
CS/ECE 374 A (Spring 2022)
Past HW3 Problems with Solutions

Problem Old.3.1: For the following languages in (a)–(b), draw an NFA that accepts them. Your
automata should have a small number of states. Provide a short explanation of your solution.

(a)
(
(01)∗(10)∗ + 00

)∗ · (1 + 00 + ε) · (11)∗.

(b) All strings in {0, 1}∗ such that the last symbol is the same as the third last symbol.
(Example: 1100101 is in the language, since the last and the third last symbol are 1.)

(c) Use the subset (i.e., power set) construction to convert your NFA from (b) to a DFA.
You may omit unreachable states.

Solution:

(a)
(01)^*

(10)^*
00

s

end

t

ε
a

ε

g
ε

u

ε

b0

d

ε

1

ε
e1

0h
0

k
0 ε

v

ε

1

i
0

ε

j1

0 1

We apply the recursive algorithm from class (with some shortcuts taken, although further
shortcuts could still be made). States a,b,c,d,g,h,k,t deal with

(
(01)∗(10)∗+00

)∗
. States

u,i,v,j deal with (1 + 00 + ε) · (11)∗.

(b)

s e

0,1
a1

c
0

b
0,1

d
0,1

1
0

We use nondeterminism to guess when we have reached the 3rd-to-last symbol. If it is
a 1, we follow the path s,a,b,e to ensure that the last 3 symbols are in 1(0 + 1)1. If it is
a 0, we follow the path s,c,d,e to ensure that the last 3 symbols are in 0(0 + 1)0.

1



(c)

{s}

{s,a,d,e}

{s,b,c,e}

0

{s,a,b}
1

{s,a,b,e}

1

{s,b,c}

0

1

{s,c,d}
0

{s,c,d,e}

0

{s,a,d}

1

{s,a}

1 {s,c}

0

1

01

0

0

1

0

1

1

0

1

0

Problem Old.3.2: Given L ⊆ {0, 1}∗, define even0(L) to be the set of all strings in {0, 1}∗ that
can be obtained by taking a string in L and inserting an even number of 0’s (anywhere in the
string). Similarly, define odd0(L) to be the set of all strings x in {0, 1}∗ that can be obtained
by taking a string in L and inserting an odd number of 0’s.

(Example: if 01101 ∈ L, then 01010000100 ∈ even0(L).)

(Another example: if L is 1∗, then even0(L) can be described by the regular expression
(1∗01∗0)∗1∗.)

Prove that if L ⊆ {0, 1}∗ is regular, then even0(L) and odd0(L) are regular. Specifically,
given a regular expression r, describe a recursive algorithm to construct regular expressions
for even0(L(r)) and odd0(L(r)).

Solution:

Algorithm even0(r):

1. if r = ∅ then return ∅
2. if r = ε then return (00)∗

3. if r = 0 then return 0(00)∗

4. if r = 1 then return (00)∗1(00)∗ + 0(00)∗10(00)∗

5. if r = r1 + r2 then return even0(r1) + even0(r2)

2



6. if r = r1r2 then return even0(r1) · even0(r2) + odd0(r1) · odd0(r2)

7. if r = (r1)
∗ then return

(00)∗ + even0(r1)
∗ · (odd0(r1) · even0(r1)

∗ · odd0(r1) · even0(r1)
∗)∗

Algorithm odd0(r):

1. if r = ∅ then return ∅
2. if r = ε then return 0(00)∗

3. if r = 0 then return 00(00)∗

4. if r = 1 then return 0(00)∗1(00)∗ + (00)∗10(00)∗

5. if r = r1 + r2 then return odd0(r1) + odd0(r2)

6. if r = r1r2 then return odd0(r1) · even0(r2) + even0(r1) · odd0(r2)

7. if r = (r1)
∗ then return

0(00)∗+even0(r1)
∗·odd0(r1)·even0(r1)

∗·(odd0(r1) · even0(r1)
∗ · odd0(r1) · even0(r1)

∗)∗

Justification of Algorithm even0(r):

� Lines 1–3 and 5 are self-explanatory.

� In line 4, for r = 1, we want all strings with one 1 and an even number of 0’s. There
are two cases: there are an even number of 0’s before the 1 and even number of 0’s after
the 1, or there are an odd number of 0’s before the 1 and odd number of 0’s after the 1.
This gives (00)∗1(00)∗ + 0(00)∗10(00)∗,

� In line 6, for r = r1r2, there are two cases for strings in even0(L(r1)L(r2)): we can insert
an even number of 0’s to a string in L(r1) and an even number of 0’s to a string in L(r2),
or we can insert an odd number of 0’s to a string in L(r1) and an odd number of 0’s to
a string in L(r2). This gives even0(r1) · even0(r2) + odd0(r1) · odd0(r2).

