
Turing Machines



“Most General” computer? 

• DFA/PDAs are simple models of computation.
– Accept only the regular/CF languages.

• Is there a kind of computer that can accept any
language, or compute any function?

• Recall counting argument:
– { L |  L⊆ {0,1}* }   (just the set of languages)

uncountably infinite

– {P :  P is a finite length computer program} is
countably infinite



Most General Computer

• If not all functions are computable, which are?
• Is there a “most general” model of computer?
• What languages can they recognize?



David Hilbert
• Early 1900s – crisis in math foundations

– attempts to formalize resulted in paradoxes, etc.

• 1920,  Hilbert’s Program:
“mechanize” mathematics

• Finite axioms, inference rules
turn crank, determine truth
needed: axioms consistent & complete



Kurt Gödel

• German logician, at age 25 (1931) proved:
“There are true statements that can’t be proved”  

(i.e., “no” to Hilbert)
• Shook the foundations of

– mathematics
– philosophy
– science
– everything



Alan Turing

• British mathematician
– cryptanalysis during WWII
– arguably, father of AI, Theory
– several books, movies

• Defined “computer”, “program”
and (1936) at age 23 provided foundations for 
investigating fundamental question of what is 
computable, what is not computable. 



• DFA with (infinite) tape.
• One move:   read, write, move, change state.



High-level Goals

• Church-Turing thesis: TMs are the most general 
computing devices. So far no counter example

• Every TM can be represented as a string. Think of 
TM as a program but in a very low-level language.

• Existence of Universal Turing Machine which is 
the model/inspiration for stored program 
computing. UTM can simulate any TM

• Implications for what can be computed and what 
cannot be computed



Formal Definition

M = (Q, Σ, Γ, δ, q0, B, qaccept, qreject), where:
• Q is a finite set of states
• Σ is a finite input alphabet
• δ as defined on next page
• Γ is a finite tape alphabet.  (Σ a subset of Γ)
• q0 is the initial state (in Q)
• B in Γ – Σ is the blank symbol
• qaccept, qreject are unique accept, reject states in Q



Transition Function

δ: Q x Γ  Q  x Γ x {L, R, S} 

current
state

symbol
scanned

new
state

symbol
to write

direction to
move on tape 

δ(q,a) = (p, b, L) 
from state q, on reading a:

go to state p
write b
move head Left  



Graphical Representation

δ(q,a) = (p, b, L) 

Note: we allow δ(q,a) to be undefined for some 
choices of q, a  (in which case, M “crashes”)

q p

a/b, L



ID:  Instantaneous Description

• Contains all necessary information to capture 
“state of the computation”

• Includes
– state q of M
– location of read/write head
– contents of tape from left edge to rightmost 

nonblank (or to head, whichever is rightmost)



ID:  Instantaneous Description

ID:  X1X2...Xi-1 q XiXi+1...Xn (q in Q,  Xi in Γ)



Relation “” on IDs

If  δ(q,Xi) = (p, Y, L), then

X1X2...Xi-1 q XiXi+1...Xn  X1X2...Xi-2 p Xi-1 Y Xi+1 

current ID next ID

If δ(q,Xi) is undefined, then there is no next ID
If M tries to move off left edge, there is no next ID

(in both cases, the machine “crashes”)  



Capturing many moves...

Define * as the reflexive, transitive closure of 

Thus, ID * ID’ iff M, when run from ID, 
necessarily reaches ID’ after some finite 
number of moves.

