
CS/ECE 374 A (Spring 2022)
Homework 10 (due April 21 Thursday at 10am)

Instructions: As in previous homeworks.

Problem 10.1: Consider the following geometric matching problem: Given a set A of n points
and a set B of n points in 2D, find a set of n pairs S = {(a1, b1), . . . , (an, bn)}, with
{a1, . . . , an} = A and {b1, . . . , bn} = B, minimizing f(S) =

∑n
i=1 d(ai, bi). Here, d(ai, bi)

denotes the Euclidean distance between ai and bi (which you may assume can be computed
in O(1) time).

Assume that all points in A have y-coordinate equal to 0 and all points in B have y-coordinate
equal to 1. (Thus, all points lie on two horizontal lines.) The points are not sorted. See the
example below, which shows a solution that is definitely not optimal.

(a) (20 pts) Consider the following greedy strategy: pick a pair (a, b) ∈ A× B minimizing
d(a, b); then remove a from A and b from B, and repeat. Give a counterexample showing
that this algorithm does not always give an optimal solution.

(b) (40 pts) Let a be the point in A with the smallest x-coordinate. Let b be the point in
B with the smallest x-coordinate. Consider a solution S in which a is paired with some
point b′ with b′ 6= b, and b is paired with some point a′ with a′ 6= a. Prove that the
solution S can be modified to obtain a new solution S′ with f(S′) < f(S).

(Hint: the triangle inequality1 might be useful.)

(c) (40 pts) Now give a correct greedy algorithm to solve the problem. (The correctness
should follow from (b).) Analyze the running time.

1d(p, q) ≤ d(p, z) + d(z, q) for any points p, q, z.

1



Problem 10.2: We are given an unweighted undirected connected graph G = (V,E) with n ver-
tices and m edges (with m ≥ n− 1), We are also given two vertices s, t ∈ V and an ordering
of the edges e1, . . . , em ∈ E. Suppose the edges e1, . . . , em are deleted one by one in that
order. We want to determine the first time when s and t become disconnected. In other
words, we want to find the smallest index j such that s and t are not connected in the graph
Gj = (V,E − {e1, . . . , ej}).
A naive approach to solve this problem is to run BFS/DFS on Gj for each j = 1, . . . ,m, but
this would require O(mn) time.2 You will investigate a more efficient algorithm:

(a) (80 pts) Define a weighted graph G′ with the same vertices and edges as G, where edge
ei is given weight −i. Let T be the minimum spanning tree of G′. Let π be the path
from s to t in T . Let j∗ be the smallest index such that ej∗ is in π. Prove that the
answer to the above problem is exactly j∗.

(b) (20 pts) Following the approach in (a), analyze the running time needed to compute j∗.

Problem 10.3: Consider the following search problem:

Max-Disjoint-Triples:

Input: a set S of n positive integers and an integer L.

Output: pairwise disjoint triples {a1, b1, c1}, . . . , {ak∗ , bk∗ , ck∗} ⊆ S, maximizing the
number of triples k∗, such that ai + bi + ci ≤ L for each i.

For example, if S = {3, 10, 29, 30, 35, 55, 70, 83, 90} and L = 100, an optimal solution is
{3, 10, 83}, {29, 30, 35}, with two triples (there is no solution with three triples).

Consider the following decision problem:

Disjoint-Triples-Decision:

Input: a set S of n positive integers, an integer L, and an integer k.

Output: True iff there exist k pairwise disjoint triples {a1, b1, c1}, . . . , {ak, bk, ck} ⊆
S, such that ai + bi + ci ≤ L for each i.

Prove that Max-Disjoint-Triples has a polynomial-time algorithm iff Disjoint-Triples-
Decision has a polynomial-time algorithm.

(Note: One direction should be easy. For the other direction, see lab 12b for examples of this
type of question. In Max-Disjoint-Triples, the output is not the optimal value k∗ but an
optimal set of triples, although it may be helpful to give a subroutine to compute the optimal
value k∗ as a first step, as in the lab examples.)

2Oops, I meant O(m2).

2


