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Recap

NP: languages that have non-deterministic polynomial time
algorithms
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NP: languages that have non-deterministic polynomial time
algorithms

A language L is NP-Complete iff
e Lisin NP
o forevery L”in NP, L’ <p L
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o forevery L”in NP, L’ <p L

L is NP-Hard if for every L’ in NP, L’ <p L.
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Recap

NP: languages that have non-deterministic polynomial time
algorithms

A language L is NP-Complete iff
e Lisin NP
o forevery L”in NP, L’ <p L

L is NP-Hard if for every L’ in NP, L’ <p L.

Theorem (Cook-Levin)
SAT is NP-Complete.
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Pictorial View

NP-Hard
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P and NP

Possible scenarios:
© P = NP.
Q@ P #NP
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P and NP

Possible scenarios:
© P = NP.
Q@ P #NP

Question: Suppose P # NP. Is every problem in NP \ P also
NP-Complete?
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P and NP

Possible scenarios:
© P = NP.
Q@ P #NP

Question: Suppose P # NP. Is every problem in NP \ P also
NP-Complete?

Theorem (Ladner)

If P # NP then there is a problem/language X € NP \ P such that
X is not NP-Complete.
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NP-Completeness of three problems:

@ Hamiltonian Cycle
e 3-Color
o Circuit SAT

Important: understanding the problems and that they are hard.

Proofs and reductions will be sketchy and mainly to give a flavor
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Part |

of Hamiltonian

Cycle
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Directed Hamiltonian Cycle

Input Given a directed graph G = (V/, E) with n vertices
Goal Does G have a Hamiltonian cycle?
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Directed Hamiltonian Cycle

Input Given a directed graph G = (V/, E) with n vertices
Goal Does G have a Hamiltonian cycle?

@ A Hamiltonian cycle is a cycle in the graph that
visits every vertex in G exactly once
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Is the following graph Hamiltonianan?

(A) Yes.
(B) No.
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Directed Hamiltonian Cycle is NP-Complete

@ Directed Hamiltonian Cycle is in NP: exercise

@ Hardness: We will show
3-SAT <p Directed Hamiltonian Cycle
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Given 3-SAT formula ¢ create a graph G, such that
@ G, has a Hamiltonian cycle if and only if ¢ is satisfiable

@ G, should be constructible from ¢ by a polynomial time
algorithm A

Notation: ¢ has n variables x1, x2, ..., X, and m clauses
C,GCy...,Ch.
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Reduction: First ldeas

@ Viewing SAT: Assign values to n variables, and each clauses has
3 ways in which it can be satisfied.

@ Construct graph with 2" Hamiltonian cycles, where each cycle
corresponds to some boolean assignment.

@ Then add more graph structure to encode constraints on
assignments imposed by the clauses.
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The Reduction: Phase |

@ Traverse path i from left to right iff x; is set to true
e Each path has 3(m + 1) nodes where m is number of clauses in
; nodes numbered from left to right (1 to 3m + 3)
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The Reduction: Phase Il

@ Add vertex ¢; for clause C;. ¢ has edge from vertex 3j and to
vertex 3j + 1 on path i if x; appears in clause C;, and has edge
from vertex 3j + 1 and to vertex 3j if —x; appears in C;.

1V x2 V Ty |—|l‘1\/—|l‘2V—|.’L‘3 |
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The Reduction: Phase Il

@ Add vertex ¢; for clause C;. ¢ has edge from vertex 3j and to
vertex 3j + 1 on path i if x; appears in clause C;, and has edge
from vertex 3j + 1 and to vertex 3j if —x; appears in C;.

