the languages they represent.

• 0∗ — the set of all strings of 0s, including the empty string.

• 00000∗ — the set of all strings of 0s whose length is at least 4.

• (00000)∗ — the set of all strings of 0s whose length is a multiple of 5.

• (0+ 1)∗ — the set of all binary strings.

• (ϵ + 1)(01)∗(ϵ + 0)— the set of all strings of alternating 0s and 1s, or equivalently, the set
of all binary strings that do not contain the substrings 00 or 11.

• (0+ 1)∗0000(0+ 1)∗ — the set of all binary strings that contain the substring 0000.

• ((ϵ + 0+ 00+ 000)1)∗(ϵ + 0+ 00+ 000)— the set of all binary strings that do not contain
the substring 0000.

• ((0+ 1)(0+ 1))∗ — the set of all binary strings whose length is even.

• 1∗(01∗01∗)∗ — the set of all binary strings with an even number of 0s.

• 0+ 1(0+ 1)∗00 — the set of all non-negative binary numerals divisible by 4 and with no
redundant leading 0s.

• (0+ 1(01∗0)∗1)∗ — the set of all non-negative binary numerals divisible by 3, possibly with
redundant leading 0s.

The last one should not be obvious, even to experts. It is straightforward, but really tedious,
to prove by induction that every string in (0 + 1(01∗0)∗1)∗ is the binary representation of a
non-negative multiple of 3. It is similarly straightforward, but even more tedious, to prove that
the binary representation of every non-negative multiple of 3 matches this regular expression. In
a later note, we will see a systematic method for deriving regular expressions for some languages
that avoids (or more accurately, automates) this tedium.

Two regular expressions R and R′ are equivalent if they describe the same language. For
example, the regular expressions (0+1)∗ and (1+0)∗ are equivalent, because the union operator
is commutative. More subtly, the regular expressions (0 + 1)∗ and (0∗1∗)∗ and (00 + 01 +
10+ 11)∗(0 + 1 + ϵ) are all equivalent; intuitively, these represent different ways of thinking
about the language of all binary strings {0,1}∗. In fact, almost every regular language can be
represented by infinitely many distinct but equivalent regular expressions, even if we ignore
ultimately trivial equivalences like L = (L∅)∗Lϵ +∅.

5

Models of Computation Lecture 2: Regular Languages [F23]

2.4 Designing Regular Expressions

ÆÆÆ Give some examples of designing regular expressions. Using Arden’s rule? Mirroring DFA construc-
tion? What other general design strategies are there?

• Case analysis: Break the pattern into several cases, and build a regular expression for each
case. For example, we can partition “at most three X’s” into four subcases: no X’s, exactly one
X, exactly two X’s, and exactly three X’s.

• Bottom up: Find simpler subpatterns, build regular expressions for those subpatterns, and
then treat those expressions as new symbols. Common subpatterns include explicit substrings,
arbitrary substrings ((0+ 1)∗), runs (00∗), alternation ((01)∗)

• Top down: Break strings into chunks, build regular expression to describe how those chunks
fit together, and then treats chunks as new symbols.

Whether formally proving a regular expression is correct, or just brainstorming about designing a
regular expression, it’s important to remember that any regular expression for a language L must
be both exhaustive (= matches every string in L) and exclusive (= matches only strings in L). So
test both positive and negative examples; look for boundary cases; break the language into simpler
sublanguages (cases). In short, do all the things you normally do when writing code.

2.5 Things What Ain’t Regular Expressions

Many computing environments and programming languages support patterns called regexen
(singular regex, pluralized like ox) that are considerably more general and powerful than regular
expressions. Regexen include special symbols representing negation, character classes (for
example, upper-case letters, or digits), contiguous ranges of characters, line and word boundaries,
limited repetition (as opposed to the unlimited repetition allowed by ∗), back-references to earlier
subexpressions, and even local variables. Despite its obvious etymology, a regex is not necessarily
a regular expression, and it does not necessarily describe a regular language!3

To avoid any confusion, I strongly recommend considering “regular expression” and “regex”
as names of two completely different things (descended from a common ancestor), and never
using one name to refer to the other thing.

