CS/ECE 374 A (Spring 2022)
Past HW3 Problems with Solutions

Problem O1d.3.1: For the following languages in (a)—(b), draw an NFA that accepts them. Your
automata should have a small number of states. Provide a short explanation of your solution.

(a) ((01)*(10)* +00)" - (1 +00 +¢) - (11)*.

(b) All strings in {0,1}* such that the last symbol is the same as the third last symbol.
(Example: 1100101 is in the language, since the last and the third last symbol are 1.)

(¢) Use the subset (i.e., power set) construction to convert your NFA from (b) to a DFA.
You may omit unreachable states.

Solution:
(a)
O
1 b
a O
SLe € g

(10)r*

0 0
OR0RO.C0 s 0TS

We apply the recursive algorithm from class (with some shortcuts taken, although further
shortcuts could still be made). States a,b,c,d,g,h k,t deal with ((01)*(10)* —I—OO)*. States
u,i,v,j deal with (14 00+¢) - (11)*.

We use nondeterminism to guess when we have reached the 3rd-to-last symbol. If it is
a 1, we follow the path s,a,b,e to ensure that the last 3 symbols are in 1(0 + 1)1. If it is
a 0, we follow the path s,c,d,e to ensure that the last 3 symbols are in 0(0 + 1)0.



1
[N

0
“

{s,a,b} |e

Problem 0O1d.3.2: Given L C {0,1}*, define eveng(L) to be the set of all strings in {0, 1}* that
can be obtained by taking a string in L and inserting an even number of 0’s (anywhere in the
string). Similarly, define oddy(L) to be the set of all strings = in {0, 1}* that can be obtained
by taking a string in L and inserting an odd number of 0’s.

(Example: if 01101 € L, then 01010000100 € evengy(L).)
(Another example: if L is 1%, then eveng(L) can be described by the regular expression
(1*01*0)*1*.)
Prove that if L C {0,1}* is regular, then eveng(L) and oddy(L) are regular. Specifically,
given a regular expression r, describe a recursive algorithm to construct regular expressions
for eveng(L(r)) and oddy(L(r)).

Solution:

Algorithm EVENq(7):

if r = () then return ()

if r = ¢ then return (00)*

if r = 0 then return 0(00)*

if r = 1 then return (00)*1(00)* + 0(00)*10(00)*

if r = r1 + 72 then return EVENy(r;) + EVENg(r2)

A



6. if r = ryry then return EVENg(r1) - EVENg(72) + ODDg(r1) - ODDg(72)

7. if r = (r1)* then return

(00)* + EVENq(r1)* - (0DDg(r1) - EVENg(r1)* - ODDg(71) - EVENg(rq)*)"

Algorithm oDDy(7):

1. if r = () then return ()

2. if r = £ then return 0(00)*

3. if r = 0 then return 00(00)*

4. if 7 = 1 then return 0(00)*1(00)* + (00)*10(00)*

5. if 7 = r; + ro then return 0pDy(r1) + ODDy(r2)

6. if r = ryry then return ODDg(r1) - EVENg(72) + EVENq(71) - ODDo(72)
7

. if r = (r1)* then return

0(00)*+EVENq(r1)*-0DDg(r1)-EVENg(r1)*-(0DDg(71) - EVENg(r1)* - ODDg(r1) - EVENg(r1)*)”

Justification of Algorithm EVEN(r):

e Lines 1-3 and 5 are self-explanatory.

e In line 4, for r = 1, we want all strings with one 1 and an even number of 0’s. There
are two cases: there are an even number of 0’s before the 1 and even number of 0’s after
the 1, or there are an odd number of 0’s before the 1 and odd number of 0’s after the 1.
This gives (00)*1(00)* + 0(00)*10(00)*,

e In line 6, for r = ryry, there are two cases for strings in eveng(L(r1)L(r2)): we can insert
an even number of 0’s to a string in L(r;) and an even number of 0’s to a string in L(r2),
or we can insert an odd number of 0’s to a string in L(r;) and an odd number of 0’s to
a string in L(ry). This gives EVENg(r1) - EVENg(r2) + ODDg(71) - ODDg(72).

e In line 7, for r = (r1)*, a string in eveng(L(r1)*) can be divided into blocks, where
each block is obtained by inserting either an even or an odd number of 0’s to a string
in L(ry), where the number of blocks of the latter “odd type” is even. This gives
EVEN((r1)* - (ODDg(r1) - EVENq(71)* - ODDg(71) - EVENg(r1)*)*. The only remaining case
is when we just insert an even number of 0’s to the empty string; this is (00)*.