~
~

x1 VoV xy

|—|l‘1 V o V 3 |

———

I

X2

X3

Xyq

O: C. Chekuri. U: R. Mehta (UIUC)

Spring 2020



The Reduction: Phase Il

@ Add vertex ¢; for clause C;. ¢ has edge from vertex 3j and to
vertex 3j + 1 on path i if x; appears in clause C;, and has edge
from vertex 3j + 1 and to vertex 3j if —x; appears in C;.
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The Reduction: Phase Il

@ Add vertex ¢; for clause C;. ¢ has edge from vertex 3j and to
vertex 3j + 1 on path i if x; appears in clause C;, and has edge
from vertex 3j + 1 and to vertex 3j if —x; appears in C;.
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The Reduction: Phase Il

@ Add vertex ¢; for clause C;. ¢ has edge from vertex 3j and to
vertex 3j + 1 on path i if x; appears in clause C;, and has edge
from vertex 3j + 1 and to vertex 3j if —x; appears in C;.
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The Reduction: Phase Il

@ Add vertex ¢; for clause C;. ¢ has edge from vertex 3j and to
vertex 3j + 1 on path i if x; appears in clause C;, and has edge
from vertex 3j + 1 and to vertex 3j if —x; appears in C;.
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The Reduction: Phase Il

@ Add vertex ¢; for clause C;. ¢ has edge from vertex 3j and to
vertex 3j + 1 on path i if x; appears in clause C;, and has edge
from vertex 3j + 1 and to vertex 3j if —x; appears in C;.

1V x2 V Ty |—|l‘1\/—|l‘2V—|.’L‘3 |
O
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Correctness Proof

Proposition
@ has a satisfying assignment iff G, has a Hamiltonian cycle.

Proof.

=> Let a be the satisfying assignment for . Define Hamiltonian
cycle as follows

o If a(x;) = 1 then traverse path i from left to right

o If a(x;) = 0 then traverse path i from right to left

o For each clause, path of at least one variable is in the “right”
direction to splice in the node corresponding to clause O

v
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Hamiltonian Cycle = Satisfying assignment

Suppose I is a Hamiltonian cycle in G,

o If M enters ¢; (vertex for clause C;) from vertex 3j on path i
then it must leave the clause vertex on edge to 35 + 1 on the
same path i

e If not, then only unvisited neighbor of 3j 4+ 1 on path i is 3j + 2
e Thus, we don't have two unvisited neighbors (one to enter
from, and the other to leave) to have a Hamiltonian Cycle

o Similarly, if I enters ¢j from vertex 3j 4+ 1 on path i then it
must leave the clause vertex c; on edge to 3j on path i
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Hamiltonian Cycle == Satisfying assignment

(contd)

@ Thus, vertices visited immediately before and after C; are
connected by an edge

@ We can remove ¢; from cycle, and get Hamiltonian cycle in
G — (o

o Consider Hamiltonian cycle in G — {c1,...Cn}; it traverses

each path in only one direction, which determines the truth
assignment
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Hamiltonian Cycle

Problem
Input Given undirected graph G = (V, E)
Goal Does G have a Hamiltonian cycle? That is, is there a
cycle that visits every vertex exactly one (except start
and end vertex)?

Spring 2020 18 / 59
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NP-Completeness

Hamiltonian cycle problem for undirected graphs is
NP-Complete.

@ The problem is in NP; proof left as exercise.

@ Hardness proved by reducing Directed Hamiltonian Cycle to this
problem H
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Reduction Sketch

Goal: Given directed graph G, need to construct undirected graph
G’ such that G has Hamiltonian Path iff G’ has Hamiltonian path

Reduction
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Reduction Sketch

Goal: Given directed graph G, need to construct undirected graph
G’ such that G has Hamiltonian Path iff G’ has Hamiltonian path

Reduction
@ Replace each vertex v by 3 vertices: vj,, v, and Vou:

(@ (©
(V)
(b) €)
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Reduction Sketch

Goal: Given directed graph G, need to construct undirected graph
G’ such that G has Hamiltonian Path iff G’ has Hamiltonian path

Reduction
@ Replace each vertex v by 3 vertices: vj,, v, and Vou:

o A directed edge (a, b) is replaced by edge (@out, bin)

(@ (©
(V)
(b) €)
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Reduction Sketch

Goal: Given directed graph G, need to construct undirected graph
G’ such that G has Hamiltonian Path iff G’ has Hamiltonian path

Reduction
@ Replace each vertex v by 3 vertices: vj,, v, and Vou:

o A directed edge (a, b) is replaced by edge (@out, bin)

(@ (© @)
(V) V—v)—o
(b) €) b9
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Reduction: Wrapup

@ The reduction is polynomial time (exercise)

@ The reduction is correct (exercise)
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Hamiltonian Path

Input Given a graph G = (V, E) with n vertices
Goal Does G have a Hamiltonian path?