Another type of pattern that is often confused with regular expression are globs, which
are patterns used in most Unix shells and some scripting languages to represent sets of file
names. Globs include symbols for arbitrary single characters (?), single characters from a
specified range ([a-z]), arbitrary substrings (*), and substrings from a specified finite set
({foo,ba{r,z}}). Globs are significantly less powerful than regular expressions.

2.6 Regular Expression Trees

Regular expressions are convenient notational shorthand for a more explicit representation of
regular languages called regular expression trees. A regular expression tree is formally defined
as one of the following:

• A leaf node labeled ∅.

• A leaf node labeled with a string in Σ∗.

• A node labeled + with two children, each of which is the root of a regular expression tree.

3However, regexen are not all-powerful, either; see http://stackoverflow.com/a/1732454/775369.

6

http://stackoverflow.com/a/1732454/775369

Models of Computation Lecture 2: Regular Languages [F23]

• A node labeled • with two children, each of which is the root of a regular expression tree.

• A node labeled ∗ with one child, which is the root of a regular expression tree.

These cases mirror the definition of regular language exactly. A leaf labeled ∅ represents the
empty language; a leaf labeled with a string represents the language containing only that string;
a node labeled + represents the union of the languages represented by its two children; a node
labeled • represents the concatenation of the languages represented by its two children; and a
node labeled ∗ represents the Kleene closure of the languages represented by its child.

+

0

•

0

* •
1 •

+

* •
1

0

*

•
1 •

0

* 1

•
0 •

1

* 0

•

0

*

A regular expression tree for 0∗0+ 0∗1(10∗1+ 01∗0)∗10∗

It’s convenient to define the size of a regular expression to be the number of nodes in its
regular expression tree. The size of a regular expression could be either larger or smaller than its
length as a raw string. On the one hand, concatenation nodes in the tree are not represented by
symbols in the string; on the other hand, parentheses in the string are not represented by nodes
in the tree. For example, the regular expression 0∗0+ 0∗1(10∗1+ 01∗0)∗10∗ has size 29, but the
corresponding raw string 0*0+0*1(10*1+01*0)*10* has length 22.

A subexpression of a regular expression R is another regular expression S whose regular
expression tree is a subtree of some regular expression tree for R. A proper subexpression of R
is any subexpression except R itself. Every subexpression of R is also a substring of R, but not
every substring is a subexpression. For example, the substring 10∗1 is a proper subexpression of
0∗0+0∗1(10∗1+01∗0)∗10∗. However, the substrings 0∗0+0∗1 and 0∗1+01∗ are not subexpressions
of 0∗0+ 0∗1 (10∗1+ 01∗ 0)∗10∗, even though they are well-formed regular expressions.

2.7 Proofs about Regular Expressions

The standard strategy for proving properties of regular expressions, just as for any other recursively
defined structure, to argue inductively on the recursive structure of the expression, rather than
considering the regular expression as a raw string. In fact, it suffices to argue inductively on
the size of the regular expression, which is defined in terms of this recursive structure. If R′ is a
proper subexpression of R, then R′ is smaller than R, but not vice versa.

Induction proofs about regular expressions follow a standard boilerplate that mirrors the
recursive definition of regular languages. Suppose we want to prove that every regular expression
is perfectly cromulent, whatever that means. The white boxes hide additional proof details that,
among other things, depend on the precise definition of “perfectly cromulent”. The boilerplate
structure is longer than the boilerplate for string induction proofs, but don’t be fooled into thinking

7

Models of Computation Lecture 2: Regular Languages [F23]

it’s harder. The five cases in the proof mirror the five cases in the recursive definition of regular
language.

Proof: Let R be an arbitrary regular expression.
Assume that every regular expression smaller than R is perfectly cromulent.
There are five cases to consider.

• Suppose R=∅.

Therefore, R is perfectly cromulent.

• Suppose R is a single string.

Therefore, R is perfectly cromulent.

• Suppose R= S + T for some regular expressions S and T .
The induction hypothesis implies that S and T are perfectly cromulent.

Therefore, R is perfectly cromulent.

• Suppose R= S • T for some regular expressions S and T .
The induction hypothesis implies that S and T are perfectly cromulent.

Therefore, R is perfectly cromulent.

• Suppose R= S∗ for some regular expression. S.
The induction hypothesis implies that S is perfectly cromulent.

