Version: 1.2

Prove that each of the following languages is *not* regular.

$1 \quad \{0^{2^n} \mid n \ge 0\}.$

Solution:

Choose $F = \{0^{2^n} \mid n \ge 0\}.$

Let x and y be two arbitrary strings of F with $x \neq y$.

Then $x = 0^{2^i}$ and $y = 0^{2^j}$ for some non-negative integers $i \neq j$.

Choose $z = 0^{2^i}$.

Then $xz = 0^{2^i}0^{2^i} = 0^{2^{i+1}} \in L$.

And $yz = 0^{2^j}0^{2^i} = 0^{2^i+2^j} \notin L$, because $i \neq j$ (since $2^i + 2^j$ cannot be a power of 2).

Thus, F is a fooling set for L.

Because F is infinite, L cannot be regular.

$2 \quad \left\{ 0^{2n} 1^n \mid n \ge 0 \right\}$

Solution:

Choose $F = \{ 0^i \mid i \ge 0 \}.$

Let x and y be two arbitrary strings in F with $x \neq y$.

Then $x = 0^i$ and $y = 0^j$ for some non-negative integers $i \neq j$.

Choose $z = 0^i 1^i$.

Then $xz = 0^{2i}1^i \in L$.

And $yz = 0^{i+j}1^i \notin L$, because $i + j \neq 2i$.

Thus, F is a fooling set for L.

Because F is infinite, L cannot be regular.

$3 \quad \{0^m 1^n \mid m \neq 2n\}$

Solution:

Choose $F = \{ 0^i \mid i \ge 0 \}$.

Let x and y be two arbitrary strings in F with $x \neq y$.

Then $x = 0^i$ and $y = 0^j$ for some non-negative integers $i \neq j$.

Choose $z = 0^i 1^i$.

Then $xz = 0^{2i}1^i \notin L$.

And $yz = 0^{i+j}1^i \in L$, because $i + j \neq 2i$.

Thus, F is a fooling set for L.

Because F is infinite, L cannot be regular.

4 Strings over $\{0,1\}$ where the number of 0s is exactly twice the number of 1s.

Solution:

Choose $F = \{0^i \mid i \geq 0\}$. Let x and y be two arbitrary strings in F with $x \neq y$. Then $x = 0^i$ and $y = 0^j$ for some non-negative integers $i \neq j$. Choose $z = 0^i 1^i$. Then $xz = 0^{2i} 1^i \in L$. And $yz = 0^{i+j} 1^i \notin L$, because $i + j \neq 2i$. Thus, F is a fooling set for L. Because F is infinite, L cannot be regular.

Solution:

If L were regular, then the language

$$((0+1)^* \setminus L) \cap 0^*1^* = \{0^m1^n \mid m \neq 2n\}$$

would also be regular, because regular languages are closed under complement and intersection. But we just proved that $\{0^m1^n \mid m \neq 2n\}$ is not regular in problem 3. [This proof would be worth full credit in homework or an exam, if we do not explicitly specify that you should use the fooling set method.]

5 Strings of properly nested parentheses (), brackets [], and braces {}. For example, the string ([]){} is in this language, but the string ([)] is not, because the left and right delimiters don't match.

Solution:

Choose $F = \{ (i \mid i \ge 0) \}$.

Let x and y be two arbitrary strings in F with $x \neq y$.

Then $x = (i \text{ and } y = (j \text{ for some non-negative integers } i \neq j.$

Choose $z =)^i$.

Then $xz = {i \choose i}^i \in L$.

And $yz = {j \choose i}^i \notin L$, because $i \neq j$.

Thus, F is a fooling set for L.

Because F is infinite, L cannot be regular.

6 Strings of the form $w_1 \# w_2 \# \cdots \# w_n$ for some $n \geq 2$, where each substring w_i is a string in $\{0,1\}^*$, and some pair of substrings w_i and w_j are equal.

Solution:

Choose $F = \{0^i \mid i \ge 0\}.$

Let x and y be arbitrary strings in F with $x \neq y$.

Then $x = 0^i$ and $y = 0^j$ for some non-negative integers $i \neq j$.

Choose $z = \#0^i$.

Then $xz = 0^i \# 0^i \in L$.

And $yz = 0^j \# 0^i \notin L$, because $i \neq j$.

Thus, F is a fooling set for L.

Because F is infinite, L cannot be regular.

Extra problems

7 $\{w \in (0+1)^* \mid w \text{ is the binary representation of a perfect square}\}$

Solution:

Idea: We design our fooling set around numbers of the form $(2^k+1)^2=2^{2k}+2^{k+1}+1$, which has binary representation $10^{k-2}10^k1$. The argument is somewhat simpler if we further restrict k to be even.

Choose $F = \{10^{2i}1 \mid i \ge 0\}.$

Let x and y be two distinct arbitrary strings in F.

Then $x = 10^{2i-2}1$ and $y = 10^{2j-2}1$, for some positive integers $i \neq j$. Without loss of generality, assume i < j. (Otherwise, swap x and y.)

Choose $z = 0^{2i}1$.

Then $xz = 10^{2i-2}10^{2i}1$ is the binary representation of $2^{4i} + 2^{2i+1} + 1 = (2^{2i} + 1)^2$, and therefore $xz \in L$.

On the other hand, $yz = 10^{2j-2}10^{2i}1$ is the binary representation of $2^{2i+2j} + 2^{2i+1} + 1$. Simple algebra gives us the inequalities

$$(2^{i+j})^2 = 2^{2i+2j}$$

$$< \mathbf{2^{2i+2j}} + \mathbf{2^{2i+1}} + \mathbf{1}$$

$$< 2^{2(i+j)} + 2^{i+j+1} + 1$$

$$= (2^{i+j} + 1)^2.$$

So $2^{2i+2j} + 2^{2i+1} + 1$ lies between two consecutive perfect squares, and thus is not a perfect square, which implies that $yz \notin L$.

We conclude that F is a fooling set for L. Because F is infinite, L cannot be regular.

3