@ A Hamiltonian path is a path in the graph that
visits every vertex in G exactly once
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Hamiltonian Path

Input Given a graph G = (V, E) with n vertices
Goal Does G have a Hamiltonian path?

@ A Hamiltonian path is a path in the graph that
visits every vertex in G exactly once

Directed Hamiltonian Path and Undirected Hamiltonian Path
are NP-Complete.
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Part 1l

of Graph

Coloring
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Graph Coloring

Problem: Graph Coloring

Instance: G = (V, E): Undirected graph, integer k.
Question: Can the vertices of the graph be colored
using k colors so that vertices connected by an edge do
not get the same color?
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Graph 3-Coloring

Problem: 3 Coloring

Instance: G = (V, E): Undirected graph.

Question: Can the vertices of the graph be colored
using 3 colors so that vertices connected by an edge do
not get the same color?
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Graph 3-Coloring

Problem: 3 Coloring

Instance: G = (V, E): Undirected graph.

Question: Can the vertices of the graph be colored
using 3 colors so that vertices connected by an edge do
not get the same color?
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Graph Coloring

Observation: If G is colored with k colors then each color class
(nodes of same color) form an independent set in G. Thus, G can be
partitioned into k independent sets iff G is k-colorable.
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Graph Coloring

Observation: If G is colored with k colors then each color class
(nodes of same color) form an independent set in G. Thus, G can be
partitioned into k independent sets iff G is k-colorable.

Graph 2-Coloring can be decided in polynomial time.
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Graph Coloring

Observation: If G is colored with k colors then each color class
(nodes of same color) form an independent set in G. Thus, G can be
partitioned into k independent sets iff G is k-colorable.

Graph 2-Coloring can be decided in polynomial time.

G is 2-colorable iff G is bipartite!
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Graph Coloring

Observation: If G is colored with k colors then each color class
(nodes of same color) form an independent set in G. Thus, G can be
partitioned into k independent sets iff G is k-colorable.

Graph 2-Coloring can be decided in polynomial time.

G is 2-colorable iff G is bipartite! There is a linear time algorithm to
check if G is bipartite using BFS
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Graph Coloring and Register Allocation

Register Allocation

Assign variables to (at most) k registers such that variables needed
at the same time are not assigned to the same register

v

Interference Graph

Vertices are variables, and there is an edge between two vertices, if
the two variables are “live” at the same time.

4

@ [Chaitin] Register allocation problem is equivalent to coloring the
interference graph with k colors

@ Moreover, 3-COLOR <p k-Register Allocation, for any
k>3
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Class Room Scheduling

Given n classes and their meeting times, are k rooms sufficient?
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Class Room Scheduling

Given n classes and their meeting times, are k rooms sufficient?
Reduce to Graph k-Coloring problem

Create graph G
@ a node v; for each class i

@ an edge between v; and v; if classes i and j conflict

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 Spring 2020 28 / 59



Class Room Scheduling

Given n classes and their meeting times, are k rooms sufficient?
Reduce to Graph k-Coloring problem

Create graph G
@ a node v; for each class i

@ an edge between v; and v; if classes i and j conflict

Exercise: G is k-colorable iff k rooms are sufficient
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Frequency Assignments in Cellular Networks

Cellular telephone systems that use Frequency Division Multiple
Access (FDMA) (example: GSM in Europe and Asia and AT&T in
USA)
@ Breakup a frequency range [a, b] into disjoint bands of
frequencies [ag, bo], [a1, b1], - - -, [3k, bk]
@ Each cell phone tower (simplifying) gets one band
o Constraint: nearby towers cannot be assigned same band,
otherwise signals will interference
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Frequency Assignments in Cellular Networks

Cellular telephone systems that use Frequency Division Multiple
Access (FDMA) (example: GSM in Europe and Asia and AT&T in
USA)

@ Breakup a frequency range [a, b] into disjoint bands of
frequencies [ag, bo], [a1, b1], - - -, [3k, bk]

@ Each cell phone tower (simplifying) gets one band

o Constraint: nearby towers cannot be assigned same band,
otherwise signals will interference

Problem: given k bands and some region with n towers, is there a
way to assign the bands to avoid interference?

