CS/ECE 374 A (Spring 2022) Past HW3 Problems with Solutions

Problem Old.3.1: For the following languages in (a)-(b), draw an NFA that accepts them. Your automata should have a small number of states. Provide a short explanation of your solution.
(a) $\left((01)^{*}(10)^{*}+00\right)^{*} \cdot(1+00+\varepsilon) \cdot(11)^{*}$.
(b) All strings in $\{0,1\}^{*}$ such that the last symbol is the same as the third last symbol. (Example: 1100101 is in the language, since the last and the third last symbol are 1.)
(c) Use the subset (i.e., power set) construction to convert your NFA from (b) to a DFA. You may omit unreachable states.

Solution:

(a)

We apply the recursive algorithm from class (with some shortcuts taken, although further shortcuts could still be made). States a,b,c,d,g,h,k,t deal with $\left((01)^{*}(10)^{*}+00\right)^{*}$. States $\mathrm{u}, \mathrm{i}, \mathrm{v}, \mathrm{j}$ deal with $(1+00+\varepsilon) \cdot(11)^{*}$.
(b)

We use nondeterminism to guess when we have reached the 3rd-to-last symbol. If it is a 1 , we follow the path $\mathrm{s}, \mathrm{a}, \mathrm{b}, \mathrm{e}$ to ensure that the last 3 symbols are in $1(0+1) 1$. If it is a 0 , we follow the path $\mathrm{s}, \mathrm{c}, \mathrm{d}$, e to ensure that the last 3 symbols are in $0(0+1) 0$.
(c)

Problem Old.3.2: Given $L \subseteq\{0,1\}^{*}$, define even $_{0}(L)$ to be the set of all strings in $\{0,1\}^{*}$ that can be obtained by taking a string in L and inserting an even number of 0 's (anywhere in the string). Similarly, define $\operatorname{od} d_{0}(L)$ to be the set of all strings x in $\{0,1\}^{*}$ that can be obtained by taking a string in L and inserting an odd number of 0 's.
(Example: if $01101 \in L$, then $01010000100 \in$ even $_{0}(L)$.)
(Another example: if L is 1^{*}, then even $_{0}(L)$ can be described by the regular expression $\left(1^{*} 01^{*} 0\right)^{*} 1^{*}$.)
Prove that if $L \subseteq\{0,1\}^{*}$ is regular, then $\operatorname{even}_{0}(L)$ and $\operatorname{odd}_{0}(L)$ are regular. Specifically, given a regular expression r, describe a recursive algorithm to construct regular expressions for even $_{0}(L(r))$ and $\operatorname{odd}_{0}(L(r))$.

Solution:

Algorithm $\operatorname{EVEN}_{0}(r)$:

1. if $r=\emptyset$ then return \emptyset
2. if $r=\varepsilon$ then return (00$)^{*}$
3. if $r=0$ then return $0(00)^{*}$
4. if $r=1$ then return $(00)^{*} 1(00)^{*}+0(00)^{*} 10(00)^{*}$
5. if $r=r_{1}+r_{2}$ then return $\operatorname{EVEN}_{0}\left(r_{1}\right)+\operatorname{EVEN}_{0}\left(r_{2}\right)$
6. if $r=r_{1} r_{2}$ then return $\operatorname{EVEN}_{0}\left(r_{1}\right) \cdot \operatorname{EVEN}_{0}\left(r_{2}\right)+\operatorname{ODD}_{0}\left(r_{1}\right) \cdot \operatorname{ODD}_{0}\left(r_{2}\right)$
7. if $r=\left(r_{1}\right)^{*}$ then return

$$
(00)^{*}+\operatorname{EVEN}_{0}\left(r_{1}\right)^{*} \cdot\left(\operatorname{ODD}_{0}\left(r_{1}\right) \cdot \operatorname{EVEN}_{0}\left(r_{1}\right)^{*} \cdot \operatorname{ODD}_{0}\left(r_{1}\right) \cdot \operatorname{EVEN}_{0}\left(r_{1}\right)^{*}\right)^{*}
$$

Algorithm $\mathrm{ODD}_{0}(r)$:

1. if $r=\emptyset$ then return \emptyset
2. if $r=\varepsilon$ then return $0(00)^{*}$
3. if $r=0$ then return $00(00)^{*}$
4. if $r=1$ then return $0(00)^{*} 1(00)^{*}+(00)^{*} 10(00)^{*}$
5. if $r=r_{1}+r_{2}$ then return $\operatorname{ODD}_{0}\left(r_{1}\right)+\mathrm{ODD}_{0}\left(r_{2}\right)$
6. if $r=r_{1} r_{2}$ then return $\operatorname{ODD}_{0}\left(r_{1}\right) \cdot \operatorname{EVEN}_{0}\left(r_{2}\right)+\operatorname{EVEN}_{0}\left(r_{1}\right) \cdot \operatorname{ODD}_{0}\left(r_{2}\right)$
7. if $r=\left(r_{1}\right)^{*}$ then return

$$
0(00)^{*}+\operatorname{EVEN}_{0}\left(r_{1}\right)^{*} \cdot \operatorname{ODD}_{0}\left(r_{1}\right) \cdot \operatorname{EVEN}_{0}\left(r_{1}\right)^{*} \cdot\left(\operatorname{ODD}_{0}\left(r_{1}\right) \cdot \operatorname{EVEN}_{0}\left(r_{1}\right)^{*} \cdot \operatorname{ODD}_{0}\left(r_{1}\right) \cdot \operatorname{EVEN}_{0}\left(r_{1}\right)^{*}\right)^{*}
$$

Justification of Algorithm $\operatorname{EVEN}_{0}(r)$:

- Lines $1-3$ and 5 are self-explanatory.
- In line 4 , for $r=1$, we want all strings with one 1 and an even number of 0 's. There are two cases: there are an even number of 0 's before the 1 and even number of 0 's after the 1 , or there are an odd number of 0 's before the 1 and odd number of 0 's after the 1 . This gives $(00)^{*} 1(00)^{*}+0(00)^{*} 10(00)^{*}$,
- In line 6 , for $r=r_{1} r_{2}$, there are two cases for strings in even $_{0}\left(L\left(r_{1}\right) L\left(r_{2}\right)\right)$: we can insert an even number of 0 's to a string in $L\left(r_{1}\right)$ and an even number of 0 's to a string in $L\left(r_{2}\right)$, or we can insert an odd number of 0 's to a string in $L\left(r_{1}\right)$ and an odd number of 0 's to a string in $L\left(r_{2}\right)$. This gives $\operatorname{EVEN}_{0}\left(r_{1}\right) \cdot \operatorname{EVEN}_{0}\left(r_{2}\right)+\mathrm{ODD}_{0}\left(r_{1}\right) \cdot \mathrm{ODD}_{0}\left(r_{2}\right)$.
- In line 7, for $r=\left(r_{1}\right)^{*}$, a string in even $n_{0}\left(L\left(r_{1}\right)^{*}\right)$ can be divided into blocks, where each block is obtained by inserting either an even or an odd number of 0 's to a string in $L\left(r_{1}\right)$, where the number of blocks of the latter "odd type" is even. This gives $\operatorname{EVEN}_{0}\left(r_{1}\right)^{*} \cdot\left(\operatorname{ODD}_{0}\left(r_{1}\right) \cdot \operatorname{EVEN}_{0}\left(r_{1}\right)^{*} \cdot \mathrm{ODD}_{0}\left(r_{1}\right) \cdot \operatorname{EVEN}_{0}\left(r_{1}\right)^{*}\right)^{*}$. The only remaining case is when we just insert an even number of 0 's to the empty string; this is (00$)^{*}$.

Justification of Algorithm $\mathrm{ODD}_{0}(r)$ is similar.

Problem Old.3.3: Let L be an arbitrary regular language. Prove that the language half $(L):=$ $\{w: w w \in L\}$ is also regular.

Solution: Let $M=(\Sigma, Q, s, A, \delta)$ be an arbitrary DFA that accepts L. We define a new NFA $M^{\prime}=\left(\Sigma, Q^{\prime}, s^{\prime}, A^{\prime}, \delta^{\prime}\right)$ with ε-transitions that accepts half (L), as follows:

$$
\begin{gathered}
Q^{\prime}=(Q \times Q \times Q) \cup\left\{s^{\prime}\right\} \\
s^{\prime} \text { is an explicit state in } Q^{\prime} \\
A^{\prime}=\{(h, h, q): h \in Q \text { and } q \in A\} \\
\delta^{\prime}\left(s^{\prime}, \varepsilon\right)=\{(s, h, h): h \in Q\} \\
\delta^{\prime}((p, h, q), a)=\{(\delta(p, a), h, \delta(q, a))\}
\end{gathered}
$$

Explanation: M^{\prime} reads its input string w and simulates M reading the input string $w w$. Specifically, M^{\prime} simultaneously simulates two copies of M, one reading the left half of $w w$ starting at the usual start state s, and the other reading the right half of $w w$ starting at some intermediate state h.

