CS/ECE 374 A (Spring 2022) Past HW1 Problems with Solutions

Problem Old.1.1: Let $L \subseteq\{0,1\}^{*}$ be a language defined recursively as follows:

- $\varepsilon \in L$.
- For all $w \in L$ we have $0 w 1 \in L$.
- For all $x, y \in L$ we have $x y \in L$.
- And these are all the strings that are in L.

Prove, by induction, that for any $w \in L$, and any prefix u of w, we have that $\#_{0}(u) \geq \#_{1}(u)$. Here $\#_{0}(u)$ is the number of 0 appearing in $u\left(\#_{1}(u)\right.$ is defined similarly). You can use without proof that $\#_{0}(x y)=\#_{0}(x)+\#_{0}(y)$, for any strings x, y.

Solution:

Proof. The proof is by induction on the length of w.
Base case: If $|w|=0$ then $w=\varepsilon$, and then $\#_{0}(w)=0 \geq \#_{1}(u)=0$. Since the only prefix of the empty string is itself, the claim readily follows.
Induction hypothesis: Assume that the claim holds for all strings of length $<n$.
Induction step: We need to prove the claim for a string w of length n. There are two possibilities:

- $w=0 z 1$, for some string $z \in L$.

Let u be any prefix of w. If $u=\varepsilon$ or $u=0$ then the claim clearly holds for u.
If $u=w$, then

$$
\#_{0}(u)=\#_{0}(w)=1+\#_{0}(z)+0 \geq 1+\#_{1}(z)=\#_{1}(w)=\#_{1}(u)
$$

which implies the claim (we used the induction hypothesis on z, since $z \in L$ and $|z|=$ $|w|-2<n)$.
So the remaining case is when $u=0 z^{\prime}$, where z^{\prime} is a prefix of z. In this case,

$$
\#_{0}(u)=\#_{0}\left(0 z^{\prime}\right)=1+\#_{0}\left(z^{\prime}\right) \geq 1+\#_{1}\left(z^{\prime}\right)=1+\#_{1}(u)>\#_{1}(u)
$$

Again, we used the induction hypothesis on z, since $z \in L, z^{\prime}$ is a prefix of z, and z strictly shorter than w. This implies the claim.

- $w=x y$, for some strings $x, y \in L$, such that $|x|,|y|>0$.

Let u be a prefix of w. If u is a prefix of x, then the claim holds readily by induction. The remaining case is when $u=x z$, for some z which is prefix of y. Here,

$$
\#_{0}(u)=\#_{0}(x z)=\#_{0}(x)+\#_{0}(z) \geq \#_{1}(x)+\#_{1}(z)=\#_{1}(u),
$$

by using the induction hypothesis on x (which is a prefix of itself), and on z (which is a prefix of y), noting that both x and y are strictly shorter than w.

Problem Old.1.2: Consider the recurrence

$$
T(n)= \begin{cases}T(\lfloor n / 3\rfloor)+T(\lfloor n / 4\rfloor)+T(\lfloor n / 5\rfloor)+T(\lfloor n / 6\rfloor)+n & n \geq 6 \\ 1 & n<6 .\end{cases}
$$

Prove by induction that $T(n)=O(n)$.

Solution:

Claim 1. For $c \geq 20$, and for all $n \geq 1$, we have $T(n) \leq c n$.
Proof. Base case. For $n<6$ the claim holds for any $c \geq 1$ by definition.
Induction hypothesis. Let $n \geq 6$. Assume that $T(k) \leq c k$ for all $1 \leq k<n$.
Induction step. We need to prove that $T(n) \leq c n$. We know that

$$
\begin{aligned}
T(n) & =T(\lfloor n / 3\rfloor)+T(\lfloor n / 4\rfloor)+T(\lfloor n / 5\rfloor)+T(\lfloor n / 6\rfloor)+n \\
& \leq c\lfloor n / 3\rfloor+c\lfloor n / 4\rfloor)+c\lfloor n / 5\rfloor)+c\lfloor n / 6\rfloor)+n \quad \text { (by the induction hypothesis) } \\
& \leq c n / 3+c n / 4+c n / 5+c n / 6+n \\
& \leq\left(\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}\right) c n+n=\left(\frac{3}{4}+\frac{1}{5}\right) c n+n=\left(\frac{19}{20} c+1\right) n \leq c n,
\end{aligned}
$$

provided that

$$
\frac{19}{20} c+1 \leq c \Longleftrightarrow 1 \leq \frac{1}{20} c \Longleftrightarrow c \geq 20
$$

IMPORTANT NOTE: make sure that the " c " in the conclusion from the induction step $(T(n) \leq c n)$ is the same as the " c " you start with from the induction hypothesis $(T(k) \leq c k$ for $k<n$). If not (for example, if you could only conclude that $T(n) \leq 1.01 c n$), then the whole proof would be incorrect - because the constant factor will "blow up" when we repeat! (General advice: avoid big-O notation inside induction proofs!)