Can reduce to k-coloring by creating intereference/conflict graph on
towers.
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3 color this gadget.

You are given three colors: red, green and blue. Can the following
graph be three colored in a valid way (assuming that some of the
nodes are already colored as indicated).

(A) Yes.
(B) No.
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3 color this gadget Il

You are given three colors: red, green and blue. Can the following
graph be three colored in a valid way (assuming that some of the
nodes are already colored as indicated).

(A) Yes.
(B) No.
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3-Coloring is NP-Complete

@ 3-Coloring is in NP.

o Non-deterministically guess a 3-coloring for each node
o Check if for each edge (u, v), the color of u is different from
that of v.

o Hardness: We will show 3-SAT <p 3-Coloring.
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Reduction Idea

Start with 3SAT formula (i.e., 3CNF formula) ¢ with n variables

X1y ...y Xnp and m clauses Cy, ..., Cy,. Create graph G, such that
G, is 3-colorable iff ¢ is satisfiable

@ need to establish truth assignment for xy, ..., X, via colors for
some nodes in G,,.
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X1y ...y Xnp and m clauses Cy, ..., Cy,. Create graph G, such that
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@ need to establish truth assignment for xy, ..., X, via colors for
some nodes in G,,.

@ create triangle with node True, False, Base
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Reduction Idea

Start with 3SAT formula (i.e., 3CNF formula) ¢ with n variables

X1y ...y Xnp and m clauses Cy, ..., Cy,. Create graph G, such that
G, is 3-colorable iff ¢ is satisfiable

@ need to establish truth assignment for xy, ..., X, via colors for
some nodes in G,,.

@ create triangle with node True, False, Base

e for each variable x; two nodes v; and Vv; connected in a triangle
with common Base
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Reduction Idea

Start with 3SAT formula (i.e., 3CNF formula) ¢ with n variables

X1y ...y Xnp and m clauses Cy, ..., Cy,. Create graph G, such that
G, is 3-colorable iff ¢ is satisfiable

@ need to establish truth assignment for xy, ..., X, via colors for
some nodes in G,,.

@ create triangle with node True, False, Base

e for each variable x; two nodes v; and Vv; connected in a triangle
with common Base

o If graph is 3-colored, either v; or v; gets the same color as True.
Interpret this as a truth assignment to v;
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Reduction Idea

Start with 3SAT formula (i.e., 3CNF formula) ¢ with n variables

X1y ...y Xnp and m clauses Cy, ..., Cy,. Create graph G, such that
G, is 3-colorable iff ¢ is satisfiable

@ need to establish truth assignment for xy, ..., X, via colors for
some nodes in G,,.
@ create triangle with node True, False, Base

e for each variable x; two nodes v; and Vv; connected in a triangle
with common Base

o If graph is 3-colored, either v; or v; gets the same color as True.
Interpret this as a truth assignment to v;

@ Need to add constraints to ensure clauses are satisfied (next
phase)
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Clause Satisfiability Gadget

For each clause C; = (a VvV b V c), create a small gadget graph
@ gadget graph connects to nodes corresponding to a, b, ¢
@ needs to implement OR

OR-gadget-graph:

aVbVe
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OR-Gadget Graph

Property: if a, b, ¢ are colored False in a 3-coloring then output node
of OR-gadget has to be colored False.

Property: if one of a, b, c is colored True then OR-gadget can be
3-colored such that output node of OR-gadget is colored True.
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@ create triangle with nodes True, False, Base

e for each variable x; two nodes v; and V; connected in a triangle
with common Base

e for each clause C; = (aV bV c), add OR-gadget graph with
input nodes a, b, c and connect output node of gadget to both
False and Base
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No legal 3-coloring of above graph (with coloring of nodes T, F, B
fixed) in which a, b, c are colored False. If any of a, b, c are colored
True then there is a legal 3-coloring of above graph.
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3 coloring of the clause gadget

OO
w—)
oe® P
© ©)
FFF - BAD
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Reduction Outline

p=(UuV-vVw)A(vVxV-y)
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Correctness of Reduction

@ is satisfiable implies G,, is 3-colorable

o if x; is assigned True, color v; True and v; False
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Correctness of Reduction

@ is satisfiable implies G,, is 3-colorable
o if x; is assigned True, color v; True and v; False

o for each clause C; = (a VvV bV c) at least one of a, b, c is
colored True. OR-gadget for C; can be 3-colored such that
output is True.