Therefore, R is perfectly cromulent.

In all cases, we conclude that w is perfectly cromulent. □

Here is an example of the structural induction boilerplate in action. Again, this proof is longer
than a typical induction proof about strings or integers, but each individual case is still just a
short exercise in definition-chasing.

Lemma 2.4. Every regular expression that does not use the symbol ∅ represents a non-empty
language.

Proof: Let R be an arbitrary regular expression that does not use the symbol ∅. Assume that
every regular expression that is smaller than R and does not use the symbol ∅ represents a
non-empty language. There are five cases to consider, mirroring the definition of R.

• If R=∅, we have a contradiction; we can ignore this case.

• If R is a single string w, then L(R) contains the string w. (In fact, L(R) = {w}.)

• Suppose R= S + T for some regular expressions S and T .
S does not use the symbol ∅, because otherwise R would.

8

Models of Computation Lecture 2: Regular Languages [F23]

Thus, the inductive hypothesis implies that L(S) is non-empty.
Choose an arbitrary string x ∈ L(S).
Then L(R) = L(S + T) = L(S)∪ L(T) also contains the string x .

• Suppose R= S • T for some regular expressions S and T .
Neither S nor T uses the symbol ∅, because otherwise R would.
Thus, the inductive hypothesis implies that both L(S) and L(T) are non-empty.
Choose arbitrary strings x ∈ L(S) and y ∈ L(T).
Then L(R) = L(S • T) = L(S) • L(T) contains the string x y .

• Suppose R= S∗ for some regular expression S.
Then L(R) contains the empty string ϵ.

In every case, we conclude that the language L(R) is non-empty. □

Similarly, most algorithms that accept regular expressions as input actually require regular
expression trees, rather than regular expressions as raw strings. Fortunately, it is possible to parse
any regular expression of length n into an equivalent regular expression tree in O(n) time. (The
details of the parsing algorithm are beyond the scope of this chapter.) Thus, when we see an
algorithmic problem that starts “Given a regular expression. . . ”, we can assume without loss of
generality that we are actually given a regular expression tree.

2.8 Proofs about Regular Languages

The same boilerplate also applies to inductive arguments about properties of regular languages.
Languages themselves are just unadorned sets; they don’t have any recursive structure that we
build an inductive proof around. In particular, proper subsets of an infinite language L are not
necessarily “smaller” than L! Rather than trying to argue directly about an arbitrary regular
language L, we choose an arbitrary regular expression that represents L, and then build our
inductive argument around the recursive structure of that regular expression.

Lemma 2.5. Every non-empty regular language is represented by a regular expression that does
not use the symbol ∅.

Proof: Let R be an arbitrary regular expression; we need to prove that either L(R) = ∅ or
L(R) = L(R′) for some ∅-free regular expression R′. For every regular expression S that is smaller
than R, assume that either L(S) = ∅ or L(S) = L(S′) for some ∅-free regular expression S′.
There are five cases to consider, mirroring the definition of R.

• If R=∅, then L(R) =∅.

• If R is a single string w, then R is already ∅-free.

• Suppose R = S + T for some regular expressions S and T . There are four subcases to
consider:

– If L(S) = L(T) =∅, then L(R) = L(S)∪ L(T) =∅.

– Suppose L(S) ̸= ∅ and L(T) = ∅. The inductive hypothesis implies that there is a
∅-free regular expression S′ such that L(S′) = L(S) = L(S)∪ L(T) = L(R).

9

Models of Computation Lecture 2: Regular Languages [F23]

– Suppose L(S) = ∅ and L(T) ̸= ∅. The inductive hypothesis implies that there is a
∅-free regular expression T ′ such that L(T ′) = L(T) = L(S)∪ L(T) = L(R).

– Finally, suppose L(S) ̸=∅ and L(T) ̸=∅. The inductive hypothesis implies that there
are ∅-free regular expressions S′ and T ′ such that L(S′) = L(S) and L(T ′) = L(T).
The regular expression S′+T ′ is∅-free and L(S′+T ′) = L(S′)∪L(T ′) = L(S)∪L(T) =
L(S + T) = L(R).

• Suppose R = S • T for some regular expressions S and T . There are two subcases to
consider.