Initial ID:  q0w    (more often, assume ... $q0w)
Accepting ID:  α1 qaccept α2 for any α1, α2  in Γ*

(reaches the accepting state with any random junk left on the tape)



Definition of Acceptance

M accepts w iff for some α1,α2  in Γ*,
q0w  * α1 qaccept α2

M accepts if at any time it enters the accept state
Regardless of whether or not

it has scanned all of the input
it has moved back and forth many times
it has completely erased or replaced w on the tape

L(M) = {w | M accepts w}



Non-accepting computation

M doesn’t accept w if any of the following occur:
• M enters qreject

• M moves off left edge of tape
• M has no applicable next transition
• M continues computing forever

If M accepts – we can tell: it enters qaccept

If M doesn’t accept – we may not be able to tell
(c.f. “Halting problem” – later)



“Recursive” vs “Recursively Enumerable”
• Recursively Enumerable (r.e.) Languages:

= {L | there is a TM M such that L(M) = L}

• Recursive Languages   (also called “decidable”)
= {L | there is a TM M that halts for all w in Σ* 

and such that  L(M) = L }

Recursive languages:  nice;  run M on w and it will 
eventually enter either qaccept or qreject

R.E. languages: not so nice;  can know if w in L, but not 
necessarily if w is not in L.



Fundamental Questions

• Which languages are R.E.?  
• Which are recursive?
• What is the difference?
• What properties make a language decidable?



Machine accepting {0n1n | n ≥ 1}

mark 
0

accept

find &
mark 1

check
for 1’s

0/0’, R 1/1’, L

0/0, R
1’/1’, R

1’/1’, L
0/0, L

0’/0’, R

blank 

1’/1’, R

1’/1’, R

(This technique is known as “checking off symbols”)

find
next 0



Machine accepting {0n1n | n ≥ 1}

mark 
0

accept

find &
mark 1

check
for 1’s

0/0’, R 1/1’, L

0/0, R
1’/1’, R

1’/1’, L
0/0, L

0’/0’, R

blank 

1’/1’, R

1’/1’, R

(This technique is known as “checking off symbols”)

find
next 0



Machine accepting {anbncn | n ≥ 1}

mark 
a

accept

find &
mark b

find &
mark c

find
next a

check
for b’s

check
for c’s

a/A, R b/B, R c/C, L

a/a, R
B/B, R

b/b, R
C/C, R

C/C, L
b/b, L
B/B, L
a/a, L

A/A, R

C/C, R blank 

B/B, R

B/B, R C/C, R

(This technique is known as “checking off symbols”)



Machine to add two n-bit numbers
(“high-level” description)

• Assume input is $a1a2...an#b1b2...bn

• Pre-process phase
– sweep right, replacing 0 with 0’ and 1 with 1’

• Main loop:
– erase last bit bi, and remember it
– move left to corresponding bit ai

– add the bits, plus carry, overwrite ai with answer
– remember carry, move right to next (last) bit bi-1



$10011#11001
$1’0’0’1’1’#1’1’0’0’1’
$1’0’0’1’1’#1’1’0’0’1’
$1’0’0’1’1’#1’1’0’0’
$1’0’0’1’1’#1’1’0’0’
$1’0’0’1’1’#1’1’0’0’
$1’0’0’1’1’#1’1’0’0’
$1’0’0’1’1’#1’1’0’0’
$1’0’0’1’1’#1’1’0’0’

b = 1
c = 0

$1’0’0’1’0#1’1’0’0’

$1’0’0’1’0#1’1’0’0’

c = 1

$1’0’0’1’0#1’1’0’0’
$1’0’0’1’0#1’1’0’0’
$1’0’0’1’0#1’1’0’0’
$1’0’0’1’0#1’1’0’0’
$1’0’0’1’0#1’1’0’

b = 0
c = 1

$1’0’0’1’0#1’1’0’
$1’0’0’1’0#1’1’0’
$1’0’0’1’0#1’1’0’
$1’0’0’00#1’1’0’
$1’0’0’00#1’1’0’

c = 1

etc

Program Trace (some missing steps)



Some TM programming tricks

• checking off symbols
• shifting over
• using finite control memory
• subroutine calls



“Extensions” of TMs

• 2-way infinite tape
• multiple tracks
• multiple tapes
• multi-dimensional TMs
• nondeterministic TMs
• --- bells & whistles

Goal:  
Convince you of the power of the basic model



“Extensions” of TMs: 2-way infinite tape
. . -5 -4 -3 -2 -1 0 1 2 3 4 5 . .