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 Spring 2020 41 /59



Correctness of Reduction

@ is satisfiable implies G,, is 3-colorable
o if x; is assigned True, color v; True and v; False

o for each clause C; = (a VvV bV c) at least one of a, b, c is
colored True. OR-gadget for C; can be 3-colored such that
output is True.

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 Spring 2020 41 /59



Correctness of Reduction

@ is satisfiable implies G,, is 3-colorable
o if x; is assigned True, color v; True and v; False

o for each clause C; = (a VvV bV c) at least one of a, b, c is
colored True. OR-gadget for C; can be 3-colored such that
output is True.

G, is 3-colorable implies ¢ is satisfiable

o if v; is colored True then set x; to be True, this is a legal truth
assignment
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Correctness of Reduction

@ is satisfiable implies G,, is 3-colorable
o if x; is assigned True, color v; True and v; False
o for each clause C; = (a VvV bV c) at least one of a, b, c is
colored True. OR-gadget for C; can be 3-colored such that
output is True.

G, is 3-colorable implies ¢ is satisfiable
o if v; is colored True then set x; to be True, this is a legal truth
assignment
e consider any clause C; = (a V b V c). it cannot be that all
a, b, c are False. If so, output of OR-gadget for C; has to be
colored False but output is connected to Base and False!
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Graph generated in reduction...
... from 3SAT to 3COLOR
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Part |lI

Circuit SAT
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Circuits

A circuit is a directed acyclic graph with

@ Input vertices (without
incoming edges) labelled with
0, 1 or a distinct variable.

© Every other vertex is labelled
V, A\ or .

© Single node output vertex
with no outgoing edges.
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Circuits

A circuit is a directed acyclic graph with

Output: (A) @ Input vertices (without

incoming edges) labelled with
0, 1 or a distinct variable.

© Every other vertex is labelled
V, A\ or .

© Single node output vertex
with no outgoing edges.
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CSAT: Circuit Satisfaction

Definition (Circuit Satisfaction ( )-)

Given a circuit as input, is there an assignment to the input variables
that causes the output to get value 17
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CSAT: Circuit Satisfaction

Definition (Circuit Satisfaction ( )-)

Given a circuit as input, is there an assignment to the input variables
that causes the output to get value 17

CSAT /s in NP. l

@ Certificate: Assignment to input variables.

@ Certifier: Evaluate the value of each gate in a topological sort of
DAG and check the output gate value.
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Circuit SAT vs SAT

CNF formulas are a rather restricted form of Boolean formulas.

Circuits are a much more powerful (and hence easier) way to express
Boolean formulas
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Circuit SAT vs SAT

CNF formulas are a rather restricted form of Boolean formulas.

Circuits are a much more powerful (and hence easier) way to express
Boolean formulas

However they are equivalent in terms of polynomial-time solvability.

CSAT <, SAT <p 3SAT.

SAT <p 3SAT <p CSAT. l
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Converting a CNF formula into a Circuit

Given 3CNF formulat ¢ with n variables and m clauses, create a
Circuit C.

@ Inputs to C are the n boolean variables x;, x2, ..., X,
@ Use NOT gate to generate literal —x; for each variable x;

@ For each clause (¢1 V £; V £3) use two OR gates to mimic
formula

@ Combine the outputs for the clauses using AND gates to obtain
the final output

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 Spring 2020 47 / 59



Y= <x1 VvV Vx3V X4> VAN <x1 V —xy V —|X3> AN <ﬂxz V —x3 V x4>
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Converting a circuit into a CNF' formula

Label the nodes

Output:

Inputs Inputs

(A) Input circuit (B) Label the nodes.

O: C. Chekuri. U: R. Mehta (UIUC) CS/ECE 374 Spring 2020

49 / 59



Converting a circuit into a CNF' formula

Introduce a variable for each node

Output:

Inputs Inputs

(B) Label the nodes. (C) Introduce var for each node.
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Converting a circuit into a CNF' formula

Write a sub-formula for each variable that is true if the var is computed correctly.