– If either L(S) =∅ or L(T) =∅ then L(R) = L(S) • L(T) =∅.
– Otherwise, the inductive hypothesis implies that there are∅-free regular expressions S′

and T ′ such that L(S′) = L(S) and L(T ′) = L(T). The regular expression S′ • T ′ is
∅-free and equivalent to R.

• Suppose R= S∗ for some regular expression S. There are two subcases to consider.

– If L(S) = ∅, then L(R) = ∅∗ = {ϵ}, so R is represented by the ∅-free regular
expression ϵ.

– Otherwise, The inductive hypothesis implies that there is a∅-free regular expression S′

such that L(S′) = L(S). The regular expression (S′)∗ is ∅-free and equivalent to R.

In all cases, either L(R) =∅ or R is equivalent to some ∅-free regular expression R′. □

2.9 Not Every Language is Regular

You may be tempted to conjecture that all languages are regular, but in fact, the following
cardinality argument almost all languages are not regular. To make the argument concrete, let’s
consider languages over the single-symbol alphabet {⋄}.

• Every regular expression over the one-symbol alphabet {⋄} is itself a string over the seven-
symbol alphabet {⋄,+,(,),*, 3,Ø}. By interpreting these symbols as the digits 1 through 7,
we can interpret any string over this larger alphabet as the base-8 representation of some
unique integer. Thus, the set of all regular expressions over {⋄} is at most as large as the
set of integers, and is therefore countably infinite. It follows that the set of all regular
languages over {⋄} is also countably infinite.

• On the other hand, for any real number 0≤ α < 1, we can define a corresponding language

Lα =
�

⋄n
�

� α2n mod 1≥ 1/2
	

.

In other words, Lα contains the string ⋄n if and only if the (n + 1)th bit in the binary
representation of α is equal to 1. For any distinct real numbers α ̸= β , the binary
representations of α and β must differ in some bit, so Lα ̸= Lβ . We conclude that the set
of all languages over {⋄} is at least as large as the set of real numbers between 0 and 1,
and is therefore uncountably infinite.

We will see several explicit examples of non-regular languages in later lectures. In particular, the
set of all regular expressions over the alphabet {0,1} is itself a non-regular language over the
alphabet {0,1,+,(,),*, 3,Ø}!

10

Models of Computation Lecture 2: Regular Languages [F23]

Exercises

1. (a) Prove that ∅ • L = L •∅=∅, for every language L.

(b) Prove that {ϵ} • L = L • {ϵ}= L, for every language L.

(c) Prove that (A• B) • C = A• (B • C), for all languages A, B, and C .

(d) Prove that |A•B| ≤ |A| · |B|, for all languages A and B. (The second · is multiplication!)

i. Describe two languages A and B such that |A• B|< |A| · |B|.
ii. Describe two languages A and B such that |A• B|= |A| · |B|.

(e) Prove that L∗ is finite if and only if L =∅ or L = {ϵ}.

(f) Prove that if A• B = B • C , then A∗ • B = B • C∗ = A∗ • B • C∗, for all languages A, B,
and C .

(g) Prove that (A∪ B)∗ = (A∗ • B∗)∗, for all languages A and B.

2. Recall that the reversal wR of a string w is defined recursively as follows:

wR :=

(

ϵ if w= ϵ

xR • a if w= a · x

The reversal LR of any language L is the set of reversals of all strings in L:

LR :=
�

wR
�

� w ∈ L
	

.

(a) Prove that (A• B)R = BR • AR for all languages A and B.

(b) Prove that (LR)R = L for every language L.

(c) Prove that (L∗)R = (LR)∗ for every language L.

3. Prove that each of the following regular expressions is equivalent to (0+ 1)∗.

(a) ϵ + 0(0+ 1)∗ + 1(1+ 0)∗

(b) 0∗ + 0∗1(0+ 1)∗

(c) ((ϵ + 0)(ϵ + 1))∗

(d) 0∗(10∗)∗

(e) (1∗0)∗(0∗1)∗

4. For each of the following languages in {0,1}∗, describe an equivalent regular expression.
There are infinitely many correct answers for each language. (This problem will become
significantly simpler after we’ve seen finite-state machines.)

(a) Strings that end with the suffix 09 = 000000000.

(b) All strings except 010.

