
CS/ECE 374 A = Fall 2023
9 Homework 10 :

Due Tuesday, November 14, 2019 at 9pm

1. This problem asks you to describe polynomial-time reductions between two closely related
problems:

• SubsetSum: Given a set S of positive integers and a target integer T , is there a
subset of S whose sum is T?

• Partition: Given a set S of positive integers, is there a way to partition S into two
subsets S1 and S2 that have the same sum?

(a) Describe a polynomial-time reduction from SubsetSum to Partition.

(b) Describe a polynomial-time reduction from Partition to SubsetSum.

Don’t forget to to prove that your reductions are correct.

2. A subset S of vertices in an undirected graph G is called triangle-free if, for every triple of
vertices u, v, w ∈ S, at least one of the three edges uv, uw, vw is absent from G. Prove that
finding the size of the largest triangle-free subset of vertices in a given undirected graph is
NP-hard.

A triangle-free subset of 7 vertices and its induced edges.
This is not the largest triangle-free subset in this graph.



CS/ECE 374A Homework 10 (due November 14) Fall 2023

Solved Problem

4. RedBlue is a puzzle that consists of an n×m grid of squares, where each square may be
empty, occupied by a red stone, or occupied by a blue stone. The goal of the puzzle is to
remove some of the given stones so that the remaining stones satisfy two conditions:

(1) Every row contains at least one stone.

(2) No column contains stones of both colors.

For some RedBlue puzzles, reaching this goal is impossible; see the example below.

Prove that it is NP-hard to determine whether a given RedBlue puzzle has a solution.

A solvable RedBlue puzzle and one of its many solutions. An unsolvable RedBlue puzzle.

Solution: We show that RedBlue is NP-hard by describing a reduction from 3Sat.

Let Φ be a 3CNF boolean formula with m variables and n clauses. We transform
this formula into a RedBlue instance X in polynomial time as follows. The size of the
board is n×m. The stones are placed as follows, for all indices i and j:

• If the variable x j appears in the ith clause of Φ, we place a blue stone at (i, j).

• If the negated variable x j appears in the ith clause of Φ, we place a red stone at
(i, j).

• Otherwise, we leave cell (i, j) blank.

To prove that RedBlue is NP-hard, it suffices to prove the following claim:

Φ is satisfiable
if and only if

RedBlue puzzle X is solvable.

=⇒ First, suppose Φ is satisfiable; consider an arbitrary satisfying assignment. For
each index j, remove stones from column j according to the value assigned to x j:

– If x j = True, remove all red stones from column j.
– If x j = False, remove all blue stones from column j.

In other words, remove precisely the stones that correspond to False literals.
Because every variable appears in at least one clause, each column now contains
stones of only one color (if any). On the other hand, each clause of Φ must
contain at least one True literal, and thus each row still contains at least one
stone. We conclude that RedBlue puzzle X is solvable.

2



CS/ECE 374A Homework 10 (due November 14) Fall 2023

⇐= On the other hand, suppose RedBlue puzzle X is solvable; consider an arbitrary
solution. For each index j, assign a value to x j depending on the colors of stones
left in column j:

– If column j contains blue stones, set x j = True.
– If column j contains red stones, set x j = False.
– If column j is empty, set x j arbitrarily.

In other words, assign values to the variables so that the literals corresponding
to the remaining stones are all True. Each row still has at least one stone, so
each clause of Φ contains at least one True literal, so this assignment makes
Φ= True. We conclude that Φ is satisfiable.

This reduction clearly requires only polynomial time. ■

Standard NP-hardness rubric. 10 points =

+ 1 point for choosing a reasonable NP-hard problem X to reduce from.
– The Cook-Levin theorem implies that in principle one can prove NP-hardness by reduction

from any NP-complete problem. What we’re looking for here is a problem where a simple
and direct NP-hardness proof seems likely.

– You can use any of the NP-hard problems listed on the next page or in the textbook (except
the one you are trying to prove NP-hard, of course).

