CS/ECE 374 A Lab 12a — November 8 Fall 2023

1. Suppose you are given a magic black box that somehow answers the following decision
problem in polynomial time:

* INPUT: A directed graph G and a positive integer L. (The edges of G are not weighted,
and G is not necessarily a dag.)

* OurpuT: TRUE if G contains a (simple) path of length L, and FALSE otherwise.?

(@) Using this black box as a subroutine, describe algorithms that solves the following
optimization problem in polynomial time:

e INpPUT: A directed graph G.
* OQuTtpuT: The length of the longest path in G.

(b) Using this black box as a subroutine, describe algorithms that solves the following
search problem in polynomial time:

e InpUT: A directed graph G.
* QuTpuUT: The longest path in G

[Hint: You can use the magic box more than once.]

2. An independent set in a graph G is a subset S of the vertices of G, such that no two vertices
in S are connected by an edge in G. Suppose you are given a magic black box that somehow
answers the following decision problem in polynomial time:

* INPUT: An undirected graph G and an integer k.

* QutpuT: TRUE if G has an independent set of size k, and FALSE otherwise.?2

(a) Using this black box as a subroutine, describe algorithms that solves the following
optimization problem in polynomial time:

* INPUT: An undirected graph G.
* OurtpuT: The size of the largest independent set in G.

(b) Using this black box as a subroutine, describe algorithms that solves the following
search problem in polynomial time:

* INPUT: An undirected graph G.

* OQuTprUT: An independent set in G of maximum size.

[Hint: You can use the magic box more than once.]

1You already know how to solve this problem in polynomial time when the input graph G is a dag, but this magic
box works for every input graph.

2]t is not hard to solve this problem in polynomial time via dynamic programming when the input graph G is a
tree, but this magic box works for every input graph.



CS/ECE 374 A Lab 12a — November 8 Fall 2023

To think about later:

3. Formally, a proper coloring of a graph G = (V,E) is a function c¢: V — {1,2,...,k}, for
some integer k, such that c(u) # c(v) for all uv € E. Less formally, a valid coloring assigns
each vertex of G a color, such that every edge in G has endpoints with different colors. The
chromatic number of a graph is the minimum number of colors in a proper coloring of G.

Suppose you are given a magic black box that somehow answers the following decision
problem in polynomial time:

e INPUT: An undirected graph G and an integer k.

e OurtpuT: TRUE if G has a proper coloring with k colors, and FaLsE otherwise.3
Using this black box as a subroutine, describe an algorithm that solves the following
coloring problem in polynomial time:

e InPUT: An undirected graph G.

* OurtpuT: A valid coloring of G using the minimum possible number of colors.

[Hint: You can use the magic box more than once. The input to the magic box is a graph
and only a graph, meaning only vertices and edges. ]

4. Suppose you are given a magic black box that somehow answers the following decision
problem in polynomial time:
* INPUT: A boolean circuit K with n inputs and one output.
* OurtpuT: TRUE if there are input values x;, X, ..., X, € {TRUE, FALSE} that make K

output TRUE, and FALSE otherwise.

Using this black box as a subroutine, describe an algorithm that solves the following related
search problem in polynomial time:

* INPUT: A boolean circuit K with n inputs and one output.

e OurpurT: Input values xq, X, ..., X, € {TRUE, FALSE} that make K output TRUE, or
NonNE if there are no such inputs.

[Hint: You can use the magic box more than once.]

3Again, it is not hard to solve this problem in polynomial time via dynamic programming when the input graph G
is a tree, but this magic box works for every input graph.