(c) Strings that contain the substring 010.

(d) Strings that contain the subsequence 010.

11

Models of Computation Lecture 2: Regular Languages [F23]

(e) Strings that do not contain the substring 010.
(f) Strings that do not contain the subsequence 010.
(g) Strings that contain an even number of occurrences of the substring 010.
(h) Strings in which each run of 0s has even length. (A run is a maximal substring in

which all symbols are equal. For example, the string 001110000001 consists of four
runs.)

⋆(i) Strings that contain an even number of occurrences of the substring 000.
(j) Strings in which every occurrence of the substring 00 appears before every occurrence

of the substring 11.
(k) Strings w such that in every prefix of w, the number of 0s and the number of 1s differ

by at most 1.
⋆(l) Strings w such that in every prefix of w, the number of 0s and the number of 1s differ

by at most 2.
⋆(m) Strings in which the number of 0s and the number of 1s differ by a multiple of 3.
⋆(n) Strings that contain an even number of 1s and an odd number of 0s.
Æ(o) Strings that represent a number divisible by 5 in binary.

5. For any string w, define stutter(w) as follows:

stutter(w) :=

¨

ϵ if w= ϵ

aa • stutter(x) if w= ax for some symbol a and string x

Let L be an arbitrary regular language.

(a) Prove that the language stutter(L) = {stutter(w) | w ∈ L} is also regular.
⋆(b) Prove that the language stutter−1(L) = {w | stutter(w) ∈ L} is also regular.

(This problem will be easier after the next chapter.)

6. Recall that the reversal wR of a string w is defined recursively as follows:

wR =

¨

ϵ if w= ϵ

x • a if w= ax for some symbol a and some string x

The reversal LR of a language L is defined as the set of reversals of all strings in L:

LR :=
�

wR
�

� w ∈ L
	

(a) Prove that (L∗)R = (LR)∗ for every language L.
(b) Prove that the reversal of any regular language is also a regular language. (You may

assume part (a) even if you haven’t proved it yet.)

You may assume the following facts without proof:

• L∗ • L∗ = L∗ for every language L.

12

Models of Computation Lecture 2: Regular Languages [F23]

• (wR)R = w for every string w.
• (x • y)R = yR • xR for all strings x and y .

[Hint: Yes, all three proofs use induction, but induction on what? And yes, all three
proofs.]

7. This problem considers two special classes of regular expressions.

• A regular expression R is plus-free if and only if it never uses the + operator.

• A regular expression R is top-plus if and only if either

– R is plus-free, or
– R= S + T , where S and T are top-plus.

For example, 1((0∗10)∗1)∗0 is plus-free and (therefore) top-plus; 01∗0+10∗1+ϵ is top-plus
but not plus-free, and 0(0+ 1)∗(1+ ϵ) is neither top-plus nor plus-free.

Recall that two regular expressions R and S are equivalent if they describe exactly the
same language: L(R) = L(S).

(a) Prove that for any top-plus regular expressions R and S, there is a top-plus regular
expression that is equivalent to RS.

(b) Prove that for any top-plus regular expression R, there is a plus-free regular expres-
sion S such that R∗ and S∗ are equivalent.

(c) Prove that for any regular expression, there is an equivalent top-plus regular expres-
sion.

You may assume the following facts without proof, for all regular expressions A, B, and C:

• A(B + C) is equivalent to AB + AC .
• (A+ B)C is equivalent to AC + BC .
• (A+ B)∗ is equivalent to (A∗B∗)∗.

8. (a) Describe and analyze an efficient algorithm to determine, given a regular expression R,
whether L(R) =∅.

(b) Describe and analyze an efficient algorithm to determine, given a regular expression R,
whether L(R) = {ϵ}. [Hint: Use part (a).]

(c) Describe and analyze an efficient algorithm to determine, given a regular expression R,
whether L(R) is finite. [Hint: Use parts (a) and (b).]

In each problem, assume you are given R as a regular expression tree, not just a raw string.

13

	Regular Languages
	Languages
	Building Languages
	Regular Languages and Regular Expressions
	Designing Regular Expressions
	Things What Ain't Regular Expressions
	Regular Expression Trees
	Proofs about Regular Expressions
	Proofs about Regular Languages
	Not Every Language is Regular