+ 2 points for a structurally sound polynomial-time reduction. Specifically, the reduction must:
– take an arbitrary instance of the declared problem X and nothing else as input,
– transform that input into a corresponding instance of Y (the problem we’re trying to prove

NP-hard),
– transform the output of the magic algorithm for Y into a reasonable output for X, and
– run in polynomial time.

(The output transformation is usually trivial.) This is strictly about the structure of the reduction
algorithm, not about its correctness. No credit for the rest of the problem if this is wrong.

+ 2 points for a correct polynomial-time reduction. That is, assuming a black-box algorithm that
solves Y in polynomial time, the proposed reduction actually solves problem X in polynomial
time.

+ 2 points for the “if” proof of correctness. (Every good instance of X is transformed into a good
instance of Y.)

+ 2 points for the “only if” proof of correctness. (Every bad instance of X is transformed into a bad
instance of Y.)

+ 1 point for writing “polynomial time”

• An incorrect but structurally sound polynomial-time reduction that still satisfies half of the
correctness proof is worth at most 6/10.

• A reduction in the wrong direction is worth at most 1/10.

3



CS/ECE 374A Homework 10 (due November 14) Fall 2023

Some useful NP-hard problems. You are welcome to use any of these in your own NP-hardness proofs,
except of course for the specific problem you are trying to prove NP-hard.

CircuitSat: Given a boolean circuit, are there any input values that make the circuit output True?

3Sat: Given a boolean formula in conjunctive normal form, with exactly three distinct literals per clause,
does the formula have a satisfying assignment?

MaxIndependentSet: Given an undirected graph G, what is the size of the largest subset of vertices in G
that have no edges among them?

MaxClique: Given an undirected graph G, what is the size of the largest complete subgraph of G?

MinVertexCover: Given an undirected graph G, what is the size of the smallest subset of vertices that
touch every edge in G?

MinSetCover: Given a collection of subsets S1, S2, . . . , Sm of a set S, what is the size of the smallest
subcollection whose union is S?

MinHittingSet: Given a collection of subsets S1, S2, . . . , Sm of a set S, what is the size of the smallest
subset of S that intersects every subset Si?

3Color: Given an undirected graph G, can its vertices be colored with three colors, so that every edge
touches vertices with two different colors?

ChromaticNumber: Given an undirected graph G, what is the minimum number of colors required to
color its vertices, so that every edge touches vertices with two different colors?

HamiltonianPath: Given graph G (either directed or undirected), is there a path in G that visits every
vertex exactly once?

HamiltonianCycle: Given a graph G (either directed or undirected), is there a cycle in G that visits every
vertex exactly once?

TravelingSalesman: Given a graph G (either directed or undirected) with weighted edges, what is the
minimum total weight of any Hamiltonian path/cycle in G?

LongestPath: Given a graph G (either directed or undirected, possibly with weighted edges), what is the
length of the longest simple path in G?

SteinerTree: Given an undirected graph G with some of the vertices marked, what is the minimum
number of edges in a subtree of G that contains every marked vertex?

SubsetSum: Given a set X of positive integers and an integer k, does X have a subset whose elements
sum to k?

Partition: Given a set X of positive integers, can X be partitioned into two subsets with the same sum?

3Partition: Given a set X of 3n positive integers, can X be partitioned into n three-element subsets, all
with the same sum?

IntegerLinearProgramming: Given a matrix A∈ Zn×d and two vectors b ∈ Zn and c ∈ Zd , compute
max{c · x | Ax ≤ b, x ≥ 0, x ∈ Zd}.

FeasibleILP: Given a matrix A∈ Zn×d and a vector b ∈ Zn, determine whether the set of feasible integer
points max{x ∈ Zd | Ax ≤ b, x ≥ 0} is empty.

Draughts: Given an n× n international draughts configuration, what is the largest number of pieces that
can (and therefore must) be captured in a single move?

SuperMarioBrothers: Given an n× n Super Mario Brothers level, can Mario reach the castle?

4


