
CS/ECE 374 A (Spring 2022)
Homework 7 (due March 24 Thursday at 10am)

Instructions: As in previous homeworks.

Problem 7.1: (Social distancing for koalas?) We are given a binary tree T with n nodes, and a
number k. (You may assume that every non-leaf node has exactly 2 children.) We want to
pick a subset S of k leaves that maximizes the value1 ∆(S) = minu,v∈S d(u, v), where d(u, v)
denotes the distance between u and v, i.e., the length of the (unique) path from u to v in T .
(Intuitively, ∆(S) represents the amount of “separation” between the leaves in S.) You will
design an efficient dynamic programming algorithm to solve this problem.

In the example below, one optimal subset S is shown in red, with ∆(S) = 5. (Turn the
picture upside down if you are a koala :-)

k = 5

(a) Let Tv denote the subtree rooted at a node v. Consider the following definition of
subproblems: for each node v and each i ∈ {0, . . . , k} and j ∈ {0, . . . , n},2 let F (v, i, j)
be the maximum of ∆(S) over all subsets S of the leaves in Tv, subject to the following
two constraints:

� S contains exactly i leaves, and

� minu∈S d(u, v) = j (i.e., the closest distance from S to the root of Tv is j).

(As usual, if no feasible solution exists, the maximum is −∞.)

First, describe a recursive formula for F (v, i, j). Include appropriate base cases and
justification of your formula, and indicate how the final optimal value to the original
problem can be expressed in terms of F (·, ·, ·).

(b) Next, specify the evaluation order, write pseudocode to solve the problem, and analyze
the running time as a function of n and k. Your algorithm only needs to output the
optimal value.

1In the minimum, we require u 6= v.
2It’s ok if you ignore the i = 0 case.

1

Problem 7.2: (Turning a sequence into a tree) We are given a sequence of n numbers 〈a1, . . . , an〉.
We want to compute a binary tree T with nodes a1, . . . , an such that the inorder traversal is
precisely 〈a1, . . . , an〉, while minimizing the cost function c(T) =

∑
(ai, aj) is an edge of T |ai−aj |.

(Here, an internal node of T may have degree 1 or 2.) You will design two efficient dynamic
programming algorithms to solve this problem.

For example, for the input sequence 〈5, 6, 16, 13, 2, 11, 14, 15, 3, 12, 8, 7〉, one feasible solution
is the following, which has cost |3− 6|+ |3− 8|+ |6− 5|+ |6− 11|+ |8− 12|+ |8− 7|+ |11−
13| + |11 − 14| + |13 − 16| + |13 − 2| + |14 − 15| = 39 (but we are not claiming that this is
optimal).

3

6 8

13

5 11

14

16 152

12 7

(a) Consider the following definition of subproblems: for each i, j,m with 1 ≤ i ≤ m ≤ j ≤ n,
let C(i, j,m) be the minimum of c(T) over all binary trees T with nodes ai, ai+1, . . . , aj
such that

� the inorder traversal of T is 〈ai, ai+1, . . . , aj〉, and

� the root of T is am.

First, describe a recursive formula for C(i, j,m). Include appropriate base cases and
justification of your formula, and indicate how the final optimal value to the original
problem can be expressed in terms of C(·, ·, ·).

(b) Next, specify the evaluation order, and analyze the running time of the resulting dynamic
programming algorithm. (Your algorithm only needs to compute the optimal cost.) For
this problem, there is no need to give pseudocode (if your descriptions of the recursive
formula and evaluation order are precise enough).

(c) Consider a different definition of subproblem: for each i, j, p with 1 ≤ i ≤ j ≤ n and
1 ≤ p ≤ n, let C ′(i, j, p) be the minimum of c(T) + |ap − r(T)| over all binary trees T
with nodes ai, ai+1, . . . , aj such that the inorder traversal of T is 〈ai, ai+1, . . . , aj〉, where
r(T) denotes the root of T .

Describe a new recursive formula for C ′(i, j, p). Include appropriate base cases, justifi-
cation of your formula, and indicate how the final optimal value to the original problem
can be expressed in terms of C ′(·, ·, ·).

(d) Next, using (c), specify the evaluation order, and analyze the running time of the re-
sulting dynamic programming algorithm. (Your algorithm only needs to compute the
optimal cost.) Again, there is no need to give pseudocode (if your descriptions of the
recursive formula and evaluation order are precise enough). Your algorithm in (d) should
be more efficient than your algorithm in (b).3

3. . . assuming that you didn’t do anything too clever in (b) (otherwise, (b) and (d) could be equally efficient).

2

