CS/ECE 374 A (Spring 2022)
Homework 11 (due April 28 Thursday at 10am)

Instructions: As in previous homeworks.

Problem 11.1: Consider the following problem COLORFUL-WALK (which is an extension of Prob-
lem 8.2(b) from HWS):

Input: a directed graph G = (V, E) with n vertices and m edges, a vertex s € V,
and a color ¢(e) € {1,...,k} for each edge e € F, and a number /.

Output: “yes” iff there exists a walk that starts at s and encounters at least ¢
distinct colors.

Consider the SET-COVER problem:

Input: a set X of N elements, a collection of M subsets S = {51, ..., Sy} where
each S; C X, and a number K.

Output: “yes” iff there exists a subcollection 7 C S of K subsets, such that the
union of the subsets in T includes all elements of X.

Describe a polynomial-time reduction from SET-COVER to COLORFUL-WALK. Follow these
steps:

e Given an input to SET-COVER (i.e., X, S, and K), describe a construction of an input to
COLORFUL-WALK (i.e., G, s, ¢(+), and ). Check that your construction takes polynomial
time.

e Prove that the input to SET-COVER has a “yes” answer if and only if your input to
COLORFUL-WALK has a “yes” answer.

Since SET-COVER is a well-known NP-hard problem, it would then follow that COLORFUL-
WALK is NP-hard.

(Hint: for your construction of the directed graph G, try something like the picture below,
with appropriate colors assigned to edges. Remember that in the actual description of your
construction, you are given X, S, and K; you are not given 7, which may or may not exist,
since the goal is to determine whether the answer is “yes” or “no”.)



Problem 11.2: By now, everyone has heard of Wordle, the online word-guessing game. Here, you
will consider a tougher variant of the game, where the word length n is a variable, all strings
of length n from a fixed alphabet are legal words (no dictionary needed!), and after each
guess, you are only told whether there is a green (matching) position, but not the number of
green (nor yellow) positions, nor where they are exactly. You will show that in this version
of the game, just deciding whether there exists a solution after a series of guesses is already
hard (so forget about the question of how to generate a good next guess!).

If you didn’t follow the above paragraph, don’t worry—here is the precise definition of our
problem: For two strings y and z of length n, first define match(y, z) to be true if there
exists a position k such that the k-th symbol of y is equal to the k-th symbol of z, and false
otherwise. The statement of the TOUGH-WORDLE problem is as follows:

Input: a finite alphabet X, a list of m strings yi1,...,y, € X", and m Boolean
values by, ..., by, € {true, false}.

Output: “yes” iff there exists a string z € X" such that match(y;, z) = b; for each
1=1,...,m.

(Example: on the input with ¥ = {A, B,C}, y1 = AAAA, by = true, yo = BBCC, by = true,
y3 = BCAB, bs = false, the answer is “yes”, e.g., by choosing z = ABCC.)

Describe a polynomial-time reduction from 3SAT to TOUGH-WORDLE. Follow these steps:

e Given an input to 3SAT (i.e., a Boolean formula F' in 3CNF form), describe a con-
struction of an input to TOUGH-WORDLE (i.e., an alphabet 3, and a list of strings and
Boolean values). Check that your construction takes polynomial time.

e Prove that F is satisfiable if and only if your input to TOUGH-WORDLE has a “yes”
answer.

Since 3SAT is NP-hard, it would then follow that TOUGH-WORDLE is NP-hard.

(Hint: in your construction, an alphabet of size 3 (0, 1, and an extra symbol) would be
sufficient. Suppose F' has n variables and m clauses. Intuitively, the string z (if exists) should
correspond to a satisfying assignment of F' (if exists). For each clause C;, construct a string
y; of length n (and a corresponding Boolean value b;) to somehow make sure that z contains
at least one true literal of C;. Also, construct an extra string to somehow make sure that z
uses only 0s and 1s and not the extra symbol... Remember that in the actual description
of your construction, all you are given is F'; you are not given a satisfying assignment, which
may or may not exist, since the goal is to determine whether the answer is “yes” or “no”.)