Inputs

(C) Introduce var for each node.
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CS/ECE 374

Xk (Demand a sat’ assignment!)
Xk = Xi N\ Xj

Xj = Xg N\ Xp

Xi = TXf

Xp = Xd V Xe

Xg = Xp V Xc

Xf = Xa \ Xp

Xd = 0

X, =1

(D) Write a sub-formula for
each variable that is true if the
var is computed correctly.
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Converting a circuit into a CNF' formula

Convert each sub-formula to an equivalent CNF formula

Xk Xk
Xk = Xi N\ Xj (—|xk Vv X,-) VAN (—|xk Vv Xj) VAN (Xk V —x; V ﬂXj)
Xj = Xg \ Xp (ﬂXj Vv Xg) AN (—IXJ' Vv Xh) AN (Xj V xg V —IXh)
Xj = —Xf (xi V x¢) A (51X V —xr)
Xh =Xd V Xe || (X0 V 2x4) A (X0 V 2%xe) A (Xn V Xa V Xe)
Xg =XpV Xc || (Xg V xp) A (Xg V Xc) A (—Xg V Xp V Xc)
xr=Xa A Xp || (5xrV xa) A (0xr V xp) A (X V 21X V —1Xp)
Xd = 0 I Xd

X, =1 Xa
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Converting a circuit into a CNF' formula

Take the conjunction of all the CNF sub-formulas

Xk N\ (ﬁXk Vv X,') VAN (—|Xk Vv Xj)
A (X V=XV =x;) A (5x5V Xg)
A (—x; V xp) A (X V —xg V 1xp)
VAN (X,' Vv Xf) AN (—|x,- Vv _|Xf)

VAN (XI-, Vv —|Xd) AN (Xh Vv —|Xe)

A (—xn V Xg V Xe) A (Xg V —1xp)
A(Xg V —xc) A (mxg V Xp V Xc)
VAN (_|Xf Vv Xa) VAN (—le \Y Xb)

A (xFV X2V oxp) A (—Xa) A X,

We got a CNF formula that is satisfiable if and only if the original
circuit is satisfiable.
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Reduction: CSAT <p SAT

@ For each gate (vertex) v in the circuit, create a variable x,

@ Case —: v is labeled = and has one incoming edge from u (so
X, = —X,). In SAT formula generate, add clauses (x, V x,),
(—xu V —x,). Observe that

(x4 V x,)

(=% V —x0) both true.

X, = X, IS true <—
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Reduction: CSAT <p SAT

Continued...

Q@ Case V: So x, = x, V xy. In SAT formula generated, add
clauses (x, V =xy), (x, V =xy), and (—x, V X, V xy). Again,
observe that

(xv V —xy),
<x., =x, V xw> is true <— (xv V —xu), all true.
(—x, V x4 V xy)
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Reduction: CSAT <p SAT

Continued...

@ Case A: So x, = x4 A Xy. In SAT formula generated, add
clauses (—x, V x,), (—x, V x4), and (x, V =x, V —x,).
Again observe that

(—x V xu),
Xy = X, N\ X, IS true  <—> (—x V xu), all true.
(xv V —xy V 2xy)
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Reduction: CSAT <p SAT

Continued...

@ If v is an input gate with a fixed value then we do the following.
If x, = 1 add clause x,. If x, = 0 add clause —x,

© Add the clause x, where v is the variable for the output gate
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Correctness of Reduction

Need to show circuit C is satisfiable iff ¢ is satisfiable
=> Consider a satisfying assignment a for C

@ Find values of all gates in C under a
@ Give value of gate v to variable x,; call this assignment a’
@ a’ satisfies ¢ (exercise)

< Consider a satisfying assignment a for ¢

@ Let a’ be the restriction of a to only the input variables
® Value of gate v under a’ is the same as value of x, in a
© Thus, a’ satisfies C
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List of NP-Complete Problems to Remember

SAT

3SAT
CircuitSAT
Independent Set

Clique
Vertex Cover

Hamilton Cycle and Hamilton Path in both directed and
undirected graphs

@ 3Color and Color

000000
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