
Solutions for Discussion 07b: Mar 4 (Fri) Version: 1.0 CS/ECE 374 A, Spring 2022

Describe and analyze dynamic programming algorithms for the following problems. Use the backtracking
algorithms you developed on Wednesday.

1 Given an array A[1 .. n] of integers, compute the length of a longest increasing subsequence of A.

Solution:

[two parameters] Add a sentinel value A[0] = −∞. Let LIS (i, j) denote the length of the longest
increasing subsequence of A[j . . n] where every element is larger than A[i]. This function obeys the
following recurrence:

LIS (i, j) =


0 if j > n

LIS (i, j + 1) if j ≤ n and A[i] ≥ A[j]

max {LIS (i, j + 1), 1 + LIS (j, j + 1)} otherwise

We need to compute LIS (0, 1).

We can memoize the function LIS into an array LIS [0 . . n, 1 . . n + 1]. Each entry LIS [i, j] depends
only on entries in the next column LIS [·, j + 1], so we can �ll the array in reverse column-major order,
scanning right to left in the outer loop, and bottom to top in the inner loop.

LIS(A[1 .. n]):

A[0]← −∞ Add a sentinel

for i← 0 to n Base cases

LIS [i, n+ 1]← 0

for j ← n down to 1
for i← j − 1 down to 0

if A[i] ≥ A[j]
LIS [i, j]← LIS [i, j + 1]

else
LIS [i, j]← max

{
LIS [i, j + 1], 1 + LIS [j, j + 1]

}
return LIS [0, 1]

The resulting algorithm runs in O(n2) time .

Solution:

[one parameter] Add a sentinel value A[0] = −∞. Let LIS (i) denote the length of the longest increasing
subsequence of A[i . . n] that begins with A[i]. This function obeys the following recurrence:

LIS (i) = 1 +max
{
LIS (j)

∣∣ j > i and A[j] > A[i]
}

(Here we de�ne max∅ = 0 so that the base cases are correct.) We need to compute LIS (0)− 1.

We can memoize the function LIS into a one-dimensional array, which we can �ll in reverse order as
follows:

1



LIS(A[1 .. n]):

A[0] = −∞ Add a sentinel

for i← n downto 0
LIS [i]← 1
for j ← i+ 1 to n

if A[j] > A[i] and 1 + LIS [j] > LIS [i]
LIS [i]← 1 + LIS [j]

return LIS [0]− 1 Don't count the sentinel

The resulting algorithm runs in O(n2) time .

2 Given an array A[1 .. n] of integers, compute the length of a longest decreasing subsequence of A.

Solution:

[two parameters] Add a sentinel value A[0] =∞. Let LIS(i, j) denote the length of the longest decreasing
subsequence of A[j . . n] where every element is smaller than A[i]. This function obeys the following
recurrence:

LDS (i, j) =


0 if j > n

LDS (i, j + 1) if j ≤ n and A[i] ≤ A[j]

max {LDS (i, j + 1), 1 + LDS (j, j + 1)} otherwise

We need to compute LDS (0, 1).

We can memoize the function LDS into an array LDS [0 . . n, 1 . . n+ 1]. Each entry LDS [i, j] depends
only on entries in the next column LDS [·, j+1], so we can �ll the array in reverse column-major order,
scanning right to left in the outer loop, and bottom to top in the inner loop.

LDS(A[1 .. n]):

A[0]← −∞ Add a sentinel

for i← 0 to n Base cases

LDS [i, n+ 1]← 0

for j ← n down to 1
for i← j − 1 down to 0

if A[i] ≤ A[j]
LDS [i, j]← LDS [i, j + 1]

else
LDS [i, j]← max

{
LDS [i, j + 1], 1 + LDS [j, j + 1]

}
return LDS [0, 1]

The resulting algorithm runs in O(n2) time .

Solution:

[clever] The following algorithm runs in O(n2) time .

LDS(A[1 . . n]):

for i← 1 to n
Z[i]← −A[i]

return LIS(Z)

2



Here LIS is the longest-increasing-subsequence algorithm we developed for problem 1.