Simulate with 1-way infinite tape...
0 1 -1 2 -2 3 -3 4 -4 5 -5 6 . . .

Must modify transitions appropriately
• remember in finite control if negative or positive
• if positive,  R  RR; L  LL
• if negative, R  LL; L  RR
• must mark left edge & deal with 0 cell differently



Extension: multiple tracks
0 1 1 0

$ 1 0 0 1

a b b c a a a

2

infinite tape 

M can address any particular track in the cell it is scanning

4 tracks

0

$

a

1

1

b

1

0

b

2

0

0

c

1

a a a

Can simulate 4 tracks with a single track machine, using extra “stacked” characters:

single
character



Multiple tracks
0 1 1 0

$ 1 0 0 1

a b b c a a a

2

infinite tape 

M: δ(q, -,0,-,-) = (p, -,-,-,1, R)   

4 tracks

Then in M’ δ(q,        ) = (p,       ,  R) 
x

0

y

z

x

0

y

1

for every x, y, z in Γ

“If in state q reading 0 on 
second track, then go to 
state p, write 1 on fourth 
track, and move right”



Extension: multiple tapes

k-tape TM
• k different (2-way infinite) tapes
• k different independently controllable heads
• input initially on tape 1;   tapes 2, 3, ..., k, blank.
• single move:

– read symbols under all heads
– print (possibly different) symbols under heads
– move all heads (possibly different directions)
– go to new state



k-tape TM transition function

δ(q,a1, a2,... ak) = (p, b1,b2, ... bk, D1, D2, ... Dk) 

Symbols scanned on 
the k different tapes

Symbols to be written 
on the k different tapes

Directions to be moved 
(Di is one of  L, R, S)

Utility of multiple tapes
makes programming a whole lot easier

$ 1 0 0 1 0 # 1 0 0 1 0

is input string of form w#w ?



Ω(n2) steps provably required

≈ 3n/2 steps easily programmed



Can’t compute more with k tapes 

Theorem:  If L is accepted by a k-tape TM M, 
then L is accepted by some 1-tape TM M’.

Intuition:  M’ uses 2k tracks to simulate M

BUT....
M has k heads!

How can M’ be in 
k places at once?



Snapshot of simulation  (k = 2)

0 1 1 0 1

1 1 1 0 1 0

M

head 1

head 2

0 1 1 0 1
✓

1 1 1 0 1 0
✓

M’

Track 2i-1 holds tape i.    Track 2i holds position of head i



To make a move, M’ does:

Phase 1:  Sweep from leftmost edge to 
rightmost “✓” on any track, noting symbols 
✓’ed, and what track they are on.  Save this 
info in finite control.

Now, M’ knows what move of M to make

Phase 2: Sweep from right to left edge 
implementing the move of M 



Thus, each move of M requires M’ to do a 
complete sweep across, and back.

Not hard to show that if M takes t steps to 
complete its computation, then M’ takes O( ) 
steps.

t2


	Turing Machines
	“Most General” computer? 
	Most General Computer
	David Hilbert
	Kurt Gödel
	Alan Turing
	Slide Number 7
	High-level Goals
	Formal Definition
	Transition Function
	Graphical Representation
	ID:  Instantaneous Description
	ID:  Instantaneous Description
	Relation “” on IDs
	Capturing many moves...
	Definition of Acceptance
	Non-accepting computation
	“Recursive” vs “Recursively Enumerable”
	Fundamental Questions
	Machine accepting {0n1n | n ≥ 1}
	Machine accepting {0n1n | n ≥ 1}
	Machine accepting {anbncn | n ≥ 1}
	Machine to add two n-bit numbers�	(“high-level” description)
	Slide Number 24
	Some TM programming tricks
	“Extensions” of TMs
	“Extensions” of TMs: 2-way infinite tape
	Extension: multiple tracks
	Multiple tracks
	Extension: multiple tapes
	k-tape TM transition function
	Slide Number 41
	Can’t compute more with k tapes 
	Snapshot of simulation  (k = 2)
	To make a move, M’ does:
	Slide Number 45