� In line 7, for r = (r1)
∗, a string in even0(L(r1)

∗) can be divided into blocks, where
each block is obtained by inserting either an even or an odd number of 0’s to a string
in L(r1), where the number of blocks of the latter “odd type” is even. This gives
even0(r1)

∗ · (odd0(r1) · even0(r1)
∗ · odd0(r1) · even0(r1)

∗)∗. The only remaining case
is when we just insert an even number of 0’s to the empty string; this is (00)∗.

Justification of Algorithm odd0(r) is similar.

Problem Old.3.3: Let L be an arbitrary regular language. Prove that the language half (L) :=
{w : ww ∈ L} is also regular.

3



Solution: Let M = (Σ, Q, s, A, δ) be an arbitrary DFA that accepts L. We define a new NFA
M ′ = (Σ, Q′, s′, A′, δ′) with ε-transitions that accepts half (L), as follows:

Q′ = (Q×Q×Q) ∪ {s′}
s′ is an explicit state in Q′

A′ = {(h, h, q) : h ∈ Q and q ∈ A}

δ′(s′, ε) = {(s, h, h) : h ∈ Q}
δ′((p, h, q), a) =

{(
δ(p, a), h, δ(q, a)

)}
Explanation: M ′ reads its input string w and simulates M reading the input string ww.
Specifically, M ′ simultaneously simulates two copies of M , one reading the left half of ww
starting at the usual start state s, and the other reading the right half of ww starting at some
intermediate state h.

� The new start state s′ non-deterministically guesses the “halfway” state h = δ∗(s, w)
without reading any input; this is the only non-determinism in M ′.

� State (p, h, q) means the following:

– The left copy of M (which started at state s) is now in state p.

– The initial guess for the halfway state is h.

– The right copy of M (which started at state h) is now in state q.

� M ′ accepts if and only if the left copy of M ends at state h (so the initial non-
deterministic guess h = δ∗(s, w) was correct) and the right copy of M ends in an
accepting state.

Problem Old.3.4: For a string x ∈ {0, 1}∗, let xF denote the string obtained by changing all 0’s
to 1’s and all 1’s to 0’s in x.

Given a language L over the alphabet {0, 1}, define

flip-substr(L) = {uvFw : uvw ∈ L, u, v, w ∈ {0, 1}∗}.

Prove that if L is regular, then flip-substr(L) is regular.

(For example, (1011)F = 0100. If 1011011 ∈ L, then 1000111 = 10(110)F 11 ∈ flip-substr(L).
For another example, flip-substr(0∗1∗) = 0∗1∗0∗1∗.)

[Hint: given an NFA (or DFA) for L, construct an NFA for flip-substr(L). Give a formal
description of your construction. Provide an explanation of how your NFA works, including
the meaning of each state. A formal proof of correctness of your NFA is not required.]

Solution: Let L be a regular language over Σ = {0, 1}. By Kleene’s theorem, L is accepted
by some DFA M = (Σ, Q, s, A, δ). We construct an NFA M ′ = (Σ, Q′, s′, A′, δ′) accepting

4



flip-substr(L) (which would imply that flip-substr(L) is regular by Kleene’s theorem).
The construction is as follows:

Q′ = Q× {before,middle, after}
s′ = (s, before)
A′ = {(q, after) : q ∈ A}

δ′((q, before), a) = (δ(q, a), before) ∀q ∈ Q, a ∈ Σ
δ′((q, before), ε) = (q,middle) ∀q ∈ Q
δ′((q,middle), a) = (δ(q, aF ),middle) ∀q ∈ Q, a ∈ Σ
δ′((q,middle), ε) = (q, after) ∀q ∈ Q
δ′((q, after), a) = (δ(q, a), after) ∀q ∈ Q, a ∈ Σ

(All other unspecified entries of δ′ are ∅.)
Explanation: The idea is to divide the process into three phases: before (reading the prefix
u), middle (reading the substring v that needs to be flipped), and after (reading the suffix
w). We use nondeterminism (ε-transitions) to guess when to switch from the before phase
to the middle phase, and when to switch from the middle phase to the after phase. At the
same time, we simulate M on the string uvFw. (Note that the definition of flip-substr(L)
is equivalent to {uvw : uvFw ∈ L}.)
Meaning of states in M ′:

� M ′ may be in state (q, before) after reading input x iff M may be in state q after reading
input x.

� M ′ may be in state (q,middle) after reading input x iff M may be in state q after reading
input uvF for some strings u and v with x = uv.

� M ′ may be in state (q, after) after reading input x iff M may be in state q after reading
input uvFw for some strings u, v, w with x = uvw.

5