3 Given an array A[1 .. n] of integers, compute the length of a longest alternating subsequence of A.

Solution:

We de�ne two functions:

� Let LAS+(i, j) denote the length of the longest alternating subsequence of A[j . . n] whose �rst
element (if any) is larger than A[i] and whose second element (if any) is smaller than its �rst.

� Let LAS−(i, j) denote the length of the longest alternating subsequence of A[j . . n] whose �rst
element (if any) is smaller than A[i] and whose second element (if any) is larger than its �rst.

These two functions satisfy the following mutual recurrences:

LAS+(i, j) =


0 if j > n

LAS+(i, j + 1) if j ≤ n and A[j] ≤ A[i]

max
{
LAS+(i, j + 1), 1 + LAS−(j, j + 1)

}
otherwise

LAS−(i, j) =


0 if j > n

LAS−(i, j + 1) if j ≤ n and A[j] ≥ A[i]

max
{
LAS−(i, j + 1), 1 + LAS+(j, j + 1)

}
otherwise

The length of the longest alternating subsequence is

max
j

max
{
1 + LAS+(j, j + 1), 1 + LAS−(j, j + 1)

}
.

Here j is the index of the �rst entry in the longest alternating subsequence.

We can memoize these functions into two-dimensional arrays LAS+[0 . . n, 1 . . n+ 1] and LAS−[0 . . n,
1 . . n+ 1]. Each entry LAS±[i, j] depends only on entries in the next column of either the same array
or the other array. So we can �ll both arrays in parallel, scanning right to left in the outer loop, and
bottom to top in the inner loop.

LAS(A[1 .. n]):

for i← 0 to n Base cases

LAS+[i, n+ 1]← 0
LAS−[i, n+ 1]← 0

for j ← n down to 1
for i← j − 1 down to 1

LAS+[i, j]← LAS+[i, j + 1]
LAS−[i, j]← LAS−[i, j + 1]
if A[i] < A[j]

LAS+[i, j]← max
{
LAS+[i, j], 1 + LAS−[j, j + 1]

}
if A[i] > A[j]

LAS−[i, j]← max
{
LAS−[i, j], 1 + LAS+[j, j + 1]

}
`← 0
for j ← 1 to n
`← max

{
`, 1 + LAS+[j, j + 1], 1 + LAS−[j, j + 1]

}
return `

The resulting algorithm runs in O(n2) time .

3



Solution:

[greedy] The following greedy algorithm computes the length of the longest alternating subsequence in
O(n) time .

GreedyLAS(A[1 . . n]):

Elide runs of the same element

m← 1
B[1]← A[1]
for i← 2 to n
if A[i] 6= B[m]

m← m+ 1
B[m]← A[i]

Count local extrema

`← 2
for i← 2 to m− 1
if B[i] < min {B[i− 1], B[i+ 1]} or B[i] > max {B[i− 1], B[i+ 1]}

`← `+ 1

return `

We need to prove that this greedy algorithm is correct. (Greedy algorithms always require a proof
of correctness, even on exams, because greedy algorithms without proofs are almost always incorrect.
Greedy algorithms without proofs will receive zero credit, even if they are correct. Premature opti-
mization is the root of all evil!) Assume without loss of generality that A[i] 6= A[i + 1] for all i; any
alternating subsequence contains at most one element from any run of equal values.

Let 1 = x1 < x2 < x3 < · · · < x` = n be the indices of all local minima and local maxima of A; these
are the elements counted in the �nal for-loop of GreedyLAS. The following claim immediately implies
that no alternating subsequence of A has length greater than `.

Claim 0.1. For any alternating subsequence S of A, there is an alternating subsequence of A with the

same length as S, in which every element is a local extremum of A.

Proof: The local extrema A[xj ] divide A into `−1 contiguous blocks Aj = A[xj−1 . . xj ], which overlap
at their endpoints and which alternate between increasing and decreasing.

Let S be an arbitrary subsequence of A. For each index j from 1 to `, we modify S as follows to
obtain a new alternating subsequence with the same length as S. Assume without loss of generality
that A[xj−1] < A[xj ]; the other case is symmetric.

� If S contains no elements of block Aj , there is nothing to do.

