
CS/ECE 374 A (Spring 2022)
Homework 9 (due April 7 Thursday at 10am)

Instructions: As in previous homeworks.

Problem 9.1: We are given a weighted DAG (directed acyclic graph) G with n vertices and m
edges with m ≥ n, where each edge weight may be positive or negative (you may assume that
no edge has weight zero). We are also given two vertices s, t ∈ V .

(a) (35 points) Describe an efficient algorithm to determine whether there exists a path from
s to t such that the number of positive-weight edges is strictly more than the number of
negative-weight edges in the path.

[Hint: there is an O(m + n)-time solution (but some partial credit will still be given for
an O(mn)-time solution). One approach is to use dynamic programming, but a simpler
approach is to just run a known algorithm from class on a new weighted graph.]

(b) (65 points) Describe an efficient algorithm for determining whether there exists a path
from s to t such that the number of positive-weight edges is strictly more than the number
of negative-weight edges in the path and the total weight of the path is negative.

[Hint: there is an O(mn)-time solution. One approach is to use dynamic programming;
another approach is to run a known algorithm on a new graph.]

Problem 9.2: We are given a weighted directed graph G = (V,E) with n vertices, where all edge
weights are positive. Each edge is colored red or blue. We are also given an integer k ≤ n.

We want to compute the shortest closed walk that contains at least one blue edge and does
not have k consecutive red edges. Describe an efficient algorithm to solve this problem.

(For example, if k = 4, a walk with color sequence blue-red-red-blue-red-red-red-blue-blue-red-
red-blue is allowed, but not blue-red-red-blue-red-red-red-red-blue. For motivation, imagine
that traveling along blue edges lets you recharge. We don’t want to travel too long without
using a blue edge.)

[Hint: it might be helpful to solve the following all-pairs variant of the problem first: for every
pair u, v ∈ V , find the shortest walk from u to v that does not have k consecutive red edges.
One approach is to define a new graph and run a known algorithm on the graph.]

[Note: a correct solution with O(k2n3) time will get you 90 points; a correct solution
with O(kn3 log n) or O(kn3) time will get you 100 points (full credit); and a solution with
O(n3 log n) time or better will receive 15 more bonus points!]

1


