
Discussion 07b: Mar 4 (Fri) Version: 1.0 CS/ECE 374 A, Spring 2022

A subsequence of a sequence (for example, an array, a linked list, or a string), obtained by removing zero or

more elements and keeping the rest in the same sequence order. A subsequence is called a substring if its

elements are contiguous in the original sequence. For example:

� SUBSEQUENCE, UBSEQU , and the empty string ε are all substrings of the string SUBSEQUENCE;

� SBSQNC, UEQUE, and EEE are all subsequences of SUBSEQUENCE but not substrings;

� QUEUE, SSS, and FOOBAR are not subsequences of SUBSEQUENCE.

Describe and analyze dynamic programming algorithms for the following problems. For the �rst three, use

the backtracking algorithms you developed on Wednesday.

1 Given an array A[1 .. n] of integers, compute the length of a longest increasing subsequence of A. A se-

quence B[1 .. `] is increasing if B[i] > B[i− 1] for every index i ≥ 2.

2 Given an array A[1 .. n] of integers, compute the length of a longest decreasing subsequence of A. A se-

quence B[1 .. `] is decreasing if B[i] < B[i− 1] for every index i ≥ 2.

3 Given an array A[1 .. n] of integers, compute the length of a longest alternating subsequence of A.
A sequence B[1 .. `] is alternating if B[i] < B[i − 1] for every even index i ≥ 2, and B[i] > B[i − 1] for
every odd index i ≥ 3.

4 Given an array A[1 .. n] of integers, compute the length of a longest convex subsequence of A. A sequence

B[1 .. `] is convex if B[i]−B[i− 1] > B[i− 1]−B[i− 2] for every index i ≥ 3.

5 Given an array A[1 .. n], compute the length of a longest palindrome subsequence of A. Recall that

a sequence B[1 .. `] is a palindrome if B[i] = B[`− i+ 1] for every index i.

1



Basic steps in developing a dynamic programming algorithm

1 Formulate the problem recursively. This is the hard part. There are two distinct but equally impor-

tant things to include in your formulation.

1.A. Speci�cation. First, give a clear and precise English description of the problem you are claiming

to solve. Not how to solve the problem, but what the problem actually is. Omitting this step in

homeworks or exams is an automatic zero.

1.B. Solution. Second, give a clear recursive formula or algorithm for the whole problem in terms of the

answers to smaller instances of exactly the same problem. It generally helps to think in terms of a

recursive de�nition of your inputs and outputs. If you discover that you need a solution to a similar

problem, or a slightly related problem, you are attacking the wrong problem; go back to step 1.

2 Build solutions to your recurrence from the bottom up. Write an algorithm that starts with

the base cases of your recurrence and works its way up to the �nal solution, by considering intermediate

subproblems in the correct order. This stage can be broken down into several smaller, relatively mechanical

steps:

2.A. Identify the subproblems. What are all the di�erent ways can your recursive algorithm call itself,

starting with some initial input?

2.B. Analyze running time. Add up the running times of all possible subproblems, ignoring the recursive

calls.

2.C. Choose a memoization data structure. For most problems, each recursive subproblem can be

identi�ed by a few integers, so you can use a multidimensional array. But some problems need a more

complicated data structure.

2.D. Identify dependencies. Except for the base cases, every recursive subproblem depends on other

subproblems�which ones? Draw a picture of your data structure, pick a generic element, and draw

arrows from each of the other elements it depends on. Then formalize your picture.

2.E. Find a good evaluation order. Order the subproblems so that each subproblem comes after the

subproblems it depends on. Typically, you should consider the base cases �rst, then the subproblems

that depends only on base cases, and so on. Be careful!

2.F. Write down the algorithm. You know what order to consider the subproblems, and you know

how to solve each subproblem. So do that! If your data structure is an array, this usually means

writing a few nested for-loops around your original recurrence.

2


