Design Turing machines $M = (Q, \Sigma, \Gamma, \delta, \mathsf{start}, \mathsf{accept}, \mathsf{reject})$ for each of the following tasks, either by listing the states Q, the tape alphabet Γ , and the transition function δ (in a table), or by drawing the corresponding labeled graph. Each of these machines uses the input alphabet $\Sigma = \{1, \#\}$; the tape alphabet Γ can be any superset of $\{1, \#, \square, \triangleright\}$ where \square is the blank symbol and \triangleright is a special symbol marking the left end of the tape. Each machine should reject any input not in the form specified below. - 1 On input 1^n , for any non-negative integer n, write $1^n \# 1^n$ on the tape and accept. - On input $\#^n 1^m$, for any non-negative integers m and n, write 1^m on the tape and accept. In other words, delete all the #s and shift the 1s to the start of the tape. - 3 On input $\#1^n$, for any non-negative integer n, write $\#1^{2n}$ on the tape and accept. (Hint: Modify the Turing machine from problem 1.) - 4 On input 1^n , for any non-negative integer n, write 1^{2^n} on the tape and accept. (Hint: Use the three previous Turing machines as subroutines.)