Justification of Algorithm ODDg(r) is similar.

Problem O1d.3.3: Let L be an arbitrary regular language. Prove that the language half (L) :=
{w :ww € L} is also regular.



Solution: Let M = (3,Q,s,A,d) be an arbitrary DFA that accepts L. We define a new NFA
M = (%,Q', s, A, ) with e-transitions that accepts half (L), as follows:

Q = (@xQ@xQ)U{s}
s’ is an explicit state in Q’
A" = {(h,h,q) :he Q and q € A}

§'(s',e) = {(s,h,h): h € Q}
&((p,h,q),a) = {(6(p,a), h,d(q,a))}

Explanation: M’ reads its input string w and simulates M reading the input string ww.
Specifically, M’ simultaneously simulates two copies of M, one reading the left half of ww
starting at the usual start state s, and the other reading the right half of ww starting at some
intermediate state h.

e The new start state s’ non-deterministically guesses the “halfway” state h = §*(s,w)
without reading any input; this is the only non-determinism in M’.

e State (p, h,q) means the following:

— The left copy of M (which started at state s) is now in state p.
— The initial guess for the halfway state is h.
— The right copy of M (which started at state h) is now in state q.
e M’ accepts if and only if the left copy of M ends at state h (so the initial non-

deterministic guess h = 0*(s,w) was correct) and the right copy of M ends in an
accepting state.

Problem 01d.3.4: For a string = € {0,1}*, let 2" denote the string obtained by changing all 0’s
to 1’s and all 1’s to 0’s in x.

Given a language L over the alphabet {0,1}, define
FLIP-SUBSTR(L) = {wv'w: wow € L, u,v,w € {0,1}*}.

Prove that if L is regular, then FLIP-SUBSTR(L) is regular.
(For example, (1011)¥ = 0100. If 1011011 € L, then 1000111 = 10(110)¥'11 € FLIP-SUBSTR(L).
For another example, FLIP-SUBSTR(0*1*) = 0*1*0*1*.)

[Hint: given an NFA (or DFA) for L, construct an NFA for FLIP-SUBSTR(L). Give a formal
description of your construction. Provide an explanation of how your NFA works, including
the meaning of each state. A formal proof of correctness of your NFA is not required.]

Solution: Let L be a regular language over ¥ = {0,1}. By Kleene’s theorem, L is accepted
by some DFA M = (2,Q,s,A,d). We construct an NFA M' = (3,Q’,s', A’,§') accepting



FLIP-SUBSTR(L) (which would imply that FLIP-SUBSTR(L) is regular by Kleene’s theorem).
The construction is as follows:

Q' = Q x {before, middle, after}
s = (s, before)
A = {(g,after) : g € A}

8’ ((q, before),a) = (d(q,a), before) Yge @, aeX
'((q, before),e) = (q, mzddle) Vg € Q
8 ((q, middle),a) = (6(q,al"), middle) Yge @, ae X
8 ((q, middle),e) = (q, after) Vg € Q
&' ((q, after), a) (6(q; a), after) VgeQ, aceX

(All other unspecified entries of ¢’ are ().)

Explanation: The idea is to divide the process into three phases: before (reading the prefix
u), middle (reading the substring v that needs to be flipped), and after (reading the suffix
w). We use nondeterminism (e-transitions) to guess when to switch from the before phase
to the middle phase, and when to switch from the middle phase to the after phase. At the
same time, we simulate M on the string uvfw. (Note that the definition of FLIP-SUBSTR(L)
is equivalent to {uvw : wvf'w € L}.)

Meaning of states in M':

e M’ may be in state (g, before) after reading input x iff M may be in state g after reading
input z.
e M’ may be in state (g, middle) after reading input z iff M may be in state g after reading

input uvf for some strings v and v with z = uw.

e M’ may be in state (g, after) after reading input z iff M may be in state ¢ after reading
input uv™w for some strings u, v, w with x = vvw.



