
Solutions for Discussion 6a: Feb 23 (Wed) Version: 1.0 CS/ECE 374 A, Spring 2022

Here are several problems that are easy to solve in O(n) time, essentially by brute force. Your task is to design

algorithms for these problems that are signi�cantly faster.

1 Suppose we are given an array A[1 .. n] of n distinct integers, which could be positive, negative, or zero,

sorted in increasing order so that A[1] < A[2] < · · · < A[n].

1.A. Describe a fast algorithm that either computes an index i such that A[i] = i or correctly reports that

no such index exists.

Solution:

Suppose we de�ne a second array B[1 .. n] by setting B[i] = A[i]− i for all i. For every index i we
have

B[i] = A[i]− i ≤ (A[i+ 1]− 1)− i = A[i+ 1]− (i+ 1) = B[i+ 1],

so this new array is sorted in increasing order. Clearly, A[i] = i if and only if B[i] = 0. So we can

�nd an index i such that A[i] = i by performing a binary search in B. We don't actually need to

compute B in advance; instead, whenever the binary search needs to access some value B[i], we
can just compute A[i]− i on the �y instead!

Here are two formulations of the resulting algorithm, �rst recursive (keeping the array A as a global

variable), and second iterative.

// Return any index i such that ` ≤ i ≤ r and A[i] = i
FindMatch(`, r):

if ` > r
return None

mid← (`+ r)/2

if A[mid] = mid // B[mid] = 0
return mid

else if A[mid] < mid // B[mid] < 0
return FindMatch(mid+ 1, r)

else // B[mid] > 0
return FindMatch(`,mid− 1)

FindMatch(A[1 .. n]):

hi← n
lo← 1
while lo ≤ hi

mid← (lo+ hi)/2

if A[mid] = mid // B[mid] = 0
return mid

else if A[mid] < mid // B[mid] < 0
lo← mid+ 1

else // B[mid] > 0
hi← mid− 1

return None

In both formulations, the algorithm is binary search, so it runs in O(log n) time.

1



1.B. Suppose we know in advance that A[1] > 0. Describe an even faster algorithm that either computes

an index i such that A[i] = i or correctly reports that no such index exists.
(
Hint: This is really

easy.
)

Solution:

The following algorithm solves this problem in O(1) time:

FindMatchPos(A[1 .. n]):

if A[1] = 1
return 1

else

return None

Again, the array B[1 .. n] de�ned by setting B[i] = A[i]− i is sorted in increasing order. It follows

that if A[1] > 1 (that is, B[1] > 0), then A[i] > i (that is, B[i] > 0) for every index i. A[1] cannot
be less than 1.

2 Suppose we are given an array A[1 .. n] such that A[1] ≥ A[2] and A[n−1] ≤ A[n]. We say that an element

A[x] is a local minimum if both A[x − 1] ≥ A[x] and A[x] ≤ A[x + 1]. For example, there are exactly

six local minima in the following array:

9
N
7 7 2

N
1 3 7 5

N
4 7

N
3

N
3 4 8

N
6 9

Describe and analyze a fast algorithm that returns the index of one local minimum. For example, given

the array above, your algorithm could return the integer 9, because A[9] is a local minimum.
(
Hint: With

the given boundary conditions, any array must contain at least one local minimum. Why?
)

Solution:

The following algorithm solves this problem in O(log n) time:

LocalMin(A[1 . . . n]) :

if n < 100
�nd the smallest element in A by brute force

m← bn/2c
if A[m] < A[m+ 1]

return LocalMin(A[1 . . .m+ 1])
else

return LocalMin(A[m. . . n])

If n is less than 100, then a brute-force search runs in O(1) time. There's nothing special about 100
here; any other constant will do.

Otherwise, if A[n/2] < A[n/2+1], the subarray A[1 . . . n/2 + 1] satis�es the precise boundary conditions
of the original problem, so the recursion fairy will �nd local minimum inside that subarray.

Finally, if A[n/2] > A[n/2 + 1], the subarray A[n/2 . . . n] satis�es the precise boundary conditions of

the original problem, so the recursion fairy will �nd local minimum inside that subarray.

The running time satis�es the recurrence T (n) ≤ T (dn/2e+1)+O(1). Except for the +1 and the ceiling

in the recursive argument, which we can ignore, this is the binary search recurrence, whose solution is

T (n) = O(log n).

2



Alternatively, we can observe that dn/2e+1 < 2n/3 when n ≥ 100, and therefore T (n) ≤ T (2n/3)+O(1),
which implies T (n) = O(log3/2 n) = O(log n).

3 Suppose you are given two sorted arrays A[1 .. n] and B[1 .. n] containing distinct integers. Describe a fast

algorithm to �nd the median (meaning the nth smallest element) of the union A ∪B. For example, given

the input

A[1 .. 8] = [0, 1, 6, 9, 12, 13, 18, 20] B[1 .. 8] = [2, 4, 5, 8, 17, 19, 21, 23]

your algorithm should return the integer 9.
(
Hint: What can you learn by comparing one element of A

with one element of B?
)

Solution:

The following algorithm solves this problem in O(log n) time:

Median(A[1 . . n], B[1 . . . n]) :

if n < 10100

use brute force

else if A[n/2] > B[n/2]
return Median(A[1 . . n/2], B[n/2 + 1 . . n])

else

return Median(A[n/2 + 1 . . n], B[1 . . n/2])

Suppose A[n/2] > B[n/2]. Then A[n/2+1] is larger than all n elements in A[1 . . n/2]∪B[1 . . n/2], and
therefore larger than the median of A∪B, so we can discard the upper half of A. Similarly, B[n/2− 1]
is smaller than all n+1 elements of A[n/2 . . n]∪B[n/2+1 . . n], and therefore smaller than the median

of A∪B, so we can discard the lower half of B. Because we discard the same number of elements from

each array, the median of the remaining subarrays is the median of the original A ∪B.

To think about later:

4 Now suppose you are given two sorted arrays A[1 . . m] and B[1 . . n] and an integer k. Describe a fast

algorithm to �nd the kth smallest element in the union A ∪B. For example, given the input

A[1 . . 8] = [0, 1, 6, 9, 12, 13, 18, 20] B[1 . . 5] = [2, 5, 7, 17, 19] k = 6

your algorithm should return the integer 7.

Solution:

The following algorithm solves this problem in O(logmin {k,m+ n− k}) = O(log(m+ n)) time:

Select(A[1 . . m], B[1 . . n], k) :

if k < (m+ n)/2
return Median(A[1 . . k], B[1 . . k])

else

return Median(A[k − n . . m], B[k −m . . n])

Here, Median is the algorithm from problem 3 with one minor tweak. If Median wants an entry in

either A or B that is outside the bounds of the original arrays, it uses the value −∞ if the index is too

low, or ∞ if the index is too high, instead of creating a core dump.

3