- The new start state s^{\prime} non-deterministically guesses the "halfway" state $h=\delta^{*}(s, w)$ without reading any input; this is the only non-determinism in M^{\prime}.
- State (p, h, q) means the following:
- The left copy of M (which started at state s) is now in state p.
- The initial guess for the halfway state is h.
- The right copy of M (which started at state h) is now in state q.
- M^{\prime} accepts if and only if the left copy of M ends at state h (so the initial nondeterministic guess $h=\delta^{*}(s, w)$ was correct) and the right copy of M ends in an accepting state.

Problem Old.3.4: For a string $x \in\{0,1\}^{*}$, let x^{F} denote the string obtained by changing all 0 's to 1 's and all 1's to 0 's in x.
Given a language L over the alphabet $\{0,1\}$, define

$$
\operatorname{FLIP}-\operatorname{SubStr}(L)=\left\{u v^{F} w: u v w \in L, u, v, w \in\{0,1\}^{*}\right\} .
$$

Prove that if L is regular, then FLIP-SUBSTR (L) is regular.
(For example, $(1011)^{F}=0100$. If $1011011 \in L$, then $1000111=10(110)^{F} 11 \in \operatorname{FLIP-SUBSTR}(L)$. For another example, $\operatorname{FLIP}-\operatorname{SUBStR}\left(0^{*} 1^{*}\right)=0^{*} 1^{*} 0^{*} 1^{*}$.)
[Hint: given an NFA (or DFA) for L, construct an NFA for FLIP-SUBSTR (L). Give a formal description of your construction. Provide an explanation of how your NFA works, including the meaning of each state. A formal proof of correctness of your NFA is not required.]

Solution: Let L be a regular language over $\Sigma=\{0,1\}$. By Kleene's theorem, L is accepted by some DFA $M=(\Sigma, Q, s, A, \delta)$. We construct an NFA $M^{\prime}=\left(\Sigma, Q^{\prime}, s^{\prime}, A^{\prime}, \delta^{\prime}\right)$ accepting

FLIP-SUBSTR (L) (which would imply that FLIP-SUBSTR (L) is regular by Kleene's theorem). The construction is as follows:

$$
\begin{array}{rlrl}
Q^{\prime} & =Q \times\{\text { before, middle, after }\} & & \\
s^{\prime} & =(s, \text { before }) & & \\
A^{\prime} & =\{(q, \text { after }): q \in A\} & & \\
\delta^{\prime}((q, \text { before }), a) & =(\delta(q, a), \text { before }) & & \forall q \in Q, a \in \Sigma \\
\delta^{\prime}((q, \text { before }), \varepsilon) & =(q, \text { middle }) & & \forall q \in Q \\
\delta^{\prime}((q, \text { middle }), a) & =\left(\delta\left(q, a^{F}\right), \text { middle }\right) & & \forall q \in Q, a \in \Sigma \\
\delta^{\prime}((q, \text { middle }), \varepsilon) & =(q, \text { after }) & \forall q \in Q \\
\delta^{\prime}((q, \text { after }), a) & =(\delta(q, a), \text { after }) & & \forall q \in Q, a \in \Sigma
\end{array}
$$

(All other unspecified entries of δ^{\prime} are \emptyset.)
Explanation: The idea is to divide the process into three phases: before (reading the prefix u), middle (reading the substring v that needs to be flipped), and after (reading the suffix w). We use nondeterminism (ε-transitions) to guess when to switch from the before phase to the middle phase, and when to switch from the middle phase to the after phase. At the same time, we simulate M on the string $u v^{F} w$. (Note that the definition of $\operatorname{FLIP}-\operatorname{SUbStr}(L)$ is equivalent to $\left\{u v w: u v^{F} w \in L\right\}$.)
Meaning of states in M^{\prime} :

- M^{\prime} may be in state (q, before) after reading input x iff M may be in state q after reading input x.
- M^{\prime} may be in state (q, middle) after reading input x iff M may be in state q after reading input $u v^{F}$ for some strings u and v with $x=u v$.
- M^{\prime} may be in state (q, after) after reading input x iff M may be in state q after reading input $u v^{F} w$ for some strings u, v, w with $x=u v w$.