� Suppose S contains exactly one element of Aj . If that element is a local maximum of S, replace it
with A[xj ]. Similarly, if that element is a local minimum of S, replace it with A[xj−1].

� Suppose S contains exactly two elements of Aj ; the �rst must be a local minimum of S and the
second must be a local maximum of S. Replace those two elements with A[xj−1] and A[xj ].

� S cannot contain more than two elements of Aj , because S is alternating.

After performing this modi�cation inside every block, S contains only local extrema of A, as required.

4 Given an array A[1 .. n] of integers, compute the length of a longest convex subsequence of A.

4



Solution:

Let LCS(i, j) denote the length of the longest convex subsequence of A[i . . n] whose �rst two elements
are A[i] and A[j]. This function obeys the following recurrence:

LCS(i, j) = 1 +max
{
LCS(j, k)

∣∣ j < k ≤ n and A[i] +A[k] > 2A[j]
}

Here we de�ne max∅ = 0; this gives us a working base case. The length of the longest convex
subsequence is max1≤i<j≤n LCS(i, j).

We can memoize the function LCS into a two-dimensional array, which we can �ll in reverse row-major
order in O(n3) time as follows:

LCS(A[1 . . n]):

`← 0
for i← n− 1 down to 1
for j ← n down to i+ 1

LCS[i, j]← 1

for k ← j + 1 to n
if A[i] +A[k] > 2A[j]

LCS[i, j]← max {LCS[i, j], 1 + LCS[j, k]}
`← max {`, LCS[i, j]}

return `

5 Given an array A[1 .. n], compute the length of a longest palindrome subsequence of A.

Solution:

[recursive brute force] Let LPS(i, j) denote the length of the longest palindrome subsequence of A[i . . j].
This function obeys the following recurrence:

LPS(i, j) =



0 if i > j

1 if i = j

max

{
LPS(i+ 1, j)

LPS(i, j − 1)

}
if i < j and A[i] 6= A[j]

max


2 + LPS(i+ 1, j − 1)

LPS(i+ 1, j)

LPS(i, j − 1)

 otherwise

We need to compute LPS(1, n).

We can memoize the function LPS into a two-dimensional array. Each entry depends on the LPS[i, j]
depends on (at most) three entries LPS[i+ 1, j], LPS[i, j − 1], and LPS[i+ 1, j − 1] immediately below
and/or to the left. Thus, we can �ll the array from bottom to top in the outer loop, and from left to
right in inner loop, as follows:

5



LPS(A[1 . . n]):

for i← n down to 1
LPS[i, i− 1]← 0
LPS[i, i]← 1
for j ← i+ 1 to n

LPS[i, j]← max
{
LPS[i+ 1, j], LPS[i, j − 1]

}
if A[i] = A[j]

LPS[i, j]← max
{
LPS[i, j], 2 + LPS[i+ 1, j − 1]

}
return LPS[1, n]

The resulting algorithm runs in O(n2) time .

Solution:

[greedy optimization] Let LPS(i, j) denote the length of the longest palindrome subsequence of A[i . . j].
This function obeys the following recurrence:

LPS(i, j) =


0 if i > j

1 if i = j

2 + LPS(i+ 1, j − 1) if i < j and A[i] = A[j]

max {LPS(i+ 1, j), LPS(i, j − 1)} otherwise

See the Lab 7a solutions for a proof. We need to compute LPS(1, n).

We can memoize the function LPS into a two-dimensional array. Each entry depends on the LPS[i, j]
depends on (at most) three entries LPS[i+ 1, j], LPS[i, j − 1], and LPS[i+ 1, j − 1] immediately below
and/or to the left. Thus, we can �ll the array from bottom to top in the outer loop, and from left to
right in inner loop, as follows:

LPS(A[1 . . n]):

for i← n down to 1
LPS[i, i− 1]← 0
LPS[i, i]← 1
for j ← i+ 1 to n

if A[i] = A[j]
LPS[i, j]← 2 + LPS[i+ 1, j − 1]

else
LPS[i, j]← max

{
LPS[i+ 1, j], LPS[i, j − 1]

}
return LPS[1, n]

The resulting algorithm runs in O(n2) time . See, the optimization didn't actually help!

6


